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1. Stable groundging-line positions

In total there are four distinct periods in which the grounding line exhibits stability

over several thousand years. Because the hard bed simulation shows larger magnitudes of

grounding-line migration, we will focus on this simulation. However, while the position of

the stable grounding-line differs between hard bed and soft bed simulations, the relative

timing of the periods of stability are very similar, hinting that these stable configurations

might be to first order controlled by a common model forcing (e.g. sea level) or boundary

condition (e.g. bathymetry). Three out of modelled four stable grounding-line positions

occur in the advance phase (0-20,000 years) and one occurs in the retreat phase (20,000-
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40,000 years, Figure S1). However, the third stable grounding-line position is present in

both periods with this particular configuration being stable for 8,000 years in the hard

bed simulation (2,000 years before LGM - 6,000 years after LGM). While the specific

timing of the stable grounding-line periods might not be correct due to the employed

modelling approach, these modelled positions can still serve as spatial markers of areas

where depositional landforms such as Grounding-Zone Wedges (GZWs) may be found.

2. Model description

2.1. Ice flow equations

Ice flow is dominated by viscous forces which permits the dropping of the inertia and

acceleration terms in the linear momentum equations. The Elmer/Ice ice-sheet model

(Gagliardini et al., 2013) solves the complete 3D equation for ice deformation. This

results in the Stokes equations described by

divσ = −ρig. (1)

Here, σ = τ − pI is the Cauchy stress tensor, τ is the deviatoric stress tensor,

p = −tr(σ)/3 is the isotropic pressure, I the identity tensor, ρi the ice density, and g

is the gravitational vector. Ice flow is assumed to be incompressible which simplifies mass

conservation to

divu = 0, (2)

with u being the ice velocity vector. Here we model ice as an isotropic material. Its

rheology is given by Glens flow law which relates the deviatoric stress τ with the strain

rate ε̇:

τ = 2ηε̇, (3)
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where the effective viscosity η can be expressed as

η =
1

2
EBε̇e

(1−n)
n . (4)

In this equation E is the enhancement factor, B is a viscosity parameter that depends

on ice temperature relative to the pressure melting point computed through an Arrhenius

law, n is Glens flow law parameter (n=3), and the effective strain rate is defined as

ε̇e
2 = tr(ε̇2)/2. In all our simulations E is set to 1 which means that ice is modelled as

an isotropic material.

2.2. Ice temperature

The ice temperature is determined through the heat transfer equation (e.g. Gagliardini

et al., 2013) which reads

ρcv

(
∂T

∂t
+ u · T

)
= div(κgradT ) +D : σ, (5)

where cv and κ are the specific heat of ice and the heat conductivity, respectively. The :

operator represents the colon product between two tensors. This last term of the equation

represents strain heating.

2.3. Boundary conditions

2.3.1. Ice temperature

Our parameterisation of surface temperature changes follows Ritz et al. (2001). We

parameterise relative surface temperature changes to present-day as a function of relative

surface elevation change with respect to present-day elevations and a spatially uniform

surface temperature variation that is derived from the nearby EDML ice core. The surface
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temperature is then given by (Ritz et al. (2001), eq. 11):

Ta = Ta0 − 0.00914(zs0 − zs) + ∆Tclim. (6)

Here Ta and Ta0 are the surface temperatures at the current timestep and present-day

(from Comiso (2000)), zs and zs0 are the surface elevations at the current timestep and

present-day, and ∆Tclim is the climatic forcing derived from the EDML ice core. As in

Ritz et al. (2001), we apply a spatially constant lapse rate of 0.00914◦C/m (Table S1).

At the grounded underside of the ice sheet, where the ice in contact with the subglacial

topography, we prescribe the geothermal heat flux (Martos et al., 2017). This heat flux is

time invariant. Ice temperature is set to the local pressure melting point for the boundary

condition underneath the floating ice shelves.

2.3.2. Surface mass balance (SMB) and basal mass balance (BMB)

A kinematic boundary condition determines the evolution of upper and lower surfaces

zj:

∂zj
∂t

+ ux
∂zj
∂x

+ uy
∂zj
∂y

= uz + ȧj, (7)

where ȧj is the accumulation/ablation term and j = (b, s), with s being the upper surface

and b being the lower surface (base) of the ice sheet.

For the surface mass balance (SMB) parameterisation, we closely follow Ritz et al. (2001)

again. However, we assume that no melt occurs in all our simulations. As for the sur-

face temperature, our SMB parameterisation uses a present-day distribution of the SMB

(Lenaerts et al., 2014) as input. Variations of the SMB over time are then proportional

to the exponential of the surface temperature variation (Ritz et al. (2001), eq. 12):

ȧs(Ta) = ȧs0(Ta0)exp(∆a · (Ta − Ta0)), (8)
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where as0 is the present-day SMB, as is the SMB at the current timestep, and the param-

eter ∆a = 0.07◦C−1. This means that for a surface temperature drop of 10◦C, the SMB

is reduced by 50% (Ritz et al., 2001).

Sub-shelf melting underneath the floating ice shelves is based on the difference between

the local freezing point of water under the ice shelves and the ocean temperature near

the continental shelf break (Beckmann & Goosse, 2003). The freezing temperature (Tf )

is calculated through:

Tf = 0.0939− 0.057So + 7.64× 10−4zb, (9)

where So is the ocean salinity (Table S1). The basal melt rates (ȧb) are then computed

by

ȧb =
ρwcpoγTFmelt(TO − Tf )2

Lρi
. (10)

In this equation, ρw is the density of water, cpo is the specific capacity of the ocean mixed

layer, γT is the thermal exchange velocity, L is the latent heat capacity of ice, Fmelt is

a tuning parameter to match present day melt rates, and TO is the ocean temperature

(Table S1). The ocean temperature is initially set to −0.52◦C (Beckmann & Goosse,

2003). Applied variations of the ocean temperature are a damped (∼40%) and delayed

(∼3,000 years) version of the climatic forcing for surface temperature ∆Tclim (Bintanja et

al., 2005).

2.3.3. Basal sliding and sea-level

Where the ice is in contact with the subglacial topography a linear Weertman-type

sliding law of the form

τb = C|ub|m−1ub, (11)
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is employed. Here τb is the basal traction, m is the basal friction exponent which is

set to 1 in all simulations, and C is the basal friction coefficient. For the present-day

grounded ice sheet, C is inferred by solving an inverse problem (see section 2.4), and for

the present-day ocean beds a uniform basal friction coefficient of 10−1 MPa m−1 yr and

10−5 MPa m−1 yr is prescribed for the soft (sediment-based) bed and hard (crystalline

rock-based) bed simulations. Underneath the floating part of the domain basal traction

is zero (τb = 0), but hydrostatic sea pressure is prescribed.

We initialise the present-day sea-level to zero and apply sea-level variations according to

Lambeck et al. (2014).

2.4. Model initialisation

The model is initialised to the present-day geometry using the commonly applied snap-

shot initialisation in which the basal traction coefficient C is inferred by matching ob-

served ice velocities with modelled ice velocities. The same optimisation parameters as

in Schannwell et al. (2019) are used. Similar to Zhao et al. (2018), we employ a two-step

initialisation scheme. In the first iteration, the optimisation problem is solved with an

isothermal ice sheet with ice temperature set to -10◦C. The resulting velocity field is then

used to solve the steady-state temperature equation before the optimisation problem is

solved again with the new temperature field. This type of temperature initialisation ap-

proach should provide similar results to a computationally expensive temperature spin-up

over several glacial cycles (Rückamp et al., 2018), as long as the system is close to steady

state. There is growing evidence that this is the case for the Ekström Ice Shelf catchment

(e.g. Drews et al., 2013; Schannwell et al., 2019).
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2.5. Mesh generation and refinement

We initially create a 2D isotropic mesh with a nominal mesh resolution of ∼6 km

everywhere in the domain. To ensure that we simulate grounding-line dynamics at the

required detail, we use the meshing software MMG (http://www.mmgtools.org/, last

access: 2 October 2019) to locally refine the mesh down to ∼1 km in the region of

present-day Ekstöm Ice Shelf (Figure S2) with areas away from the region of interest

remaining at ∼6 km resolution. The mesh is then vertically extruded, consisting of 10

layers and held fixed in time.

2.6. ParStokes

Because of the non-Newtonian rheology of ice and the dependence of viscosity on ice

velocity, the resulting Stokes equations are non-linear and have to be solved iteratively.

In three dimensions the arising systems of linear equations become large (106-107 degrees

of freedom) very quickly. Standard iterative methods (Krylov supspace methods) in con-

junction with algebraic preconditioners (e.g. Incomplete LU (ILU) decomposition) do

not converge for most real-word geometries in glaciology. High aspect ratios of the finite

elements and spatial viscosity variations of several orders of magnitudes, strongly affect

accuracy and stability of the numerical solution (Malinen et al., 2013). This means that

most glaciology application with Elmer/Ice revert to using a direct method for solving

the Stokes equations. While robust, direct solvers do not take advantage of the sparse

structure of the matrix and require large amounts of memory. In three dimensions their

memory requirements increase with the square of the number of unknowns. Therefore, we

use a stable parallel iterative solver (ParStokes) in our simulations that is implemented
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in Elmer/Ice, but has so far been rarely used. ParStokes is based on the idea of block

preconditioning (Malinen et al., 2013) that improves the solvability of the underlying

saddle-point problem (via clustering of eigenvalues) such that Krylov subspace methods

now converge. This results in a much better scaling of the required computation time with

increasing numbers of Computer Processing Units (CPUs, Figure S3). For our simula-

tions, the ParStokes solver is about 71-84% faster than the ”classic” Elmer/Ice setup that

uses a direct solver (Figure S4). As our problem size with ∼570,000 degrees of freedom is

of medium size, there might be even more speed-up potential for larger problems by using

more CPUs.

3. Reduction of computation time with the ParStokes solver

Full-Stokes simulations in 3D have thus far been restricted to timescales that are shorter

than 1,000 years due to their high computational demands (Seddik et al., 2012; Favier

et al., 2014; Schannwell et al., 2019). Simpler model variants omit one or several stress

gradients in the underlying ice-flow equations, with partially unknown consequences for,

for example, grounding-line migration behavior. It is therefore required to extent the

simulation times of full-Stokes models. The vast majority of the computation time is

spent on solving the non-linear equations for ice velocity. Here, we compare simulations

of Elmer/Ice using the classic velocity solver setup employing a parallelized direct solver

to a so far unused stable parallel iterative solver setup. The total compute time for the

iterative solver is 80% faster. In our case this means that the 40,000-year simulation now

takes 23 days instead of 141 days for the hard-bed case, and 27 days instead of 94 days

for the soft-bed case (Figure S4). The time differences between both scenarios are due
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to the differing grounding-line migration pattern, which require additional computation

time for the hard-bed case. This significant speed-up unlocks a new time dimension for

the applicability of 3D full-Stokes ice-sheet models on the regional scale while keeping

a high mesh resolution. Our modelling approach using the complete mechanical model

for ice flow together with a freely evolving grounding line without parameterisations can

now be combined with simplified ice-sheet models using ensemble simulations (Briggs et

al., 2014; Pollard et al., 2016). This provides an important step in reducing uncertainties

regarding internal ice dynamics, a key process to a better understanding of grounding-line

dynamics and processes occurring at the underside of the ice sheet.

4. Comparison between direct Stokes solver (MUMPS) and ParStokes

To ensure that the ”classic” solver setup using the direct Solver MUMPS and the new

iterative solver ParStokes provide the similar results, we compare grounding-line positions

over time for the hard bed and soft bed simulations in this section. We note however that

we do not expect a perfect match between the two solver setups due to small differences

in the finite element formulation (e.g. stabilization method).

For both simulations, there is very good agreement in terms of grounding-line position

over time, with differences never exceeding 5% (Figure S5). Because the soft bed simu-

lation exhibits smaller magnitude grounding-line motion over the simulation, agreement

between the two solver setups is better, with differences well below 1% for almost the entire

simulation length. In the hard bed simulation, where larger magnitudes of grounding-line

motion are modelled, the ParStokes solver’s grounding-line is not as far advanced as the

MUMPS solver grounding-line (Figure S6). Moreover, at times of rapid grounding-line
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motion, the response of the grounding-line in the ParStokes solver is delayed. This leads

to certain differences in transient grounding-line positions (<5%). However, the situation

improves for steady state grounding-line positions (<1.5% difference).

The larger variations in grounding-line position coupled with the more extreme geomet-

rical changes in the case of different grounding-line positions in the hard bed simulation

also result in larger differences in ice thickness. Locally these differences can be as large

as ∼460 m (<25% of the ice thickness). These differences are pronounced in the periods

of delayed grounding-line response, but reduce once a stable grounding-line position has

been reached (Figure S6, S7).

5. Grounding-line flux calculation

To compute present-day ice flux across the grounding line, we extract ice thickness from

Bedmap2 (Fretwell et al., 2013) and ice velocities from the MEaSURES product (Rignot

et al., 2011) along the present-day grounding line (Bindschadler et al., 2011). We then

define the threshold for slower moving catchments as ≤300m/yr and compute the ice flux

(velocity · ice thickness) and the percentage area that belongs to the category of slower

moving catchments. This shows that 90% of the present-day Antarctic grounding-line is

occupied by slower moving catchments and they account for ∼30% of the total ice flux

across the grounding line.

6. Effect of ocean bed properties on estimated erosion rate

Due to our modelling approach, we have reduced uncertainties regarding the magnitude

of basal sliding. However, significant uncertainties remain for basal processes such as ero-

sion which we demonstrate in this section.
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Erosion rates are commonly linked to the magnitude of basal sliding to some power (e.g.

Herman et al., 2015; Koppes et al., 2015). This means that differences in basal properties

(e.g. basal friction) of ocean beds affect computed erosion rates. Differences in basin-

averaged erosion rates using two recently proposed erosion laws (Herman et al., 2015;

Koppes et al., 2015) alone can be significant (up to 0.021 mm/yr). However, while the

uncertainties surrounding the selected erosion law are already large, the effect of differ-

ing ocean bed properties is even larger (Figure S8). Even though absolute differences

appear small when averaged over the basin (≤0.022 mm/yr), when these mean erosion

rates (10−7-10−5 mm/yr for hard bed and 4·10−5-8·10−4 mm/yr for soft bed) are used

to estimate erosion volumes over a glacial cycle the variations are significant. This is a

consequence of each time step contributing to the increasing difference, so that the cumu-

lative effect becomes even larger (two orders of magnitude for the two different ocean bed

simulations, Figure S8c). Erosion volumes are between 9.65·103-5.46·105 m3 for the hard

bed and 1.28·106-2.11·107 m3 for the soft bed over the full glacial cycle.

This simple calculation assumes that all sediment is instantly eroded and no sediment

transport takes place. Absolute numbers might be different, but the magnitude of the

effect of different ocean bed properties on basal sliding velocities and erosion volumes will

not change. This underlines the importance of an improved understanding of how much

of ice flow is caused by internal deformation or basal sliding.
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Table S1. Numerical values of the parameters adopted for the simulations

Parameter Symbol Value Unit

ice density ρi 917 kg m−3

ocean density ρw 1028 kg m−3

Glen’s exponent n 3

Gravity g 9.81 m s−2

Enhancement factor E 1

Tuning parameter SMB ∆acc 0.07 C−1

Ocean salinity S0 35.0 PSU

Heat capacity cpo 3974 J kg−1 C−1

Latent heat of fusion L 3.35×10−4 J kg−1

Tuning parameter BMB Fmelt 0.383×10−4

Thermal exchange velocity γT 1×10−5 m s−1
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Figure S1. Modelled stable grounding-line positions from present-day back to the LGM

(purple lines, advance phase) and from the LGM back to present day (cyan line, retreat phase).
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Figure S2. Model domain in 3D including numerical mesh of Ekström Ice Shelf catchment,

East Antarctica
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Figure S5. Differences in grounding-line (GL) area between the classic MUMPS and ParStokes

solver setup for the soft bed and hard bed simulations.
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Figure S6. Differences in grounding-line position and ice thickness between the classic MUMPS

and ParStokes solver setup for the hard bed simulation at specific time slices.
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Figure S7. Differences in grounding-line position and ice thickness between the classic MUMPS

and ParStokes solver setup for the soft bed simulation at specific time slices.
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Figure S8. (a) basal sliding, (b) erosion rates, and (c) differences in cumulative erosion

volumes for the hard bed and soft bed simulations using two different erosion laws.

December 5, 2019, 9:22am


