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Abstract 

Following the emergence of a novel coronavirus in Wuhan, China instituted shutdown measures 
starting in late January and continuing into February 2020 to arrest the spread of the disease. 
This resulted in a sharp economic contraction unparalleled in recent Chinese history. Satellite 
retrievals show that nitrogen dioxide pollution declined by an unprecedented amount (~50% 
regionally) from its expected unperturbed value, but regional-scale column aerosol loadings and 
cloud microphysical properties were not detectably affected. The disparate impact is tied to 
differential economic impacts of the shutdown, in which transportation, a disproportionate 
source of nitrogen oxide emissions, underwent drastic declines (~90% reductions in passenger 
traffic), whereas industry and power generation, responsible for >90% of particulate emissions, 
were relatively less affected (~20% reductions in electricity and thermal power generation). A 
combination of anomalously warm and humid meteorological conditions and complex chemical 
interactions further decreased nitrogen dioxide concentrations but likely enhanced secondary 
aerosol formation. 
 
Plain Language Summary 

To slow the spread of COVID-19, China put in place strict policies to limit travel and public 
gatherings in February 2020, resulting in a pronounced economic decline. Satellite 
measurements show that levels of nitrogen oxides, gases that are a major component of air 
pollution, were substantially lower than what we would normally expect for February. 
Surprisingly, however, we did not observe any similar changes in airborne particles (another 
major component of air pollution) or in the size of cloud droplets (which is partly determined by 
how many airborne particles there are). This is important because airborne particles, in addition 
to harming human health, affect the climate by changing how much sunlight is absorbed on Earth 
versus reflected back into space. The transportation sector of the economy was hit particularly 
hard by the coronavirus shutdown, but heavy industries and power plants were relatively less 
affected. Transportation is a major source of nitrogen oxides but not of airborne particles, which 
are mostly emitted by industry and power plants. The shutdown’s much larger effect on 
transportation than on industry or power plants, along with changes in weather and chemical 
interactions, help explain the differences we see in the different types of air pollution. 
 

1 Introduction 

1.1 Emergence of a Novel Coronavirus and the Societal Response to the Resulting 
COVID-19 Pandemic 

In late December 2019, cases of a pneumonia of unknown cause were reported in the city 
of Wuhan. By January 2020, the pathogen responsible—a novel zoonotic coronavirus—had 
already spread throughout China and other nations including Japan, South Korea, and the United 
States (C. Wang et al., 2020). To arrest the spread of COVID-19 (the disease caused by the novel 
coronavirus), a series of unprecedently strict restrictions on travel and other activities were 
adapted across China, slowing the spread of the epidemic in China even as the disease became a 
global pandemic (Maier & Brockmann, 2020; Tian et al., 2020). 
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Unsurprisingly, this socio-economic “shutdown” had a catastrophic effect on the Chinese 
economy. Figure 1 shows the Purchasing Managers’ Index (PMI) for both manufacturing and 
non-manufacturing sectors as reported by the National Bureau of Statistics of China. The PMI is 
a survey-based estimate of economic activity, with values above 50% corresponding to growth 
and below to contraction (Harris, 1991). February 2020 stands out sharply, featuring a decline in 
manufacturing PMI deeper than any point during the aftermath of the 2008 financial crisis and 
the only period of contraction in non-manufacturing PMI since records for that index began in 
2007, followed by a rapid recovery. 

 
Figure 1. Economic and environmental indicators from January 2005 to May 2020. a) China’s Purchasing 
Managers’ Index. Economic growth is indicated by blue shading and contraction by red shading (darker colors 
signify the manufacturing and lighter colors the non-manufacturing sectors). b) Monthly anomalies of ln(NO2) 
(red) and aerosol optical depth (blue) averaged over eastern China and cloud droplet effective radius (green) 
averaged over the East China Sea. February 2020 is highlighted in gray shading. c) Year-on-year growth rate 
of passenger transportation by month. d) Combined January-February totals of power generation and some 
heavy industries. 
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1.2 Anthropogenic Drivers of Recent Pollution Changes 

 Nitrogen oxides (NOx ≡ NO + NO2) are reactive, short-lived gases that are a major 
constituent of air pollution harmful to human health (Atkinson et al., 2018). Due to rapid cycling 
between NO and NO2 in the atmosphere, changes in NO2 indicate changes in NOx overall. Tiny 
particles suspended in the air (aerosol) are another major component of air pollution. Particulate 
matter with aerodynamic diameters of 2.5 μm or smaller (PM2.5) is known to have severe health 
impacts, with some estimates of global excess mortality due to outdoor PM2.5 approaching 10 
million deaths annually (Burnett et al., 2018). 

In addition to their relevance for public health, aerosol particles influence the climate 
through absorbing and scattering sunlight and by changing the optical properties of other 
components of the Earth system like snow, ice, and clouds. In particular, gaps in our knowledge 
about the interactions between clouds and aerosol particles represent the largest source of 
uncertainty in present-day anthropogenic radiative forcing in the most recent Intergovernmental 
Panel on Climate Change (IPCC) assessment (Myhre et al., 2013). Aerosol particles can serve as 
cloud condensation nuclei (CCN) upon which liquid-phase cloud droplets may form. Increasing 
CCN increases the number of cloud droplets and (for the same amount of liquid water) decreases 
their size, increasing cloud reflectivity (Twomey, 1977). Macrophysical cloud adjustments to 
these microphysical changes can either enhance or offset this “Twomey effect” (Ackerman et al., 
2004; Albrecht, 1989). Aerosol also influence mixed-phase and ice cloud properties, although 
the climatic effects of these changes are even less certain (Storelvmo, 2017). 

Determining whether observed cloud changes are attributable to aerosol or 
meteorological factors is a major challenge (Gryspeerdt et al., 2016; Stevens & Feingold, 2009). 
To better constrain causality, there has been a growing literature on “natural experiments” like 
volcanic eruptions and inadvertent anthropogenic modifications like ship tracks (Malavelle et al., 
2017; Toll et al., 2019). A clear signal in aerosol and cloud properties due to the February 2020 
shutdown would be of great interest to those working to constrain the magnitude of aerosol-cloud 
interactions (ACI). 

Both long-term changes in air pollution and ACI over China and short-term changes 
attributable to individual events have been analyzed extensively. Increasing aerosol and cloud 
droplet number concentrations were associated with China’s rapid economic growth between the 
1980s and 2000s (Bennartz et al., 2011). Over the past decade, however, sulfate aerosol and 
cloud droplet number concentrations have declined (McCoy et al., 2018). Recent declines in 
pollutants like PM2.5 and NO2 have been driven by increasingly stringent environmental policies 
(Jin et al., 2016) including goals set by the 11th (2006-2010) and 12th (2011-2015) Five-Year 
Plans (de Foy et al., 2016; F. Liu et al., 2016; van der A et al., 2017), the 2013 Air Pollution 
Prevention and Control Action Plan (A. Ding et al., 2019; Silver et al., 2018; Zhai et al., 2019; 
Zhang et al., 2019; B. Zheng et al., 2018; Y. Zheng et al., 2017), and the 2018 Three-Year 
Action Plan for Winning the Blue Sky Defense Battle. Ephemeral pollution decreases have also 
been associated with high-profile events like the 2008 Olympics and Paralympics in Beijing 
(Cermak & Knutti, 2009; Witte et al., 2009), the 2010 World Expo in Shanghai (Hao et al., 
2011), and the 2014 Youth Olympic Games in Nanjing (J. Ding et al., 2015). 

Research has already begun on the environmental consequences of COVID-19. Carbon 
dioxide emissions have significantly declined due to shutdown measures worldwide (Le Quéré et 
al., 2020). Strong declines in NO2 have been observed in Europe, China, South Korea, and the 
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United States (Bauwens et al., 2020); however, emissions reductions related to the early Chinese 
shutdown were insufficient to avoid bad haze episodes in several cities (Chang et al., 2020; X. 
Huang et al., 2020; Le et al., 2020; P. Wang et al., 2020) and benefits from decreasing NOx and 
PM2.5 may be offset by related increases in ozone (X. Huang et al., 2020; Shi & Brasseur, 2020). 
We add to this work by examining regional-scale NOx changes alongside possible aerosol and 
cloud changes in the context of the 2005-2020 satellite record and by drawing upon 
meteorological, economic, and emissions data to help explain the differences we observe 
between pollutants during China’s February 2020 shutdown. 
 

2 Data 

We analyze monthly mean pollution and cloud properties from January 2005 to May 
2020 using NASA’s “A-train” satellite constellation (local overpass times ~13:30). NO2 and 
SO2 data are from the Ozone Monitoring Instrument (OMI) on Aura (Levelt et al., 2018; 
Schoeberl et al., 2006) and aerosol optical depth (AOD), liquid-phase cloud droplet effective 
radius (re),  single-scatter albedo (ω0), and Ångström exponent (α) data are from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) on Aqua (Parkinson, 2003). For OMI, we 
compute monthly averages using NASA’s standard daily 0.25º by 0.25º gridded products for 
NO2 tropospheric column retrievals screened for cloud fractions below 30% (Krotkov et al., 
2017; Krotkov et al., 2019) and planetary boundary layer (PBL) SO2 (Krotkov et al., 2015). For 
MODIS, we use standard monthly 1.0º by 1.0º gridded Collection 6.1 products for AOD at 550 
nm, liquid re retrieved using the near-infrared 2.1 μm channel and a visible channel (Hubanks et 
al., 2019; Platnick et al., 2017), and ω0 at 470 nm and α from the Deep Blue algorithm (Hsu et 
al., 2013; Sayer et al., 2019). More information about the satellite retrievals are provided in the 
supporting information. 

2-m air temperature and specific humidity and 10-m winds are from the Modern‐Era 
Retrospective analysis for Research and Applications, Version 2 (MERRA-2) product (Gelaro et 
al., 2017) and are interpolated to OMI/MODIS grids as needed. 

Monthly economic statistics are compiled from the National Bureau of Statistics of China 
(NBSC). 2015 emissions of NOx, PM2.5, and SO2 broken down by economic sector (IPCC, 
2006) are provided by the Emissions Database for Global Atmospheric Research (EDGAR), 
version 5.0 (Crippa et al., 2018; Crippa et al., 2020). 

 

3 Pollution Changes During the February 2020 Shutdown 

3.1 Regression Model 

Monthly anomalies of ln(NO2), AOD, and re are shown in Figure 1b. We average the 
ln(NO2) and AOD values over a region (20-42ºN, 108-125ºE) encompassing the eastern 
provinces of the People’s Republic of China, Hong Kong, and Taiwan. We average re over a 
region (23-35ºN, 122-130ºE) in the East China Sea in which previous studies have examined 
aerosol-related cloud microphysical trends (Bennartz et al., 2011; McCoy et al., 2018). Perhaps 
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surprisingly, no clear perturbation can be seen in the cloud or aerosol fields in February 2020 and 
it is not clear that the apparent decline in ln(NO2) is statistically distinguishable from other 
variations not associated with such an abrupt socio-economic upheaval. Simply comparing 
observed pollution levels in 2020 to values from previous years or a long-term average can be 
misleading due to seasonal cycles and trends in emissions and/or concentrations. For example, 
one may expect February 2020 pollution levels to have been below the 2015-2019 mean even 
without any coronavirus-related disturbance due to policy-related trends. 

To address these issues, we employ an ordinary least squares linear regression model 
(Pedregosa et al., 2011) to better estimate what monthly-mean air pollution and cloud properties 
should have been in the absence of coronavirus-related perturbations: 

 
!(#, %, &) = )! + )"#$(%, &)+"#$(#) + )"%&'(%, &)+"%&'(#) + )()*(%, &),()*(#)

+ )+%&(%, &)-+%&(#) + )&,-(%, &)-&,-(#), (1) 
 
where Y is the geophysical variable of interest—ln(NO2), AOD, or re—as a function of time (t, in 
months since January 2005) estimated independently at each grid box of latitude % and longitude 
& and the regressors P, H, and S are defined as follows. Each constant c and the intercept c0 are 
calculated independently at each grid box. We use the natural logarithm of NO2 rather than its 
absolute value for the regression because NO2 is distributed log-normally in space (de Foy et al., 
2016) and later analyses involve taking spatial averages. The model is fit based on data from 
January 2005 to December 2019 and is used to predict the expected values for January-May 
2020. 

We define the regressors Ppre and Ppost as the trend in terms of months preceding or 
following January 2013, respectively. January 2013 was chosen as the policy “turning point” due 
to the severe haze events that occurred early that year (R. Huang et al., 2014; G. Zheng et al., 
2015) that contributed to the creation of the ambitious Air Pollution Prevention and Control 
Action Plan in September 2013 (Jin et al., 2016). 
 Next, the regressor HCNY refers to whether the Chinese New Year holiday and related 
festivities (Jiang et al., 2015; Tan et al., 2009) occurred during time t. When Chinese Lunar New 
Year begins in February, HCNY is assigned a value of 1. When the holiday begins in late January 
with festivities lasting into early February, HCNY is assigned a value based on the fraction of the 
10 days following the Lunar New Year occurring in each month. HCNY is set to zero all other 
times. 

Finally, the regressors Scos and Ssin refer to idealized seasonal cycles, represented as two 
annual Fourier modes: 

 

-+%&(#) = cos224
5(#) − 1

12 7 ;		(2) 

-&,-(#) = sin 224
5(#) − 1

12 7 , (3) 

 
where m refers to the calendar month (January = 1) at time t. 
  
 Supporting information Figure S1 shows the value of each regressor as a function of 
time; Figure S2 shows maps of the coefficient of determination (R2), root-mean-square (RMS) 



manuscript submitted to Geophysical Research Letters 

 

error (εRMS), and number of samples used to fit the regression (N); and Figures S3-5 show maps 
of the intercept and regression coefficients for ln(NO2), AOD, and re, respectively. 

3.2 Results 

Maps of the observed (retrieved) and expected (regression) values of NO2, AOD, and re 
for February 2020, along with the difference between the observed and expected values, are 
shown in Figure 2. (NO2 values are converted into their absolute values for the sake of 
presentation.) There is a readily apparent decline in NO2, in some places rivaling the magnitude 
of the total tropospheric column, consistent with the results of Bauwens et al. (2020). However, 
there are no consistent differences in either the aerosol loading or cloud microphysics on a 
regional scale. Furthermore, regions with the largest discrepancies in the cloud fields tend to be 
those with the lowest explained variance (Figure S2). The lack of a regional AOD decline is in 
apparent conflict with some previous results (X. Huang et al., 2020; Le et al., 2020; Shi & 
Brasseur, 2020), although it should be noted that the quantities of interest (regional-scale column 
aerosol loading versus surface PM2.5 at specific stations) are different. There does appear to be an 
increase in AOD surrounding Beijing, which is consistent with some previous results (X. Huang 
et al., 2020; Le et al., 2020). The only area with what appears to be a coherent decline in AOD 
occurs around Shanghai, although even that city experienced relatively high levels of surface 
PM2.5 in two events earlier in the month (Chang et al., 2020). 

To look at the differences between the observed and estimated values in greater historical 
perspective, we average the observed and estimated ln(NO2), AOD, and re values over the same 
regions used in Figure 1b. Results are displayed in Figure 3, with the RMS error in this case 
calculated using the differences between the spatially-averaged observed and expected values 
from January 2005 to December 2019. Like the PMI indices, ln(NO2) shows a pronounced and 
unprecedented decline in February 2020 followed by a rapid recovery. In contrast, AOD and re 
values during 2020 are not perceptibly distinct from the 2005-2019 record. 

Sulfate aerosols, which can form via the oxidation of SO2 in the atmosphere, are a major 
source of cloud condensation nuclei. PBL SO2 as retrieved by OMI is noisier than the 
tropospheric column NO2 retrievals and can be affected by factors like elevated volcanic plumes, 
although previous analyses have successfully analyzed regional-scale trends to gain insight into 
long-term pollution changes (Krotkov et al., 2016; McCoy et al., 2018). Figure S6 shows PBL 
SO2 averaged over eastern Asia excluding major Northern Hemisphere volcanic eruptions. SO2 
levels in February 2020 are in line with the decreasing trend since 2013 and are slightly above 
the previous year’s values, consistent with the minimal change in cloud and aerosol properties. 
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Figure 2. Change in pollution over China for February 2020. Observed values (left), estimated values (center), 
and their difference (right) are shown for NO2 (top) AOD (middle), and re (bottom). Shading is such that 
lighter (left and center) and greener (right) colors align with what would be expected for less pollution. Areas 
without valid data are shaded in gray. Gray stippling indicates absolute differences below 2εRMS. Black boxes 
in the rightmost column indicate areas used for the regional averages. 

 

3.3 Detectability 

The differences between our model’s expectations and the observations can be due to 
emissions changes not captured in our broad policy-related trend terms or other factors such as 
meteorological variability. Thus, for a given emissions reduction, we may not be able to reliably 
detect that reduction given other fluctuations.  

We estimate the probability of detection, defined as the probability that we would 
observe a regionally-averaged change exceeding a given threshold, as follows. For emissions 
reductions up to 90%, we adjust the expected value by a proportional amount for NO2 and AOD 
and then generate a spread using a normal distribution fit with the adjusted expectation and RMS 
error. The fraction laying below the threshold is the probability of detection. This method 
assumes that concentrations/optical properties decline proportionally to emissions, which 
neglects that not all emissions are anthropogenic, that there may be complex interactions 
between emissions and concentrations, and that optical properties may not vary linearly with 
aerosol concentration (especially if the mix of sources changes), but should still provide useful 
results assuming that natural emissions are small compared to the anthropogenic emissions and if 
interpreted cautiously. A similar method is employed for re, taking into account the more indirect 
relationship between aerosol and cloud properties by estimating the increase in droplet size for 
given reduction in aerosol number (Na) as: 
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δ ln(?$) ≈ δ ln(A.) 2
δ ln(A/)
δ ln(A.)

7 2
δ ln(?$)
δ ln(A/)

7 ≈ −B
δ ln(A.)

3 ,			(4) 

 
where Nd is the cloud droplet number concentration, β is the log-log sensitivity of Nd to aerosol 
changes, and the factor of -1/3 relating re and Nd changes assumes liquid water path changes are 
negligible. Because the β parameter is highly uncertain, we bound plausible re responses by 
making separate estimates for low and high sensitivities of 0.3 and 0.8, respectively (Bellouin et 
al., 2020). 
 Figure S7 shows the probability of detection for ln(NO2), AOD, and both bounded 
estimates for re for detection thresholds of decreases (NO2, AOD) or increases (re) of one, two, 
and three RMS errors of the (unadjusted) expected value for February 2020. If emissions were 
reduced by greater than 80%, there is a very large probability that we would have detected 
changes in all three variables at the strictest (3εRMS) threshold (unless the clouds have very low 
susceptibility to aerosol), whereas if emissions were reduced by 20% or less, we would be 
unlikely to detect changes in any of the variables at the strictest threshold and only have even 
odds of detecting aerosol or cloud changes at the most lenient threshold (1εRMS). For a 50% 
emissions reduction, we would be very likely to detect a NO2 change at any threshold whereas 
detection of changes in AOD or re (assuming higher sensitivity) would only be very likely at the 
1-2εRMS thresholds and have even odds at the 3εRMS level. Given that the AOD and re 
perturbations we estimated are both within 1εRMS of their expected values, this analysis suggests 
that aerosol reductions during the February 2020 lockdown period were unlikely to have 
exceeded ~20%. 
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Figure 3. Timeseries of observed (Obs) and expected (Exp) values and their differences for a-b) ln(NO2),  c-d) 
AOD, and e-f) re, as averaged over the boxes in Figure 2. Manufacturing PMI is shown for reference. 
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4 Factors Influencing Pollution Changes During the February 2020 Shutdown 

4.1 Meteorology 

 
Meteorology is an important driver of changes in pollution concentrations (de Foy et al., 

2016; P. Wang et al., 2020; Zhai et al., 2019; Zhang et al., 2019). To assess the effects of 
meteorology on our results, we create a second linear regression model as follows: 

 
!0$'(#, %, &) = )! + )"#$(%, &)+"#$(#) + )"%&'(%, &)+"%&'(#) + )()*(%, &),()*(#)

+ )1(%, &)D23(#, %, &) + )4!(%, &)E23(#, %, &) 	+ )5(%, &)F6!3(#, %, &)
+ )7(%, &)G6!3(#, %, &), (5) 

 
where Ymet is the geophysical variable of interest, the terms relating to policy-driven trends and 
holiday effects are the same as for the model in equation (1), and the idealized seasonal cycle has 
been replaced by the meteorological terms T2M for 2-m air temperature, Q2M for 2-m specific 
humidity, and U10M and V10M for 10-m zonal and meridional winds, respectively. All 
meteorological variables are standardized by subtracting the 2005-2019 mean from each monthly 
value and dividing by the 2005-2019 standard deviation. Figure S8 shows maps of regression 
diagnostics (R2, εRMS, and N) and Figures S9-11 show maps of the intercept and regression 
coefficients for ln(NO2), AOD, and re, respectively. 

Figure S12 shows timeseries of the regionally-averaged results, which are overall similar 
to those in Figure 3.  

The differences between the model described by equation (1) and the observations can be 
interpreted as being due to a combination of meteorology and emissions (including emissions-
concentrations-chemistry interactions), whereas the difference between the model described by 
equation (5) and the observations can be interpreted as being due to emissions alone. (Of course, 
there also may be other factors that have not been accounted for or meteorological effects not 
captured by the linear model.) The effect of meteorology can be estimated two ways: as the 
difference between the expectations between the two models or as the difference between the 
model described by equation (5) and the same model with the meteorological factors set to their 
mean values for a given month. Similarly, the (linear) contribution of individual meteorological 
variables can be estimated as the difference between the model described by equation (5) and 
that model with the meteorological variable of interest set to its monthly mean value.  

Figure S13 shows the decomposition of emission and meteorology effects using this 
framework for February 2020. Meteorology alone would have led to a ~10% decrease in NO2, 
driven mostly by temperature, followed by humidity. The emissions effect alone would have led 
to a ~50% decrease. In contrast, meteorology is estimated to have increased AOD by ~5%. 
Meteorological anomalies during February 2020 are shown in Figure S14. Conditions were 
warmer and wetter than average, corresponding with increased chemical sinks of NO2 but more 
potential for secondary production of aerosol (Le et al., 2020). 

4.2 Emissions 

Another explanation for the different NOx and aerosol responses is that economic sectors 
which disproportionately emit one or the other pollutant may have been impacted differently by 
the shutdown. Figure 1c-d shows changes in passenger transportation, energy generation, and 
iron and steel production from 2005-2020. Figure S15 includes a variety of other economic sub-
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sectors tracked by the NBSC. Passenger transportation, in particular, was devastated by the 
shutdown. In contrast, total January-February power generation was down ~10% (similar to 
2008-2009), implying a decrease of ~20% in February alone. Heavy industries like steel 
production (slightly up) were comparatively unaffected, with the remainder of the economy 
somewhere in between.  

Different reporting metrics were chosen based on data quality and availability. For a 
more directly comparable (but temporally limited) perspective, Figure S16 shows the change in 
January-March production between 2020 and 2019 for each sub-sector. 

Anthropogenic emissions of NOx (I)8"), PM2.5 (I93#.%), and SO2 (I:8#) for the year 
2015 from EDGAR are combined to create aggregate “transportation” and “industry and power” 
sectors, with the remainder lumped into an “other” category primarily consisting of agriculture 
and waste management. (See supporting information Tables S1-3 for the specific breakdown of 
the transportation, industry and power, and “other” sectors, respectively, by IPCC 2006 code.) 
Figure S17 shows maps of the contributions of the three pollutants by economic sector. 
Transportation is a major source of NOx pollution, comparable to the industry and power sectors, 
whereas the industry and power sectors dominate emissions of PM2.5 and SO2. Supporting 
information Tables S1-3 provide sums of annual emissions in 2015 over eastern China for each 
sector grouping. The transportation sector accounts for 26.2% of all NOx emissions but only 
4.7% of PM2.5 and 3.6% of SO2 emissions (Table S1) while the industry and power sectors 
account for 72.3% of NOx, 92.8% of PM2.5, and 95.1% of SO2 emissions (Table S2). Given that 
decreases in NOx, PM2.5, and SO2 since 2015 have been driven primarily by regulations targeting 
the industrial sector (Zhang et al., 2019), it is likely that the transportation sector comprised a 
greater share of total NOx emissions in 2020 than in 2015. 

The ~50% decline in NO2 due to emissions can be mostly explained by a dramatic fall in 
transportation emissions paired with a 10-20% reduction in energy and industrial sources. A 
~20% decline in aerosol emissions would likely go undetected by our method (Figure S7). At the 
same time, this analysis suggests that the estimated ~40% decline in coal burning during the 
Chinese lockdown period from Le Quéré et al. (2020) is unrealistically high, both because 
electrical and thermal power declined by only ~20% at peak and a ~40% decline in aerosol 
emissions should have been detectable, at least at the less stringent thresholds. The Chinese coal 
data in that study comes from a private industry analysis of several power plants, which may not 
have been representative of the national response. However, given that reductions in ground 
transportation dominate their analysis as well, even halving the industrial change estimates 
would not substantially change their results (e.g., the peak global decline on 7 April 2020 would 
fall from ~17 to ~15 MtCO2/day). 

One caveat about our aerosol estimates is that we assume that the significant aerosol 
reductions between 2013-2017 continued during 2018-2020. If we instead were to freeze Ppost at 
its 2017 value (assume no further progress), the observed AOD would have been 10-20% below 
its expected value. Our analysis is consistent with no aerosol change, a moderate decrease, or, as 
discussed below, a moderate decrease in emissions compensated by increased secondary 
production. 
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4.3 Chemistry 

 
As a further complication, meteorological anomalies, emissions changes, and their 

interactions influenced atmospheric chemistry and therefore pollution concentrations in February 
2020. 

During the winter, the atmospheric lifetime of NOx (~1 day) decreases with decreasing 
emissions as higher nighttime ozone concentrations allow for more loss via N2O5 hydrolysis 
(Shah et al., 2020). We may therefore expect decreases in NO2 concentrations to exceed 
reductions in NOx emissions. 

PM2.5 concentrations may either increase or decrease as a response to a NOx decline 
depending on its magnitude and background concentrations (Zhao et al., 2017). The increase in 
O3 as NOx emissions fall (Shi & Brasseur, 2020) increases HOx concentrations and thus the 
atmospheric oxidizing capacity, which could further reduce NO2 but facilitate secondary aerosol 
formation (X. Huang et al., 2020). This in combination with the relatively warm and wet 
February 2020 meteorological conditions offers a compelling explanation for the apparent 
increase in aerosol surrounding Beijing (X. Huang et al., 2020; Le et al., 2020; P. Wang et al., 
2020), although the effect appears to be weaker in other regions, perhaps due to differences in 
background conditions. 

To assess potential changes in aerosol composition and size distribution, we analyze ω0 
and α using the model described by equation (1). Figure S18 shows timeseries of observed and 
expected values and Figure S19 shows maps of the February 2020 anomalies. Since 2013 there 
has been a trend toward higher ω0 (less absorption) and lower α (coarser size distribution), which 
is reversed during February 2020 (more absorbing and finer aerosol). The reduction in aerosol 
size is in line with other observations suggesting increased secondary aerosol production (X. 
Huang et al., 2020), especially around the North China Plain, but an increase in aerosol 
absorption is surprising, especially since black carbon concentrations should have decreased. 
One possible explanation is that solid fuel burning increased for residential buildings during the 
lockdown (J. Liu et al., 2016). The anomalies in February 2020 are similar to those in December 
2019, however, so it is not clear whether these anomalies should be attributed to lockdown 
effects versus other factors (such as the assumption that 2013-2017 trends continued past 2018). 

 

5 Conclusions 

Despite unprecedented declines in economic activity and NOx emissions during the 
February 2020 coronavirus shutdown in China, we find no detectable perturbation in aerosol and 
related cloud properties. The severe curtailment of passenger transportation (a disproportionate 
NOx source) but comparatively muted changes in power generation and heavy industry 
(disproportionate PM2.5 and SO2 sources), along with meteorology and complex chemical 
interactions, help explain this discrepancy. 

Further study of the environmental consequences of COVID-19 is warranted, not least 
because potential links between long-term and short-term air quality and vulnerability to the 
disease remain unresolved (Contini & Costabile, 2020). There is some evidence that short-term 
exposure to air pollution increased the case fatality rate of the 2002-2003 Severe Acute 
Respiratory Syndrome (SARS) outbreak in several Chinese cities (Cui et al., 2003), which raises 
the possibility of feedbacks between containment measures that happen to reduce pollution and 
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population-level resilience. Additionally, dramatically reduced transportation sector emissions 
without similar changes in other sectors could represent a plausible future emissions mix if 
widespread electrification of transportation is adopted but other sectors do not adopt similar 
pollution mitigation measures. 

 

Data Availability Statements 

OMI/Aura and MODIS/Aqua Level 3 gridded data and MERRA-2 meteorological 
reanalysis data are publicly available from NASA’s Goddard Earth Sciences Data and 
Information Services Center (https://disc.gsfc.nasa.gov/). Various economic statistics from the 
People’s Republic of China are publicly available from the National Bureau of Statistics of 
China (http://www.stats.gov.cn/english/). EDGAR’s annual sector-specific gridmaps are publicly 
available from the European Commission’s Joint Research Center 
(https://edgar.jrc.ec.europa.eu/overview.php?v=50_AP; 
https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR). 
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