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Abstract 17 

Predicting geomagnetic conditions based on in-situ solar wind observations allows us to 18 

evade disasters caused by large electromagnetic disturbances originating from the Sun to 19 

save lives and protect economic activity. In this study, we aimed to examine the 20 

relationship between the Kp index, representing global magnetospheric activity level, and 21 

solar wind conditions using an interpretable neural network known as potential learning 22 

(PL). Data analyses based on neural networks are difficult to interpret; however, PL learns 23 

by focusing on the “potentiality of input neurons” and can identify which inputs are 24 

significantly utilized by the network. Using the full advantage of PL, we extracted the 25 

influential solar wind parameters that disturb the magnetosphere under southward 26 

Interplanetary magnetic field (IMF) conditions. The input parameters of PL were the three 27 

components of the IMF (Bx, By, -Bz(Bs)), solar wind flow speed (Vx), and proton number 28 

density (Np) in geocentric solar ecliptic (GSE) coordinates obtained from the OMNI solar 29 

wind database between 1998 and 2019. Furthermore, we classified these input parameters 30 

into two groups (targets), depending on the Kp level: Kp = 6- to 9 (positive target) and Kp 31 

= 0 to 1+ (negative target). Negative target samples were randomly selected to ensure that 32 



numbers of positive and negative targets were equal. The PL results revealed that solar 33 

wind flow speed is an influential parameter for increasing Kp under southward IMF 34 

conditions, which was in good agreement with previous reports on the statistical 35 

relationship between the Kp index and solar wind velocity, and the Kp formulation based 36 

on the IMF and solar wind plasma parameters. Based on this new neural network, we aim 37 

to construct a more correct and parameter-dependent space weather forecasting model. 38 
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1. Introduction 49 

The terrestrial magnetosphere protects life from the harmful radiation effects associated 50 

with the high-speed plasma streams (solar wind) and is constantly undergoing dynamic 51 

changes due to interactions with solar wind and the interplanetary magnetic field (IMF) 52 

originating from the Sun, effective (e.g., Black 1967; Glassmeier et al. 2009; Glassmeier 53 

and Vogt 2010). Drastic changes from quiet to active geomagnetic conditions start from 54 

a violation of the “frozen-in-condition” of the geomagnetic field caused by reconnecting 55 

the geomagnetic field with solar wind field lines, known as magnetic reconnection. 56 

Substorms, magnetic storms and auroral signatures are phenomena observed in the 57 

magnetosphere that occur due to reconnection-associated transfers of solar wind energy 58 

into the magnetosphere, and the resultant magnetospheric activity is of a high level.   59 

The K index, defined as the value representing the level of geomagnetic disturbances 60 

driven by the solar wind based on the perturbations in the Earth's magnetic field, was used 61 

to determine geomagnetic conditions. Moreover, it defines geomagnetic disturbances 62 

using an integer in the range 0–9 with 1 being calm and 5 or more indicating a 63 

geomagnetic storm. This index was first introduced by Bartels (1939) and is derived from 64 



the maximum fluctuations of horizontal components observed on a magnetometer with a 65 

temporal resolution of 3 h. Today, the Kp index, derived from the weighted average of the 66 

K indices of 13 geomagnetic observatories around the world (Bartels 1949), is understood 67 

to be the most representative proxy parameter for measuring energy input from solar wind 68 

to Earth and the resultant geomagnetic activity. Other examples of indices representing 69 

geomagnetic activity use the current intensity associated with aurora (AL and AU indices) 70 

and the strength of looped currents (ring current) flowing around the magnetic equator 71 

region built up by magnetic storms (Dst index). Since their inception, Kp values have been 72 

used for important and reliable index to representations of global geomagnetic activity. 73 

However, the time resolution of Kp (2.5 h) is lower than those of the other geomagnetic 74 

indices, such as AL, AU, PC (Polar Cap), and Dst, which have time resolutions ranging 75 

from 1 min. to 1 h (see Rangarajan 1987). 76 

Derivations of these indices to show global or specific region geomagnetic activity based 77 

on solar wind parameters have been conducted. In particular, Kp has been derived from 78 

solar wind parameters at Lagrange point 1 (L1) obtained by satellites (e.g., Wing et al. 79 

2005; Wintoft et al. 2017; Zhelavskaya et al. 2019; Shprits et al. 2019). Newell et al. 80 



(2008) formulated the Kp index based on the IMF and solar wind–magnetosphere coupling 81 

functions, which are equations that quantitatively evaluate the amount of solar wind 82 

energy inputs to the magnetosphere based on IMF and solar wind plasma parameters 83 

(Newell et al. 2007). The equations are as follows: 84 
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According to Eq.(1), Kp can be represented by the solar wind proton number density 87 

(Np); velocity (Vsw); IMF clock angle, defined as the angle between the IMF-By and -Bz 88 

components (θclock = arctan(IMF-By/IMF-Bz)); and IMF intensity (Bt), which is included 89 

in Newell’s solar wind–magnetosphere coupling function (dΦMP/dt), as calculated using 90 

Eq.(2). Eqs. (1) and (2) show that the solar wind velocity is closely correlated with the Kp 91 

index, as advocated by studies by Snyder et al. (1963) and Elliott et al. (2013). 92 

Nevertheless, it is difficult to determine the geomagnetic disturbance level based on solar 93 

wind conditions because of the complicated relationships between geomagnetic activity, 94 

IMF, and solar wind plasma. 95 

Recently, machine learning (or deep learning) approaches have been used to predict Kp. 96 



The artificial neural network (NN) is one of the most popular algorithms for Kp, Dst and 97 

PC forecasting (e.g., Nagai 1994; Costello 1998). Later, Boberg et al. (2000) and Wing et 98 

al. (2005) developed a prediction model based on NN using with IMF and solar wind 99 

plasma as input parameters. Boberg et al. (2000) sequentially built a multi-layer feed-100 

forward network using IMF-Bz component, solar wind plasma density (Np), and velocity 101 

(Vsw) as the input parameters, and evaluated the developed algorithm in terms of 102 

“training”, “validation”, and “test” based on the correlation and root-mean-square error 103 

(RMSE). Furthermore, an NN was developed by Bala and Reiff (2012) to forecast three 104 

indices: Kp, Dst, and AE (as defined by AU – AL). They obtained and compared several 105 

forecasting patterns of the Kp index with various solar wind input parameters and found 106 

significant differences in the RMSE and correlation between the obtained models. They 107 

also evaluated the prediction time for forecasting performance and concluded that RMSE 108 

tends to become larger as Kp prediction time increases.  109 

Following these NNs, Ji et al. (2013) introduced a support vector machine (SVM) to 110 

build a Kp forecasting model and evaluated the forecasting results from SVM by 111 

comparing the Kp prediction results with those from an NN. They constructed a 112 



forecasting model under high magnetic activity conditions. Tan et al. (2018) constructed 113 

and evaluated a Kp forecasting model using the solar energy input function (a coupling 114 

function) and the associated viscous term as inputs (Newell et al. 2008). Their models can 115 

also consider the Kp forecasting error and were built based on long short-term memory 116 

(LSTM), which was developed from recurrent NNs (RNNs) (Hochreiter and 117 

Schmidhuber 1997).  118 

In this study, we developed an extraction algorithm for solar wind parameters, 119 

significantly affect geomagnetic disturbances, with the help of the Kp classification model 120 

based on potential learning (PL). PL has been used to conduct analyses where high model 121 

performance and high interpretability are required. For example, in a study that applied 122 

PL to supermarket data (ID-POS) by Kitajima et al.(2016a), a model was developed that 123 

used the “consumer’s purchase behavior in the past three months” as an input parameter 124 

to determine the “customer’s probability to visit the store in two months in the future”. 125 

They determined that the model based on PL performed better than the conventional 126 

method and succeeded to extract an important variable. In addition, PL has been applied 127 

to data in various fields, such as Tweet data at the time of a disaster (Kitajima et al. 2016b) 128 



and data on president messages of the companies (Kitajima et al. 2019). Since PL has 129 

been used for data analysis in various fields, we aim to identify the most significant 130 

parameters that disturb the magnetosphere based on PL. Furthermore, we will run several 131 

PLs by changing the parameters and evaluate the performance of the application of PL to 132 

space physics data. We will also compare the results obtained from PL with those from 133 

another algorithm, multi-layer perceptron (MLP), and discuss the difference between the 134 

two algorithms.  135 

This paper is organized as follows. Section 2 presents the data used, and methodology 136 

in this study. The evaluation of the performance of PL, the results obtained based on PL 137 

and the differences between PL and MLP are shown in section 3. In section 4, finally, we 138 

present the discussion and our conclusions of this study. In Appendix, we describe the 139 

details of the PL structure. 140 

 141 

2. Data and Methodology 142 

2.1 Database compiling  143 

In this study, we used the three components of the interplanetary magnetic field (IMF; 144 



Bx, By, Bz), and solar wind plasma parameters, such as solar wind velocity and ion 145 

number density, in geocentric solar ecliptic (GSE) coordinates and the global 146 

geomagnetic activity index (Kp index) from January 1 1998 to December 31 2019, as input 147 

parameters for PL. Detailed information on the parameters of the solar wind and 148 

geomagnetic activity index is summarized in Table 1. The solar wind parameters with 149 

temporal resolution of 1 min. of the OMNI database and the Kp index with a time 150 

resolution of 3 h were utilizes, respectively. We calculated the 3 h average of the solar 151 

wind data to give these parameters the same temporal resolution as Kp. If the parameter 152 

had a data gap larger than 40%, the averages were not computed. To further exclude the 153 

observation data in the magnetosphere from the database, we established a threshold 154 

where the satellite GSE-X component (sun-earthward) was larger than the nominal nose 155 

point (~15 RE) of the model bow shock, proposed by Farris and Russell, (1994), that is, 156 

the database used completely comprised the observation values in interplanetary space.  157 

In this study, we considered only magnetospheric activity under the southward 158 

(negative) IMF-Bz case and excluded the northward (positive) IMF-Bz component as this 159 

NN input parameter, identified with “Bs” in Table 1. There were two main reasons for this 160 



criterion for the IMF-Bz component. First, we considered that geomagnetic conditions are 161 

favorable to be disturbed because high occurrences of magnetic reconnection can be 162 

expected in dayside magnetosphere. Second, PL learns by focusing on the highest 163 

variance of the parameters (see Eqs. (3) and (4) in section 2.3) and extracts the focused 164 

parameter as the most significant factor driving the magnetospheric disturbances. 165 

Therefore, we excluded cases of the IMF-Bz component highly fluctuating between 166 

positive and negative around 0 nT. 167 

Before inputting the solar wind conditions to the PL, we classified the Kp values into 168 

two groups (targets) of “positive” and “negative” targets. Kp index with values from 6- to 169 

9, and the associated solar wind data were labeled as “positive target (group)”. Whereas 170 

Kp values ranging from 0 to 1+ and the associated solar wind parameters were labelled as 171 

“negative target (group)”. The total number of compiled (averaged) data points was 172 

27,168 with the positive (negative) target number being 793 (26,375). To equalize the 173 

number of data between the positive and negative targets, we randomly chose and 174 

extracted 793 points out of the 26,375 negative target data points. Finally, we analyzed 175 

1,586 positive and negative data points. 176 



2-2 Methodology of database analysis  177 

By adopting a new NN (PL) to take the 3 h average solar wind parameters as “input 178 

parameters” and classify whether or not the associated Kp index belongs to “positive” or 179 

“negative” targets, we investigated the relationship between geomagnetic activity levels 180 

and solar wind parameters. 181 

Recently, NNs have been adopted to analyze databases with complicated structures in 182 

space plasma physics. In general, NNs have frequently been used to build forecasting 183 

models of geomagnetic indices; however, it is difficult to interpret which solar wind 184 

parameters are the most important in disturbing the magnetosphere. In this study, we 185 

applied a new NN theory, PL, which was developed based on two NNs; selective 186 

potentiality maximization, proposed by Kamimura and Kitajima (2015), and self-187 

organizing selective potentiality learning (Kamimura 2015). 188 

In this study, we trained the PL by setting the number of neurons (see the details on the 189 

manner to train PL are described in section 2.3), as listed in Table 2. The number of hidden 190 

neurons was automatically determined by the software of “SOM Toolbox v2.1” which 191 

was developed by Vatanen et al. (2015). 192 



In the knowledge utilization step, hyperbolic tangent and softmax functions were used 193 

for the activation functions of the hidden and output neurons, respectively. We searched 194 

for the most suitable value by varying the value of parameter “r” from 1 to 10 with a step 195 

of 1. A total of 1,110 (70%) of the 1,586 samples were used for training. Half of the 196 

remaining 238 samples (15%) were utilized to prevent training from overfitting (early 197 

stopping) and the other half (15%) were used for testing. We maintained these allocation 198 

rates during these PL runs. In this study, we made 10 different models in a random choice 199 

manner, as shown in Figure 2. We evaluated the performance of each model by calculating 200 

the average values of the 10 models. 201 

 202 

2.3 Details of the potential learning (PL)   203 

PL consists of two steps: knowledge accumulation, based on self-organizing maps 204 

(SOM), the concept of which is shown in Figure 1(a); and knowledge utilization, 205 

originating from multi-layer perceptron (MLP), the details of which are shown in Figure 206 

1(b). During knowledge accumulation, the potentiality of the input neuron is calculated 207 

and knowledge is acquired (training). Here, we define “potentiality” as ability which can 208 



response to various conditions of neuron. In case of “Neuron with high potentiality”, it 209 

indicates the neuron which can play an important role in training. In general, NNs are 210 

referred to as “black box,” but, in the PL, we can interpret which input parameters are 211 

important by interpreting the potentiality after training. If assigning the number 212 

݇	ሺ݇ ൌ 1,2, … ,  ሻ  to the input neuron, we can derive the potentiality of the kth input 213ܭ

neuron ሺߔ௞
௥ሻ	between 0 and 1, using the following equation:  214 
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where	 ௞ܸ is the variance of the kth input neuron, which is computed based on “weight” 216 

ሺݓ௝,௞ሻ connected to the kth input neuron from jth ሺ݆ ൌ 1,2, … ,  is 217 ݎ ሻ output neuron andܬ

the parameter that controls the potentiality calculated using the algorithm. The larger the 218 

“r” value becomes, the input neuron with larger variance can have larger potentiality.  219 

After the potentiality was calculated, PL was trained based on self-organizing maps 220 

(SOM), in which the potentiality was used to calculate the distance ( ௝݀) between the input 221 

neuron (the input from the kth input neuron is denoted by ݔ௞) and the jth output neuron 222 

with the following formula: 223 
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Eq. (4) means that the “distance,” weighted by the potentiality of the input neuron, was 225 

used in the training process. The logics for the other training were the same as those for 226 

the SOM. Through the Knowledge accumulation step, PL starts to conduct the training at 227 

the step of Knowledge utilization, based on MLP. In this step, the weight obtained in the 228 

knowledge accumulation step was multiplied by the potentiality and set as the initial 229 

weight between the input and hidden layers for learning. In general, the results of the 230 

training based on MLP depend on the initial weights. However, PL is expected to provide 231 

more precise training based on the knowledge obtained from the input parameters (data). 232 

 233 

3. Results 234 

3.1 Evaluation of model performances 235 

To evaluate the PL 10 models, we calculated the values of four measures (accuracy, 236 

precision, recall and F-measure) with changing value of parameter “r” from 1 to 10. Table 237 

3 shows the calculation results of the four measures, indicating the extent to which the 238 

model successfully predicted the test data. When “r” was 6, the value of “accuracy” was 239 



the highest. The main purpose of creating the 10 models was to extract of the variables 240 

that play essential roles in classifying the Kp index into two targets: negative and positive. 241 

Therefore, we focused on the case with the highest accuracy value and thus applied the 242 

best model with r = 6 in this study.  243 

We also compared the test results based on PL with those of MLP, a basic NN. As 244 

shown in Table 3, all values (accuracy, precision, recall and F-measure) in MLP were 245 

close to those of MLP. In particular, the difference in accuracy between PL and MLP was 246 

only 0.0063. MLP can be better for classifying Kp into two targets than PL, if the main 247 

purpose is only the prediction of geomagnetic activity. However, PL actively selects the 248 

input values to be utilized for classification while MLP does not.  249 

When r = 6, the values of three measures (accuracy, recall, and F-measure) of evaluating 250 

model performance in PL reached their maximum, but were slightly lower than those in 251 

MLP. Precision reached its maximum at r = 10. PL, however, has a strong advantage in 252 

extracting the most influential solar wind parameters that cause geomagnetic disturbances. 253 

Therefore, in this study, we applied the PL model with r = 6. 254 

 255 



3.2 Extraction of significant solar wind parameters that cause magnetospheric 256 

disturbances 257 

Figure 3 shows the result of PL for the input neurons at r = 6. PL extracted the solar 258 

wind velocity (Vx) as the parameter with the highest “input potentiality” (~1.0), 259 

suggesting that PL at r = 6 judged solar wind velocity to be the most significant parameter 260 

causing geomagnetic disturbances under the Bs (southward IMF) condition. The 261 

parameter with the next highest potentiality was the solar wind density (Np) at 0.0431; 262 

however, this can almost be ignored when compared with the potentiality of the solar 263 

wind velocity.   264 

Figure 4 shows the weights of the input and hidden layers used in the PL and MLP for 265 

comparison. The length of the bar shows the weight in PL, and the signs of the weight 266 

values are indicated with red (plus) and green (minus), respectively. The panel (a) in 267 

Figure 4 shows that MLP has various plus and minus values for weights at each input 268 

neuron (parameter), indicating that it is difficult to identify which input neuron 269 

(parameter) was used in the network. However, in the PL network with r = 6 (panel b), 270 

most of the weight was concentrated on the third variable (solar wind velocity); however, 271 



the fourth (ion number density) and fifth (southward IMF) variables also had some weight 272 

and were thus also used in the PL network. PL uses potentiality to set up the initial weight 273 

in the knowledge utilization step (see Figure 1b). Although three variables (third, fourth, 274 

and fifth) had high weight values, we judged the parameter with the highest weight value, 275 

the third variable (solar wind velocity), as having the most significant potentiality among 276 

them. 277 

 278 

4. Summary and Discussion  279 

We reported the results of benchmarks of the application of a new neural network 280 

(Potential Learning) for the prediction of geomagnetic activity, driven by solar wind, and 281 

the successful extraction of the most significant solar wind parameter in causing 282 

geomagnetic field disturbances. This study is the first attempt for applying the PL to the 283 

numerical data analyses in space plasma. We also used 22 years of OMNI solar wind data 284 

and Kp indices as input neurons but only used the data when the IMF Bz was southward. 285 

This was because geomagnetic activity is favorable to be disturbed by dayside magnetic 286 

reconnection under southward IMF-Bz conditions (e.g. Dungey, 1961), and it is thus 287 



easier to extract the crucial solar wind parameter(s) that drive the geomagnetic 288 

disturbances.   289 

We excluded the solar wind data under northward IMF conditions due to an inherent 290 

disadvantage of the current PL algorithm; PL identifies the largest variance value with the 291 

highest potentiality. Therefore, if data under northward IMF conditions were included in 292 

the database, the stable (non-excursive) but intensive southward IMF-Bz component 293 

cannot be chosen as the solar wind parameter with the highest potentiality. Furthermore, 294 

the fluctuating IMF-Bz around 0 nT may be chosen as the most significant parameter that 295 

cause magnetospheric disturbance. To avoid these cases, we utilized only solar wind data 296 

during the southward IMF intervals as input neuron. In future studies, we need to improve 297 

the PL algorithm, which applies an importance to the largest variance value for the highest 298 

potentiality.       299 

Based on a large solar wind database, PL extracted the solar wind velocity as the 300 

parameter with the highest potentiality when r = 6 (see Figure 3), suggesting that solar 301 

wind speed (Vx) is an important parameter in disturbing geomagnetic conditions. 302 

Significant enhancements of the global geomagnetic activity level due to increases in the 303 



Vx component were reported by Snyder et al. (1963). More recently, Elliott et al. (2013) 304 

examined the relationship between the Kp index and solar wind speed, separating into low 305 

and high solar wind number density and dynamic pressure cases and the presence/absence 306 

of solar wind disturbances, such as the interplanetary coronal mass ejection (ICME). 307 

Furthermore, Thomsen (2004) suggested that the large-scale convection electric field (Ec 308 

= -Vsw x Bgeo), calculated using the solar wind velocity (Vsw) and geomagnetic field (Bgeo), 309 

has a good correlation with the Kp index. This quantitative relationship between solar 310 

wind velocity and the Kp index, supported by the two velocity terms of “Vsw
2” and “Vsw

3/4” 311 

being comprised in a formulation proposed by Newell et al. (2008) (Eq. 1), suggests that 312 

solar wind velocity is the most important parameter in controlling Kp. Therefore, the most 313 

significant parameter extracted by PL (solar wind velocity) was determined to be the most 314 

significant parameter that causes disturbances to the Earth, being consistent with previous 315 

statistical observational results (Gholipour et al. 2004; Newell et al. 2008; Elliott et al. 316 

2013, and references therein).       317 

Comparing the MLP results with those of PL, the accuracies were not significantly 318 

different. However, PL could be applied to extract the most significant parameter leading 319 



to space weather disasters from solar wind. This benchmark for the application of PL to 320 

the space weather-related problem verified its effectiveness in predicting the solar wind 321 

driving geomagnetic activity and significant solar wind parameters that cause 322 

geomagnetic disturbances.  323 

In this study, we ensured that PL can extract the most significant solar wind parameter 324 

which causes geomagnetic disturbances. Therefore, we can aim to construct a more 325 

correct and parameter-dependent space weather forecasting model based on PL.  326 
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Figure legends 448 

Figure 1. The concept of potential learning (PL). PL comprises two important steps: (a) 449 

knowledge accumulation and (b) knowledge utilization. 450 

Figure 2. Block diagrams of details of 10 potential learning (PL) models. In each model, 451 

the data for training (Training data), the data to prevent training from overfitting (early 452 

stopping) (Validation data), and the data for testing the model (Testing data) are included. 453 

The percentages for the three kinds of data are 70%, 15%, and 15%, respectively. 454 

Figure 3. Results of the application of PL at r = 6. The five OMNI solar wind parameters 455 

(IMF-Bx, IMF-By, Vx, Np, and Bs) are chosen as the input data to PL. The horizontal and 456 

vertical axes give input potentiality and the numbers of input five solar wind parameters, 457 

respectively. The potentialities of the solar wind velocity and density are 1.0 and 0.0431, 458 

respectively. 459 

Figure 4. Weights in the input – hidden layers in the networks of MLP (a) and PL (b). 460 

Horizontal and vertical axes give the number of five input variables (neurons) and number 461 

of neurons in hidden layer, respectively. The length of the bar shows the weight in PL, 462 

and the signs of the weight values are indicated with red (plus) and green (minus), 463 



respectively. 464 

 465 

Table legends 466 

Table 1. Detailed information on the parameters in compiled database used in this neural 467 

network 468 

Table 2. List of numbers of neurons in potential learning (PL) 469 

Table 3. Summary of accuracy, precision, recall and F-measure values. Bold letters 470 

indicate their maxima 471 
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Table 1

Moto
スタンプ



Setup of PL 

# of input neurons 5 

# of output neurons at Knowledge Accumulation step 198 

# of hidden neurons at Knowledge Utilization step 198 

# of output neurons at Knowledge Utilization step 2 

Table 2



MLP
r  = 1 r  = 2 r  = 3 r  = 4 r  = 5 r  = 6 r  = 7 r  = 8 r  = 9 r  = 10

Accuracy 0.9828 0.9824 0.9824 0.9836 0.9824 0.9840 0.9819 0.9807 0.9828 0.9832 0.9903
Precision 0.9793 0.9793 0.9785 0.9801 0.9792 0.9801 0.9784 0.9768 0.9785 0.9817 0.9867
Recall 0.9866 0.9857 0.9866 0.9874 0.9857 0.9882 0.9857 0.9849 0.9874 0.9849 0.9941
F-measure 0.9828 0.9824 0.9824 0.9837 0.9824 0.9841 0.9820 0.9807 0.9828 0.9832 0.9904

PL

Table 3
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