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Abstract23

Across North America, interannual variability (IAV) in gross primary production24

(GPP) and net ecosystem exchange (NEE), and their relationship with environmental25

drivers, are poorly understood. Here, we examine IAV in GPP and NEE and their re-26

lationship to environmental drivers using two state-of-the-science flux products: NEE27

constrained by surface and space-based atmospheric CO2 measurements over 2010–201528

and satellite up-scaled GPP from FluxSat over 2001–2017. We show that the arid west-29

ern half of North America provides a larger contribution to IAV in GPP (104% of east)30

and NEE (127% of east) than the eastern half, in spite of smaller magnitude of annual31

mean GPP and NEE. This occurs because anomalies in western North America are tem-32

porally coherent across the growing season leading to an amplification of GPP and NEE.33

In contrast, IAV in GPP and NEE over eastern North America are dominated by sea-34

sonal compensation effects, associated with opposite responses to temperature anoma-35

lies in spring and summer. Terrestrial biosphere models in the MsTMIP ensemble par-36

tially capture these differences between eastern and western North America, but gen-37

erally underestimate the sensitivity of flux anomalies in western North America to vari-38

ations in soil temperature and moisture by 0–31%. This suggests that ecosystems in west-39

ern North America may be more sensitive to warming and increasing aridity than mod-40

els predict, and that reductions in growing season productivity and carbon sequestra-41

tion under climate change may be larger than predicted by models.42

1 Introduction43

Interannual variations (IAV) in carbon fluxes between terrestrial ecosystems and44

the atmosphere drive variations in the growth rate of atmospheric CO2. Understanding45

the drivers of IAV in the carbon cycle is critical for understanding the response of ecosys-46

tems to climate change (Cox et al., 2013; Baldocchi et al., 2016; Niu et al., 2017). In this47

study, we examine the drivers of IAV in gross primary production (GPP) and net ecosys-48

tem exchange (NEE) over subtropical and temperate North America. In particular, we49

contrast IAV in the semi-arid western regions of North America with the wetter east-50

ern areas of North America.51

Semi-arid ecosystems are moisture limited ecosystems, and cover large portions of52

western North America. Globally, semi-arid ecosystems have been shown to play an out-53

sized role in internnual variability (IAV) of the atmospheric CO2 growth rate (Poulter54

et al., 2014; Ahlström et al., 2015; Huang et al., 2016; Z. Fu et al., 2017), relative to what55

would be expected given their productivity. The reason that these ecosystem experience56

such large IAV in CO2 net uptake is thought to be linked to moisture availability (Huang57

et al., 2016). In these ecosystems, negative GPP anomalies are driven by warm-dry con-58

ditions and positive GPP anomalies are driven by cool-wet conditions (Ahlström et al.,59

2015). In turn, NEE anomalies in these ecosystems are strongly associated with varia-60

tions in GPP (Ahlström et al., 2015). Still, the relative impact of these ecosystems on61

North American carbon fluxes is not well characterized.62

Eastern North America is generally wetter than the west and is dominated by for-63

est and cropland ecosystems. IAV in these ecosystems has been shown to have season-64

ally compensating effects, defined as temporally anti-correlated anomalies during a grow-65

ing season. For example, a number of studies have found that enhanced GPP early in66

the growing season is associated with reduced GPP later in the growing season over mid-67

latitude cropland and forest ecosystems (Buermann et al., 2013; Wolf et al., 2016; Buer-68

mann et al., 2018).There are several possible mechanisms for explaining seasonal com-69

pensation effects. Enhanced spring GPP is associated with warmer spring temperatures70

(Angert et al., 2005; Wolf et al., 2016). Warmer temperatures early in the growing sea-71

son result in increased evapotranspiration leading to reduced soil moisture later in the72

growing season, which adversely impacts productivity (Parida & Buermann, 2014; Wolf73
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et al., 2016). Direct phenological mechanisms may also contribute to seasonal compen-74

sation effects, as the timing of spring budburst and autumn senescence has been found75

to be correlated on the scale of individual organisms and the landscape (Y. S. Fu et al.,76

2014; Keenan & Richardson, 2015). The impact of seasonal compensation effects on an-77

nual GPP anomalies has been studied across northern forests and croplands using up-78

scaled FLUXNET GPP (Buermann et al., 2013), NDVI (Buermann et al., 2018) and solar-79

induced fluorescence (SIF), while seasonal compensation in NEE has been examined for80

the 2012 North America drought (Wolf et al., 2016; J. Liu et al., 2018). However, the81

implications of seasonal compensation effects on variability in the carbon balance across82

multiple years over North America have not yet been examined.83

In this study, we take advantage of two newly developed GPP and NEE products84

to examine IAV over North America. NEE fluxes are obtained from the inversion anal-85

yses of Byrne, Liu, et al. (2019). They estimated 14-day NEE globally over 2010–201586

in a flux inversion assimilating both surface-based and space-based CO2 measurements.87

This combination of surface- and space-based measurements provides unprecedented ob-88

servational coverage for a multi-year flux inversion and is expected to mitigate artifacts89

in the NEE fluxes that are introduced due to uneven observational coverage (J. Liu et90

al., 2014; Byrne et al., 2017). Using these NEE estimates in combination with 17 years91

(2001–2017) of satellite-based GPP calibrated on eddy covariance sites from FluxSat (Joiner92

et al., 2018), we examine the importance of seasonal compensation effects in GPP and93

NEE across North America. First, we examine the extent to which seasonal compensa-94

tion effects impact growing season GPP and NEE anomalies across North America, and95

their dependence on temperature and moisture anomalies. Then, we examine the rel-96

ative contribution of eastern and western North America to the mean seasonal cycle and97

IAV, and compare our data-driven estimates to modelled fluxes from the Multi-scale Syn-98

thesis and Terrestrial Model Intercomparison Project (MsTMIP).99

2 Data100

2.1 Carbon data101

We employ two state-of-the-science observationally-constrained GPP and NEE prod-102

ucts for examining IAV. The FluxSat GPP product (Sec. 2.1.1) (Joiner et al., 2018) is103

based on an up-scaling of global eddy covariance flux measurements, and has been found104

to produce more realistic IAV in GPP when compared to FLUXNET sites relative to other105

upscaled GPP products (Joiner et al., 2018). The flux inversion NEE product used here106

(Sec. 2.1.2) is unique in that it assimilates both surface- and space-based CO2 measure-107

ments, providing increased observational constraints relative to other NEE flux inver-108

sion products. Atmospheric CO2 fields simulated using this product have also been ex-109

tensively evaluated against aircraft-based CO2 measurements in the northern extratrop-110

ics (Byrne, Liu, et al., 2019). In addition, we compare these observationally-constrained111

flux estimates to terrestrial biosphere model (TBM) estimates from the MsTMIP ensem-112

ble (Sec. 2.1.3).113

2.1.1 FluxSat GPP114

FluxSat version 1 (Joiner et al., 2018) estimates GPP based primarily on Nadir BRDF-115

Adjusted Reflectances (NBAR) from the MODerate-resolution Imaging Spectroradiome-116

ter (MODIS) MYD43D product (Schaaf et al., 2002) that uses data from MODIS instru-117

ments on National Aeronautics and Space Administration (NASA) Aqua and Terra satel-118

lites. The GPP estimates are calibrated with the FLUXNET 2015 GPP derived from119

eddy covariance flux measurements at Tier 1 sites (Baldocchi et al., 2001). As such, FluxSat120

can be considered as a global upscaling of the FLUXNET 2015 GPP data. The data set121

also employs SIF from the Global Ozone Monitoring Experiment 2 (GOME-2) on the122

EUMETSAT MetOp-A satellite to identify regions of high productivity crops. FluxSat123
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was evaluated by comparison with independent flux measurements (i.e., not used in the124

training) and compared very well both in terms of IAV and site-to-site variability. Monthly125

mean FluxSat GPP data on a 0.5◦ × 0.5 ◦ spatial grid were downloaded from126

https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat GPP and regridded to a 4◦×5◦ spatial127

grid to for this analysis.128

2.1.2 Flux inversion NEE129

NEE fluxes are produced from a flux inversion analyses spanning 2010–2015. The130

flux inversions assimilate CO2 measurements from the Greenhouse Gases Observing Satel-131

lite (GOSAT), Total Carbon Column Observing Network (TCCON), and the surface in situ132

and flask measurements network concurrently. Four dimensional variational (4-DVar)133

assimilation was implemented to estimate 14-day scaling factors for prior NEE and ocean134

fluxes at 4◦×5◦ spatial resolution using the Greenhouse gas framework - Flux model (GHGF-135

Flux). The optimized fluxes are taken to be the average of three flux inversions that em-136

ploy different prior NEE fluxes and errors. NEE fluxes are aggregated to monthly mean137

values for this analysis. A detailed description of the experimental set up and evalua-138

tion of the fluxes can be found in Byrne, Liu, et al. (2019).139

2.1.3 MsTMIP models140

MsTMIP is a model inter-comparison experiment conducted by the North Amer-141

ican Carbon Program (Huntzinger et al., 2013; Wei et al., 2014). The project is designed142

to provide a consistent and unified modeling framework in order to isolate, interpret, and143

address differences in process parameterizations among TBMs. In this analysis, we ex-144

amine the modelled NEE (defined here as MsTMIP NEP×−1) and GPP from the MsT-145

MIP Version 1 SG3 simulation, in which the models are driven by CRU+NCEP reanal-146

ysis on a global 0.5◦ ×0.5 ◦ spatial grid with time-varying land-use history and atmo-147

spheric CO2, but with nitrogen deposition kept constant. We examine modeled fluxes148

over the period 1980–2010. These data were downloaded from the ORNL DAAC (Huntzinger149

et al., 2016). A list of models included in this study are shown in Fig. S8.150

2.2 Environmental data151

Anomalies in CO2 fluxes are compared with anomalies in environmental variables152

that are expected to drive carbon cycle anomalies. In particular, we focus our analysis153

on the relationship between anomalies in CO2 fluxes with anomalies in soil temperature154

and soil moisture.155

2.2.1 Soil Temperature156

Soil temperatures are from the MERRA-2 (Reichle et al., 2011, 2017; Gelaro et al.,157

2017) reanalysis. We average the soil temperature over levels 1–3 (TSOIL1,TSOIL2,and158

TSOIL3), which reaches a depth of 0.73 m. These data were downloaded from the God-159

dard Earth Sciences Data and Information Services Center at monthly temporal reso-160

lution and 4◦×5◦ spatial resolution (regridded from model horizontal resolution of ∼50 km).161

2.2.2 Moisture stress variables162

The ESA CCI combined surface soil moisture product (Y. Y. Liu et al., 2011, 2012)163

was downloaded from https://www.esa-soilmoisture-cci.org/. We use the combined ac-164

tive and passive soil moisture product. Daily soil moisture estimates are provided on a165

0.25◦×0.25◦ longitude–latitude spatial grid, but we regrid to monthly estimates on a166

4◦ × 5◦ spatial grid.167
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Additional datasets are used for supplemental analysis of the relationship between168

carbon fluxes and moisture stress. We obtain precipitation estimates from the Global169

Precipitation Climatology Project (GPCP) Monthly Analysis Product. We use GPCP170

Version 2.3 Combined Precipitation Dataset (Adler et al., 2003). We use RL06 monthly171

mass grids of terrestrial water storage (TWS) anomalies derived from the Gravity Re-172

covery and Climate Experiment (GRACE) mission (Tapley et al., 2004; Flechtner et al.,173

2014; Landerer & Swenson, 2012).174

3 Methods175

3.1 Definition of anomalies176

Anomalies are denoted with a “∆” for all quantities (e.g., ∆NEE). To calculate177

anomalies, the mean seasonal cycle over a baseline period is removed. The baseline pe-178

riod employed is 2010–2015 for flux inversion NEE, 2003–2014 for GRACE TWS, and179

2001–2017 for GPP, soil temperature, soil moisture, and precipitation. In addition, a lin-180

ear trend is removed for all datasets except the NEE flux inversion (because the flux in-181

version timeseries is only six-years). Sensitivity tests found that results were not sensi-182

tive to the time period chosen for the baseline.183

3.2 Quantifying IAV features184

We focus our analysis on the seasonal compensation component and amplification185

component of IAV over the growing season. For NEE, we define the seasonal compen-186

sation component (NEEcomp) and seasonal amplification component (NEEamp) as,187

∆NEEcomp = ∆NEEJul−Aug−Sep −∆NEEApr−May−Jun, (1)

∆NEEamp = ∆NEEJul−Aug−Sep + ∆NEEApr−May−Jun, (2)

where ∆NEEApr−May−Jun and ∆NEEJul−Aug−Sep are the mean anomalies across April–188

June and July–September, respectively. A schematic of NEE anomalies leading to pos-189

itive and negative amplification and compensation components are shown in Figure S1.190

The amplification component indicates a net increase or decrease in carbon uptake over191

the growing season. For example, if NEE anomalies are positive across the growing sea-192

son (Fig. S1a), this will imply positive amplification and enhanced CO2 emitted to the193

atmosphere (∆NEEamp > 0). The compensation component indicates anti-correlated194

anomalies between the spring and summer. For example, if NEE anomalies are positive195

in the spring but negative in the summer (Fig. S1b), this will imply a negative compen-196

sation over the growing season (∆NEEcomp < 0). We define compensation and ampli-197

fication for GPP in the same way.198

We examine the relative magnitudes of these two components by taking the ratio199

of the mean absolute seasonal compensation component to the mean absolute amplifi-200

cation component. For NEE, this ratio is defined as:201

NEERATIO =

∑2015
y=2010 |∆NEEcomp|∑2015
y=2010 |∆NEEamp|

. (3)

The quantity NEERATIO provides a measure of the relative magnitudes of the compen-202

sation and amplification components. If the magnitude of compensation is generally larger203

than amplification then the ratio will be larger than 1. If amplification dominates then204

the ratio will be less than 1.205

Note that we split the growing season into the spring (April-May-June) and sum-206

mer (July-August-September). The spring roughly covers the period from the spring equinox207

(March 20) to the summer solstice (June 20), while the summer roughly covers the pe-208

riod from the summer solstice to the fall equinox (Sep 22). We note that these defini-209

tions are lagged by one month from the meteorological seasons.210
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3.3 Singular value decomposition211

We employ singular value decomposition (SVD) to examine the modes of variabil-212

ity in monthly ∆NEE and ∆GPP between years. SVD is a method to decompose a ma-213

trix into a set of singular vectors and singular values (Golub & Reinsch, 1971), where214

the singular vectors are a set of orthogonal basis vectors. In this analysis, we perform215

SVD on ∆GPP and ∆NEE arranged into month–by–year matrices. Thus, the singular216

vectors give the modes of monthly variability between years in ∆GPP and ∆NEE. The217

fraction of overall variance explained the leading singular vector “i” is then calculated218

using the expression R2 = s2i /
∑

j s
2
j , where sj are the singular values.219

4 Results220

4.1 Amplification dominates in the west and compensation dominates221

in the East222

We examine the relative magnitudes of seasonal compensation and amplification223

in ∆GPP and ∆NEE. Figure 1 shows NEERATIO for 2010–2015 and GPPRATIO for 2001–224

2017 over subtropical and temperate North America (GPPRATIO for 2010–2015 is shown225

in Fig. S2). Spatially, seasonal compensation is most dominant in eastern North Amer-226

ica (largest ratios), particularly around the Midwest. In contrast, the amplification com-227

ponent of IAV is most dominant in western North America, particularly in the south-228

west. Figure 1c and 1d show NEERATIO and GPPRATIO as a function of the mean Apr-229

Sep soil moisture and soil temperature for each 4◦×5◦ grid cell. Larger ratios are found230

to cluster in the wetter areas while smaller ratios are generally found in the drier areas,231

consistent with the climatological difference between the west and east of North Amer-232

ica. In support of these results, similar spatial structure for NEERATIO is obtained us-233

ing the independent NOAA’s CarbonTracker flux inversion, version CT2017 with updates234

documented at http://carbontracker.noaa.gov (Peters et al., 2007) (Fig. S3). In addi-235

tion, the GPPRATIO spatial structure is supported by GOME–2 version 28 (V28) 740236

nm terrestrial SIF data (Joiner et al., 2013, 2016), while agreement with FLUXCOM GPP237

(Tramontana et al., 2016) is mixed (Fig. S4).238

To further examine differences in IAV between eastern and western North Amer-239

ica, we aggregate gridcells into western and eastern regions (Fig. 2a). We then perform240

SVD on matrices of monthly ∆NEE and ∆GPP (with months as the rows and years as241

columns) over these two regions. This analysis allows us to compute basis vectors that242

explain modes of variability in monthly ∆NEE and ∆GPP between years. The first and243

second basis vectors, which explain the majority of variability in ∆NEE and ∆GPP are244

shown in Fig. 2. These basis vectors show that the western region is dominated by am-245

plification in GPP and NEE, with the first singular value explaining 66% and 76% of the246

variance, respectively (Fig. 2). Conversely, the eastern region is dominated by seasonal247

compensation in GPP and NEE, with the first singular value explaining 59% and 47%248

of the variance, respectively (Fig. 2). Thus, these aggregated regions are generally re-249

flective of the IAV seen at the grid cell level.250

4.2 Relationship between flux anomalies and environmental drivers251

To a large extent, IAV in the carbon balance of ecosystems is expected to be driven252

by IAV in temperature and moisture (Berry & Bjorkman, 1980; Smith et al., 2011; Byrne,253

Jones, et al., 2019), thus we examine the relationship between CO2 flux anomalies and254

anomalies in soil temperature (∆T) and soil moisture (∆M). Figure 3 shows the corre-255

lation between ∆GPP and anomalies in climate variables over 2001–2017. Note that we256

correlated Jul–Sep flux anomalies with Apr–Sep climate anomalies to incorporate lagged257

effects of spring climate anomalies on summer carbon cycle anomalies. We find spatial258

differences in the correlation coefficient between western and eastern North America. In259
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Figure 1. Relative magnitudes of seasonal compensation and amplification. (a) NEERATIO

over 2010–2015 and (b) GPPRATIO over 2001–2017 at 4◦ × 5 ◦. (c) NEERATIO and (d) GPPRATIO

plotted as a function of Apr-Sep mean soil temperature and soil moisture.

the west, increased GPP (positive ∆GPP) is found to be correlated with cooler (neg-260

ative ∆T) and wetter (positive ∆M) conditions during both Apr–Jun and Jul–Sep. The261

temporally coherent relationship between flux anomalies and environmental anomalies262

in western North America suggests that cooler-wetter years will lead to an amplification263

of carbon uptake. In the east, increased GPP is correlated with warmer conditions dur-264

ing Apr–Jun, but cooler and wetter conditions during Jul–Sep. These seasonal variations265

in the relationship between flux anomalies and environmental variables suggest that sea-266

sonal compensation will occur when climate anomalies persist throughout the year. For267

example, warm years would result in increased uptake during the spring but decreased268

uptake during the summer. Similar results are found for NEE (Fig. S5) over 2010-2015,269

although correlations are generally less statistically significant. This is likely partially270

explained by the shorter time period examined and the inability of the flux inversion to271

isolate NEE anomalies to 4◦ × 5◦ spatial grid cells.272

We now examine the seasonal cycles of GPP and NEE over the western and east-273

ern regions of North America. Figure 4 shows the seasonal cycles of GPP (2001–2017)274

and NEE (2010–2015) over the western and eastern regions of North America with dif-275

ferent years coloured by the corresponding Apr-Sep ∆T or ∆M. An additional plot show-276

ing the seasonal compensation and amplification components as a function of ∆T or ∆M277

is shown in the supplementary materials (Fig. S6). For western North America, varia-278

tions in the seasonal cycle of GPP and NEE are dominated by an amplification compo-279

nent over Apr-Sep. Increased GPP and net uptake are associated with cooler and wet-280

ter conditions. ∆T and ∆M are strongly correlated with each other (R = −0.77 for 2001–281

2017), obscuring which variable has the largest impact on IAV. However, the magnitude282

of the correlation is slightly larger for ∆M as compared with ∆T for ∆NEEamp (0.91 vs283

0.71) and ∆GPPamp (0.66 vs 0.63) (Table S1). IAV is generally weaker in eastern North284

America (relative to the mean seasonal cycle). Temporal shifts in the seasonal cycle of285

GPP (∆GPPcomp) and NEE (∆NEEcomp) provide the largest component of IAV. Shifts286

of GPP and NEE to earlier in the year are associated with positive Apr-Sep ∆T (Fig. 4b287

(i) and (iii)), suggesting that a warm spring drives the shift and persistent warming dur-288
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Figure 2. (a) The spatial extent of western (orange) and eastern (yellow) regions of North

America. (b) First and second singular vectors resulting from the decomposition of the IAV in

GPP over 2001–2017 for the (i) western and (ii) eastern regions of North America, and of the

IAV in NEE over 2010–2015 for the (iii) western and (iv) eastern regions of North America.

Figure 3. Relationship between ∆GPP and variations in climate. Coefficient of correlation

(R) over 2001-2017 for 4◦ × 5 ◦ grid cells between (a) Apr–Jun ∆T and Apr–Jun ∆GPP, (b)

Apr-Sep ∆T and Jul–Sep ∆GPP, (c) Apr–Jun ∆M and Apr–Jun ∆GPP and (d) Apr-Sep ∆M

and Jul–Sep ∆GPP. Hatching shows grid cells for which P < 0.05.

–8–



manuscript submitted to Global Biogeochemical Cycles

Figure 4. Seasonal cycles of GPP (2001–2017) and NEE (2010-2015) over eastern and western

North America. (a) Seasonal cycles of (i-ii) GPP and (iii-iv) NEE over western North America.

(b) Seasonal cycles of (i-ii) GPP and (iii-iv) NEE over eastern North America. Colors indicate

the Apr-Sep ∆T ((i) and (iii)) or Apr-Sep ∆M ((ii) and (iv)).

ing summer reduces the productivity and net uptake. Variations in Apr-Sep ∆M are more289

closely tied to an amplification component of ∆GPP (R=0.72) and ∆NEE (R=0.78) (Ta-290

ble S1). This implies that increased soil moisture is associated with increased GPP but291

reduced net uptake, suggesting that respiration fluxes increase more than GPP with in-292

creased soil moisture. This result is consistent with Z. Liu et al. (2018), but contradicted293

(for droughts) by Schwalm et al. (2010). Thus, more research is needed on this topic.294

4.3 Impact of amplification and compensation for net CO2 fluxes295

The presence of temporally coherent spring–summer flux anomalies in western North296

America acts to increase the annual net flux anomalies. In contrast, anti-correlated spring–297

summer flux anomalies in eastern North America acts to reduce the net annual flux anoma-298

lies. Here we examine the relative contribution of eastern and western North America299

to the mean seasonal cycle and anomalies of GPP and NEE (Figure 5). We find that monthly300

NEE and GPP fluxes are larger in eastern North America than in western North Amer-301

ica (7.6× for GPP, 3.5× for NEE), reflecting a more productive carbon cycle. However,302

due to seasonal compensating anomalies, annual anomalies in GPP and NEE are larger303

in the west than the east (1.04× for GPP and 1.27× for NEE). Thus, growing season304
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Figure 5. Scatter plots of (a) GPP and (b) NEE fluxes in eastern and western North Amer-

ica. The panels show (i) the magnitude of Apr-Sep mean fluxes, (ii) the magnitude of Apr-Sep

mean anomalies, and (iii) the ratio of the anomalies to mean fluxes. The blue star shows the

observationally-based estimates from FluxSat GPP and the flux inversion NEE. The error bars

on the observationally-constrained NEE estimate show the range in these values between the

three flux inversions from (Byrne, Liu, et al., 2019), note error bars are very small for the east.

The large green circle shows the GPP and NEE estimate from the MsTMIP model mean. Small

circles show the GPP and NEE estimates from individual MsTMIP models.

IAV in NEE and GPP is larger in the western North America, despite a more produc-305

tive carbon cycle in eastern North America. The impacts of these differences in IAV be-306

tween these two regions are evident in the timeseries of ∆GPP and ∆NEE anomalies two307

regions (Fig. S7). Monthly anomalies in western North America are coherent for indi-308

vidual years leading to increased annual anomalies, while anomalies in the east show sea-309

sonal compensation, reducing annual net anomalies.310

We now investigate the ability of the MsTMIP models to recover observationally-311

constrained west-east differences in GPP and NEE over 1980–2010. Modeled fluxes are312

plotted with the observationally-constrained estimates in Fig 5. The MsTMIP models313

systematically underestimate the magnitude of Apr-Sep GPP and NEE in eastern North314

America relative to FluxSat GPP and inversion NEE, but closely agree with the observationally-315

constrained fluxes in western North America. The mean magnitudes of Apr-Sep ∆GPP316

and ∆NEE are variable between MsTMIP models, but are generally smaller than the317

observationally-based estimates. The model mean gives similar magnitudes of ∆GPP318

and ∆NEE in eastern and western North America, suggesting that the models at-least319

partially capture increased IAV in western North America. The ratio of the magnitudes320

of Apr-Sep IAV to the Apr-Sep mean are shown in Fig. 5c. The models systematically321

underestimate this ratio for GPP and NEE in western North America. The MsTMIP322

models predict that mean magnitude of Apr-Sep ∆GPP is 4% (range of 3–9%) of the323

Apr-Sep GPP, while FluxSat GPP suggests 11%. Similarly, MsTMIP models predict that324

mean magnitude of Apr-Sep ∆NEE is 25% (range of 11–56%) of the Apr-Sep NEE, while325

inversion NEE suggests 70%. The MsTMIP model mean also tends to give weaker sen-326

sitivity to soil moisture and temperature anomalies (Table 1). FluxSat ∆GPP is found327

to be about 30% more sensitive to variations in soil temperature and moisture than the328
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Table 1. Observationally-based and model based sensitivities. Slope and R2 values for lin-

ear regressions of Apr-Sep ∆GPP and ∆NEE against Apr-Sep ∆T and ∆M for FluxSat GPP

(2001–2017), inversion NEE (2010–2016), and MsTMIP model mean GPP and NEE (2001–2010).

MsTMIP fluxes are examined over 2001–2010 to isolate comparisons to the period when observa-

tional datasets are best constrained by observations. Bold numbers indicate P<0.05.

West East

Temperature Soil Moisture Temperature Soil Moisture

slope
(PgC K−1)

R2 slope
(PgC (m3m−3)−1)

R2 slope
PgC K−1 R2 slope

(PgC (m3m−3)−1)
R2

FluxSat ∆GPP -0.29 0.44 32.6 0.89 -0.04 0.03 52.2 0.09
Model ∆GPP -0.20 0.55 23.4 0.91 -0.02 0.02 110.6 0.45

Inversion ∆NEE 0.13 0.47 -10.3 0.49 -0.04 0.19 28.6 0.21
Model ∆NEE 0.11 0.53 -10.3 0.71 0.06 0.60 -53.5 0.42

MsTMIP model mean, while inversion ∆NEE variations are 15% larger for soil temper-329

ature than the MsTMIP model mean but identical for soil moisture. In eastern North330

America, the MsTMIP models suggest greater sensitivity to environmental variables than331

the observationally-constrained fluxes (Table 1), as previously suggested by Shiga et al.332

(2018).333

5 Discussion334

5.1 Mechanisms driving IAV335

5.1.1 Western North America336

We find that IAV in western North America is dominated by an amplification com-337

ponent, wherein increased GPP and net uptake are associated with cooler-wetter con-338

ditions. This result is consistent with a number of previous studies investigating south-339

west North America (Zhang et al., 2013; Parazoo et al., 2015; Papagiannopoulou et al.,340

2017; Shiga et al., 2018; Hu et al., 2019) and in semi-arid regions more broadly (Poulter341

et al., 2014; Ahlström et al., 2015; Huang et al., 2016; Z. Fu et al., 2017). Variations in342

GPP and NEE over this region are likely primarily due to variations in water availabil-343

ity, rather than temperature variability (Papagiannopoulou et al., 2017). Parazoo et al.344

(2015) have shown that variability in productivity over the Southern US – Northern Mex-345

ico region is linked to El Nino Southern Oscillation (ENSO) and the North Atlantic Os-346

cillation (NAO), and suggest that year-to-year variability of carbon net uptake is asso-347

ciated with precipitation anomalies in this region. We find ∆P is strongly correlated with348

∆GPPamp (R=0.78) and moderately correlated with ∆NEEamp (R=-0.47) in western349

North America (Table S1). This suggests that IAV in western North America is primar-350

ily driven by large scale climate variability. Supporting this result, Hu et al. (2019) found351

that North American net uptake is correlated with ENSO phase, which they primarily352

attributed to variations in water availability.353

5.1.2 Eastern North America354

We find that GPP and NEE IAV in eastern North America are dominated by a sea-355

sonal compensation component, where an increase in Apr–Jun is followed by a compen-356

sating decrease in Jul–Sep. This is most closely linked to a shift of the seasonal cycle to357

earlier in the year with increased temperature. This phenomena has previously been re-358

ported for studies of phenology (Y. S. Fu et al., 2014; Keenan & Richardson, 2015), GPP359
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(Buermann et al., 2013, 2018; Parida & Buermann, 2014; Papagiannopoulou et al., 2017)360

and NEE (Wolf et al., 2016; J. Liu et al., 2018; Shiga et al., 2018; Rödenbeck et al., 2018;361

Hu et al., 2019). Most studies attribute this phenomena to land-atmosphere interactions,362

wherein a warm spring results in drying and drought during the summer (Parida & Buer-363

mann, 2014; Wolf et al., 2016). This explanation is generally consistent with our results364

for GPP but not for NEE. We find that Apr–Jun ∆GPP and ∆NEE are correlated with365

Apr–Jun ∆T (R=0.86 for GPP, R=-0.95 for NEE) but only Jul–Sep ∆GPP is correlated366

with Jul–Sep ∆M (R=0.72 for GPP, R=0.16 for NEE). A further difficulty with this mech-367

anism explaining seasonal compensation effects is that Apr–Jun ∆T and Jul–Sep ∆M368

are only weakly correlated over eastern North America (R=-0.28). This is true for grid369

cells with cropland fractions greater than 65% (R=-0.19) and less than 35% (R=-0.28)370

(see Fig. S9). To some extent, the lack of correlation could be due to errors in the ESA371

CCI soil moisture product, as somewhat stronger correlations are found between Apr–372

Jun ∆T and Jul–Sep GRACE ∆TWS (R=-0.44 for 2003–2014, Table S1). Still, these373

results suggests that other factors play a role in seasonal compensation effects. Direct374

physiological mechanisms linking budburst and senescence, such as leaf structure con-375

straints on longevity (Reich et al., 1992) or programmed cell death (Lam, 2004), may376

have a significant impact on the length of the growing season (Keenan & Richardson,377

2015). However, more research is needed to understand the drivers of seasonal compen-378

sation effects.379

5.2 Implications for North American carbon sink380

The sensitivity of carbon cycle IAV to environmental drivers may provide infor-381

mation on the sensitivity of the carbon cycle to climate change (Cox et al., 2013). Here,382

we discuss the implications of the relationships between carbon cycle IAV and environ-383

mental drivers for the future carbon balance of North America under anthropogenic cli-384

mate change.385

Changes in temperature and the water cycle of North America have been observed386

and are projected into the future. The annual average temperature of the contiguous US387

has risen by 0.7–1.0 ◦C since the start of the 20th century, and is projected to increase388

by 1.4 ◦C (RCP4.5) to 1.6 ◦C (RCP8.5) for 2021–2050 relative to 1976–2005, based on389

Coupled Model Intercomparison Project 5 (CMIP5) simulations (Vose et al., 2017). Warm-390

ing is driving a more rapid water cycle (Huntington et al., 2018). This is projected to391

cause decreases in soil moisture because increases in evapotranspiration (due to temper-392

ature increases) are expected to be larger than precipitation increases (Cook et al., 2015).393

Predicted warming and drying in western North America (Seager et al., 2007) could have394

profound effects on the carbon cycle (Schwalm et al., 2012), with increasing tempera-395

tures and aridity driving reductions in growing season productivity and carbon uptake.396

TBMs suggest that carbon loss due to climate change will be partially mitigated by in-397

creasing CO2 (Huntzinger et al., 2018); however, given that the models are found to be398

less sensitive to climate variability than the observationally-constrained estimate, car-399

bon loss may be underestimated. In eastern North America, the results of this study sug-400

gest that temperature increases will result in a shift of the growing season to earlier in401

the year, with increased uptake during the spring but decreased uptake during the sum-402

mer. However, the observationally-constrained flux estimates do not show sensitivity of403

Apr-Sep net GPP and NEE to environmental anomalies, suggesting that eastern North404

American ecosystems may be more resilient to climate change than simulated by the mod-405

els.406

6 Conclusions407

Observationally-constrained FluxSat GPP and CO2 flux inversion NEE show that408

there are substantial differences in IAV between the arid west and wetter east of North409
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America. In western North America, spring and summer anomalies are found to be cor-410

related, such that IAV is characterized by an amplification of the mean GPP and NEE411

during the growing season. These western ecosystems are generally water limited, such412

that increased GPP and net uptake are associated with cooler-wetter conditions. In east-413

ern North America, spring and summer anomalies are anti-correlated, leading to com-414

pensating anomalies over the growing season. Anomalies in GPP and NEE are closely415

associated to temperature, with a shift in the seasonal cycle to earlier in the year dur-416

ing warm years, resulting in increased GPP and net uptake in Apr–Jun but decreased417

GPP and net uptake in Jun-Sep.418

Due to the dominance of amplification in the west and seasonal compensation in419

the east, western North America contributes more to IAV than the eastern North Amer-420

ica in GPP (104% of east) and NEE (127% of east) during the growing season (April-421

September), despite the fact that the mean growing season fluxes are larger in the east422

(7.6× for GPP, 3.5× for NEE). Simulated GPP and NEE from the MsTMIP ensemble423

partially recover the larger IAV in the west relative to the east, but underestimate the424

magnitude of this effect. In particular, the MsTMIP model mean tends to underestimate425

the sensitivity of western ecosystems to variation in soil temperature and soil moisture426

(by 0–31%). These results suggest that ecosystems in western North America could be427

sensitive to increases in temperature and aridity expected under climate change, and that428

reductions in growing season productivity and net uptake could be larger than simulated429

by TBMs.430
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