References:
Abhilash, S., Das, S., Kalsi, S. R., Das Gupta, M., Mohankumar, K.,
George, J. P., Banerjee, S. K., Thampi, S. B., & Pradhan, D. (2007).
Assimilation of Doppler weather radar observations in a mesoscale model
for the prediction of rainfall associated with mesoscale convective
systems. Journal of Earth System Science , 116 (4),
275–304. https://doi.org/10.1007/s12040-007-0026-2
Agnihotri, G., Gouda, K. C., & Das, S. (2021). Characteristics of
pre-monsoon convective systems over south peninsular India and
neighborhood using tropical rainfall measuring mission’s precipitation
radar. Meteorology and Atmospheric Physics , 133 (2),
193–203. https://doi.org/10.1007/s00703-020-00740-7
Anderson, M. E., Carey, L. D., Petersen, W. A., & Knupp, K. R. (2011).
C-band dual-polarimetric radar signatures of hail. Electronic
Journal of Operational Meteorology , 12 (2), 1–30.
Aydin, K., Bringi, V. N., & Liu L. (2000). Rain-Rate Estimation in the
Presence of Hail Using S-Band Specific Differential Phase and Other
Radar Parameters. Journal of Applied Meteorology , 34 (2),
404–410. https://doi.org/10.1175/1520-0450-34.2.404
Balakrishnan, N., & Zrnić, D. S. (1990). Estimation of rain and hail
rates in mixed-phase precipitation. Journal of Atmospheric
Sciences , 47 (5), 565-583.
https://doi.org/10.1175/1520-0469(1990)047%3C0565:EORAHR%3E2.0.CO;2
Bhardwaj, P., & Singh, O. (2018). Spatial and temporal analysis of
thunderstorm and rainfall activity over India. Atmosfera ,31 (3), 255–284. https://doi.org/10.20937/ATM.2018.31.03.04
Biggerstaff, M. I., & Listemaa, S. A. (2000). An improved scheme for
convective/stratiform echo classification using radar reflectivity.Journal of Applied Meteorology , 39 (12), 2129–2150.
https://doi.org/10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
Bringi, V. N., and Chandrasekar, V. (2001): Polarimetric Doppler Weather
Radar: Principles and Applications. Cambridge University Press, 636 pp.
Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W.
L., & Schoenhuber, M. (2003). Raindrop size distribution in different
climatic regimes from disdrometer and dual-polarized radar analysis.Journal of the Atmospheric Sciences , 60 (2), 354–365.
https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
Bringi, V. N., Thurai, M., Nakagawa, K., Huang, G. J., Kobayashi, T.,
Adachi, A., Hanado, H., & Sekizawa, S. (2006). Rainfall estimation from
C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video
disdrometer and 400 MHz wind profiler. Journal of the
Meteorological Society of Japan , 84 (4), 705–724.
https://doi.org/10.2151/jmsj.84.705
Bringi, V. N., Williams, C. R., Thurai, M., & May, P. T. (2009). Using
dual-polarized radar and dual-frequency profiler for DSD
characterization: A case study from Darwin, Australia. Journal of
Atmospheric and Oceanic Technology , 26 (10), 2107–2122.
https://doi.org/10.1175/2009JTECHA1258.1
Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded
lightning climatology from TRMM-LIS and OTD: Dataset description.Atmospheric Research , 135 –136 , 404–414.
https://doi.org/10.1016/j.atmosres.2012.06.028
Chandrasekar, V., Bringi, V. N., Balakrishnan, N., & Zrnić, D. S.
(1990). Error structure of multiparameter radar and surface measurements
of rainfall. Part III: Specific differential phase. Journal of
Atmospheric and Oceanic Technology , 7 (5), 621-629.
https://doi.org/10.1175/1520-0426(1990)007%3C0621:ESOMRA%3E2.0.CO;2
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L.,
Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak,
W. J., Mach, D. M., & Stewart, M. F. (2003). Global frequency and
distribution of lightning as observed from space by the Optical
Transient Detector. Journal of Geophysical Research: Atmospheres ,108 (1). https://doi.org/10.1029/2002jd002347
Cifelli, R., Chandrasekar, V., Lim, S., Kennedy, P. C., Wang, Y., &
Rutledge, S. A. (2011). A new dual-polarization radar rainfall
algorithm: Application in Colorado precipitation events. Journal
of Atmospheric and Oceanic Technology , 28 (3), 352–364.
https://doi.org/10.1175/2010JTECHA1488.1
Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand,
R. T., Miller, M. A., & Martner, B. E. (2000). Objective determination
of cloud heights and radar reflectivities using a combination of active
remote sensors at the ARM CART sites. Journal of Applied
Meteorology , 39 (5), 645-665.
https://doi.org/10.1175/1520-0450(2000)039%3C0645:ODOCHA%3E2.0.CO;2
Dhawan, V. B., Tyagi, A., & Bansal, M. C. (2008). Forecasting of
thunderstorms in pre-monsoon season over northwest India. Mausam ,59 (4), 433–444.
Dolan, B., & Rutledge, S. A. (2009). A theory-based hydrometeor
identification algorithm for X-band polarimetric radars. Journal
of Atmospheric and Oceanic Technology , 26 (10), 2071–2088.
https://doi.org/10.1175/2009JTECHA1208.1
Dolan, B., Rutledge, S. A., Lim, S., Chandrasekar, V., & Thurai, M.
(2013). A robust C-band hydrometeor identification algorithm and
application to a long-term polarimetric radar dataset. Journal of
Applied Meteorology and Climatology , 52 (9), 2162–2186.
https://doi.org/10.1175/JAMC-D-12-0275.1
Doviak, R.J. and Zrni´c, D.S. Doppler Radar and Weather
Observations . 2nd edition, San Diego, CA, Academic Press, 1993.
Elio, R., Haan, J. D., & Strong, G. S. (1987). METEOR: An artificial
intelligence system for convective storm forecasting. Journal of
Atmospheric and Oceanic Technology , 4 (1), 19-28.
https://doi.org/10.1175/1520-0426(1987)004%3C0019:MAAISF%3E2.0.CO;2
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley,
S., … & Alsdorf, D. (2007). The shuttle radar topography
mission. Reviews of geophysics , 45 (2).
https://doi.org/10.1029/2005RG000183
Friedrich, K., Hagen, M., & Einfalt, T. (2006). A quality control
concept for radar reflectivity, polarimetric parameters, and Doppler
velocity. Journal of Atmospheric and Oceanic Technology ,23 (7), 865–887. https://doi.org/10.1175/JTECH1920.1
Friedrich, K., Higgins, S., Masters, F. J., & Lopez, C. R. (2013).
Articulating and stationary PARSIVEL disdrometer measurements in
conditions with strong winds and heavy rainfall. Journal of
Atmospheric and Oceanic Technology , 30 (9), 2063-2080.
https://doi.org/10.1175/JTECH-D-12-00254.1
Halder, M., & Mukhopadhyay, P. (2016). Microphysical processes and
hydrometeor distributions associated with thunderstorms over India: WRF
(cloud-resolving) simulations and validations using TRMM. Natural
Hazards , 83 (2), 1125–1155.
https://doi.org/10.1007/s11069-016-2365-2
Heese, B., Flentje, H., Althausen, D., Ansmann, A., & Frey, S. (2010).
Ceilometer lidar comparison: backscatter coefficient retrieval and
signal-to-noise ratio determination. Atmospheric Measurement
Techniques , 3 (6), 1763-1770.
https://doi.org/10.5194/amt-3-1763-2010
Houze, R. A. (1997). Stratiform Precipitation in Regions of Convection:
A Meteorological Paradox? Bulletin of the American Meteorological
Society , 78 (10), 2179–2196.
https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
Hubbert, J., Bringi, V. N., Carey, L. D., & Bolen, S. (1998). CSU-CHILL
polarimetric radar measurements from a severe hail storm in eastern
Colorado. Journal of Applied Meteorology , 37 (8), 749–775.
https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2
Hubbert, J., Chandrasekar, V., Bringi, V. N., & Meischner, P. (1993).
Processing and interpretation of coherent dual-polarized radar
measurements. Journal of Atmospheric and Oceanic
Technology , 10 (2), 155-164.
https://doi.org/10.1175/1520-0426(1993)010%3C0155:PAIOCD%3E2.0.CO;2
Islam, T., Rico-Ramirez, M. A., Han, D., & Srivastava, P. K. (2012).
Artificial intelligence techniques for clutter identification with
polarimetric radar signatures. Atmospheric Research ,109 –110 , 95–113.
https://doi.org/10.1016/j.atmosres.2012.02.007
Jameson, A. (1985). Microphysical interpretation of multiparameter radar
measurements in rain. Part III: Interpretation and measurement of
propagation differential phase shift between orthogonal linear
polarizations. Journal of Atmospheric Sciences , 42 (6),
607-614.
https://doi.org/10.1175/1520-0469(1985)042%3C0607:MIOMRM%3E2.0.CO;2
Jash, D., Resmi, E. A., Unnikrishnan, C. K., Sumesh, R. K., Sreekanth,
T. S., Sukumar, N., & Ramachandran, K. K. (2019). Variation in rain
drop size distribution and rain integral parameters during southwest
monsoon over a tropical station: An inter-comparison of disdrometer and
Micro Rain Radar. Atmospheric Research , 217 , 24–36.
https://doi.org/10.1016/j.atmosres.2018.10.014
Jayaratne, E. R., Saunders, C. P. R., & Hallett, J. (1983). Laboratory
studies of the charging of soft‐hail during ice crystal
interactions. Quarterly Journal of the Royal Meteorological
Society , 109 (461), 609-630.
https://doi.org/10.1256/smsqj.46110
Keenan, T. (2003). Hydrometeor classification with a C-band polarimetric
radar. Australian Meteorological Magazine , 52 (1), 23–31.
Kumar, K. K., Subrahmanyam, K. V., Kumar, C. P., Shanmugasundari, J.,
Koushik, N., Ajith, R. P., & Devi, L. G. (2020). C-band
dual-polarization Doppler weather radar at Thumba (8.537 N, 76.865 E):
initial results and validation. Journal of Applied Remote
Sensing , 14 (4), 044509.
https://doi.org/10.1117/1.JRS.14.044509
Lakshmanan, V., Karstens, C., Krause, J., & Tang, L. (2014). Quality
control of weather radar data using polarimetric variables.Journal of Atmospheric and Oceanic Technology , 31 (6),
1234–1249. https://doi.org/10.1175/JTECH-D-13-00073.1
Leena, P. P., Pandithurai, G., Gayatri, K., Murugavel, P., Ruchith, R.
D., Sakharam, S., Dani, K. K., Patil, C., Dharmaraj, T., Patil, M. N.,
& Prabhakaran, T. (2019). Analysing the characteristic features of a
pre-monsoon thunderstorm event over Pune, India, using ground-based
observations and WRF model. Journal of Earth System Science ,128 (4). https://doi.org/10.1007/s12040-019-1136-3
Litta, A. J., & Mohanty, U. C. (2008). Simulation of a severe
thunderstorm event during the field experiment of STORM programme 2006,
using WRF-NMM model. Current Science , 95 (2), 204–215.
Litta, A. J., Mohanty, U. C., Das, S., & Mary Idicula, S. (2012).
Numerical simulation of severe local storms over east India using
WRF-NMM mesoscale model. Atmospheric Research , 116 ,
161–184. https://doi.org/10.1016/j.atmosres.2012.04.015
Liu, H., & Chandrasekar, V. (2000). Classification of hydrometeors
based on polarimetric radar measurements: Development of fuzzy logic and
neuro-fuzzy systems, and in situ verification. Journal of
Atmospheric and Oceanic Technology , 17 (2), 140–164.
https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2
Löffler-Mang, M., & Joss, J. (2000). An optical disdrometer for
measuring size and velocity of hydrometeors. Journal of
Atmospheric and Oceanic Technology , 17 (2), 130-139.
https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
Madhulatha, A., & Rajeevan, M. (2018). Impact of different
parameterization schemes on simulation of mesoscale convective system
over south-east India. Meteorology and Atmospheric Physics ,130 (1), 49–65. https://doi.org/10.1007/s00703-017-0502-4
Manohar, G. K., & Kesarkar, A. P. (2004). Climatology of thunderstorm
activity over the Indian region : II . Spatial distribution.Mausam , 1 (January), 31–40.
Marzano, F. S., Scaranari, D., Celano, M., Alberoni, P. P., Vulpiani,
G., & Montopoli, M. (2006). Hydrometeor classification from
dual-polarized weather radar: Extending fuzzy logic from S-band to
C-band data. Advances in Geosciences , 7 , 109–114.
https://doi.org/10.5194/adgeo-7-109-2006
Mishra, S., Shanmuga Sundari, J., Channabasava, B., & Anandan, V. K.
(2020). First indigenously developed polarimetric C-band Doppler weather
radar in India and its first hand validation results. Journal of
Electromagnetic Waves and Applications , 34 (6), 825–840.
https://doi.org/10.1080/09205071.2020.1742798
Mukhopadhyay, P., Mahakur, M., & Singh, H. A. K. (2009). The
interaction of large scale and mesoscale environment leading to
formation of intense thunderstorms over Kolkata part I: Doppler radar
and satellite observations. Journal of Earth System Science ,118 (5), 441–466. https://doi.org/10.1007/s12040-009-0046-1
Parks, T. W. & Burrus C. S., Digital Filter Design , John Wiley
& Sons, 1987, chapter 7
Proakis, J. G., & Manolakis, D. G. (1988). Introduction to
digital signal processing . MacMillan Publishing Company.
Pruppacher, H. R., & Beard, K. V. (1970). A wind tunnel investigation
of the internal circulation and shape of water drops falling at terminal
velocity in air. Quarterly Journal of the Royal Meteorological
Society , 96 (408), 247–256.
https://doi.org/10.1002/qj.49709640807
Purdom, J. F. W. (2003). Local severe storm monitoring and
prediction using satellite data . 1 (January), 141–154.
Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B.,
& Rajasekhar, M. (2010). Sensitivity of WRF cloud microphysics to
simulations of a severe thunderstorm event over Southeast India.Annales Geophysicae , 28 (2), 603–619.
https://doi.org/10.5194/angeo-28-603-2010
Rajeevan, M., Madhulatha, A., Rajasekhar, M., Bhate, J., Kesarkar, A.,
& Appa Rao, B. V. (2012). Development of a perfect prognosis
probabilistic model for prediction of lightning over south-east India.Journal of Earth System Science , 121 (2), 355–371.
https://doi.org/10.1007/s12040-012-0173-y
Rao, Y. P., & Srinivasan, V. (1969). Discussion of typical synoptic
weather situation: winter western disturbances and their associated
features. Indian Meteorological Department: Forecasting Manual
Part III .
Ravi, N., Mohanty, U. C., Madan, O. P., & Paliwal, R. K. (1999).
Forecasting of thunderstorms in the pre-monsoon season at Delhi.Meteorological Applications , 6 (1), 29–38.
https://doi.org/10.1017/S1350482799000973
Romatschke, U., & Houze, R. A. (2011). Characteristics of precipitating
convective systems in the premonsoon season of South Asia. Journal
of Hydrometeorology , 12 (2), 157–180.
https://doi.org/10.1175/2010JHM1311.1
Roy, S. Sen, Mohapatra, M., Tyagi, A., & Roy Bhowmik, S. K. (2019). A
review of nowcasting of convective weather over the Indian region.Mausam , 70 (3), 465–484.
https://doi.org/10.54302/mausam.v70i3.227
Ryzhkov, A. V., & Zrnic, D. S. (1998). Polarimetric rainfall estimation
in the presence of anomalous propagation. Journal of Atmospheric
and Oceanic Technology , 15 (6), 1320–1330.
https://doi.org/10.1175/1520-0426(1998)015<1320:PREITP>2.0.CO;2
Ryzhkov, A. V., Zrnic, D. S., Hubbert, J. C., Bringi, V. N.,
Vivekanandan, J., & Brandes, E. A. (2002). Polarimetric radar
observations and interpretation of co-cross-polar correlation
coefficients. Journal of Atmospheric and Oceanic Technology ,19 (3), 340–354. https://doi.org/10.1175/1520-0426-19.3.340
Sad, H. P., Kumar, P., & Panda, S. K. (2021). Doppler weather radar
data assimilation at convective-allowing grid spacing for predicting an
extreme weather event in Southern India. International Journal of
Remote Sensing , 42 (10), 3681–3707.
https://doi.org/10.1080/01431161.2021.1880660
Saha, U., Maitra, A., Midya, S. K., & Das, G. K. (2014). Association of
thunderstorm frequency with rainfall occurrences over an Indian urban
metropolis. Atmospheric Research , 138 , 240–252.
https://doi.org/10.1016/j.atmosres.2013.11.021
Saunders, C. P. R., Keith, W. D., & Mitzeva, R. P. (1991). The effect
of liquid water on thunderstorm charging. Journal of Geophysical
Research: Atmospheres , 96 (D6), 11007-11017.
https://doi.org/10.1029/91JD00970
Schuur, T. J., Ryzhkov, A. V., Zrnic, D. S., & Schönhuber, M. (2001).
Drop size distributions measured by a 2D video disdrometer: Comparison
with dual-polarization radar data. Journal of Applied
Meteorology , 40 (6), 1019–1034.
https://doi.org/10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2
Seliga, T. A., & Bringi, V. N. (1978). Differential reflectivity and
differential phase shift: Applications in radar meteorology. Radio
Science , 13 (2), 271-275.
https://doi.org/10.1029/RS013i002p00271
Singh, O., & Bhardwaj, P. (2019). Spatial and temporal variations in
the frequency of thunderstorm days over India. Weather ,74 (4), 138–144. https://doi.org/10.1002/wea.3080
Sisodiya, A., Pattnaik, S., & Baisya, H. (2020). Characterization of
Different Rainfall Types from Surface Observations Over a Tropical
Location. Pure and Applied Geophysics , 177 (2), 1111–1123.
https://doi.org/10.1007/s00024-019-02338-6
Srivastava, K., Roy Bhowmik, S. K., Sen Roy, S., Thampi, S. B., &
Reddy, Y. K. (2010). Simulation of high impact convective events over
Indian region by ARPS model with assimilation of doppler weather radar
radial velocity and reflectivity. Atmosfera , 23 (1),
53–73.
Steiner, M., Houze Jr, R. A., & Yuter, S. E. (1995). Climatological
characterization of three-dimensional storm structure from operational
radar and rain gauge data. Journal of Applied Meteorology and
Climatology , 34 (9), 1978-2007.
https://doi.org/10.1175/1520-0450(1995)034%3C1978:CCOTDS%3E2.0.CO;2
Subrahmanyam, K. V., & Baby, S. R. (2020). C-band Doppler weather radar
observations during the passage of tropical cyclone ‘Ockhi.’Natural Hazards , 104 (3), 2197–2211.
https://doi.org/10.1007/s11069-020-04268-2
Sumesh, R. K., Resmi, E. A., Unnikrishnan, C. K., Jash, D., &
Ramachandran, K. K. (2021). Signatures of shallow and deep clouds
inferred from precipitation microphysics over windward side of Western
Ghats. Journal of Geophysical Research:
Atmospheres , 126 (10), e2020JD034312.
https://doi.org/10.1029/2020JD034312
Suresh, R. (2012). Forecasting and nowcasting convective weather
phenomena over southern peninsular india - part I: Thunderstorms.Indian Journal of Radio and Space Physics , 41 (4),
421–434.
Takahashi, T. (1978). Riming electrification as a charge generation
mechanism in thunderstorms. Journal of Atmospheric
Sciences , 35 (8), 1536-1548.
https://doi.org/10.1175/1520-0469(1978)035%3C1536:REAACG%3E2.0.CO;2
Testud, J., Oury, S., Black, R. A., Amayenc, P., & Dou, X. (2001). The
concept of “normalized” distribution to describe raindrop spectra: A
tool for cloud physics and cloud remote sensing. Journal of
Applied Meteorology , 40 (6), 1118–1140.
https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2
Thakur, S., Mondal, I., Ghosh, P. B., & De, T. K. (2019). Thunderstorm
characteristics over the northeastern region (NER) of India during the
pre-monsoon season, 2011 using geosynchronous satellite data. InAdvances in Intelligent Systems and Computing (Vol. 813).
Springer Singapore. https://doi.org/10.1007/978-981-13-1498-8_26
Thurai, M., Bringi, V. N., & May, P. T. (2010). CPOL radar-derived drop
size distribution statistics of stratiform and convective rain for two
regimes in Darwin, Australia. Journal of Atmospheric and Oceanic
Technology , 27 (5), 932–942.
https://doi.org/10.1175/2010JTECHA1349.1
Tokay, A., & Short, D. A. (1996). Evidence from tropical raindrop
spectra of the origin of rain from stratiform versus convective
clouds. Journal of Applied Meteorology and
Climatology , 35 (3), 355-371.
https://doi.org/10.1175/1520-0450(1996)035%3C0355:EFTRSO%3E2.0.CO;2
Tyagi, A., Sikka, D. R., Goyal, S., & Bhowmick, M. (2012). A satellite
based study of pre-monsoon thunderstorms (Nor’westers) over eastern
India and their organization into mesoscale convective complexes.Mausam , 63 (1), 29–54.
Ulbrich, C. W., & Atlas, D. (2002). On the separation of tropical
convective and stratiform rains. Journal of Applied Meteorology ,41 (2), 188–195.
https://doi.org/10.1175/1520-0450(2002)041<0188:OTSOTC>2.0.CO;2
Umakanth, N., Satyanarayana, G. C., Naveena, N., Srinivas, D., & Rao,
D. V. B. (2021). Statistical and dynamical based thunderstorm prediction
over southeast India. Journal of Earth System Science ,130 (2). https://doi.org/10.1007/s12040-021-01561-x
Unal, C. (2009). Spectral polarimetric radar clutter suppression to
enhance atmospheric echoes. Journal of Atmospheric and Oceanic
Technology , 26 (9), 1781–1797.
https://doi.org/10.1175/2009JTECHA1170.1
Unnikrishnan, C. K., Pawar, S., & Gopalakrishnan, V. (2021).
Satellite-observed lightning hotspots in India and lightning variability
over tropical South India. Advances in Space Research .
Vivekanandan, J., Zrnic, D. S., Ellis, S. M., Oye, R., Ryzhkov, A. V.,
& Straka, J. (1999). Cloud Microphysics Retrieval Using S-Band
Dual-Polarization Radar Measurements. Bulletin of the American
Meteorological Society , 80 (3), 381–388.
https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2
Wang, Y., & Chandrasekar, V. (2009). Algorithm for estimation of the
specific differential phase. Journal of Atmospheric and Oceanic
Technology , 26 (12), 2565–2578.
https://doi.org/10.1175/2009JTECHA1358.1
Williams, C. R., Ecklund, W. L., & Gage, K. S. (1995). Classification
of precipitating clouds in the tropics using 915-MHz wind
profilers. Journal of Atmospheric and Oceanic
Technology , 12 (5), 996-1012.
https://doi.org/10.1175/1520-0426(1995)012%3C0996:COPCIT%3E2.0.CO;2
You, C. H., Lee, D. I., & Kang, M. Y. (2014). Rainfall estimation using
specific differential phase for the first operational polarimetric radar
in Korea. Advances in Meteorology , 2014 .
https://doi.org/10.1155/2014/413717
Zhou, K., Zheng, Y., Li, B., Dong, W., & Zhang, X. (2019). Forecasting
Different Types of Convective Weather: A Deep Learning Approach.Journal of Meteorological Research , 33 (5), 797–809.
https://doi.org/10.1007/s13351-019-8162-6
Zipser, E. J., & Lutz, K. R. (1994). The vertical profile of radar
reflectivity of convective cells: A strong indicator of storm intensity
and lightning probability?. Monthly Weather
Review , 122 (8), 1751-1759.
https://doi.org/10.1175/1520-0493(1994)122%3C1751:TVPORR%3E2.0.CO;2
Zrnić, D. S., & Ryzhkov, A. (1996). Advantages of rain measurements
using specific differential phase. Journal of Atmospheric and
Oceanic Technology , 13 (2), 454-464.
https://doi.org/10.1175/1520-0426(1996)013%3C0454:AORMUS%3E2.0.CO;2
Zrnic, D. S., & Ryzhkov, A. V. (1999). Polarimetry for Weather
Surveillance Radars. Bulletin of the American Meteorological
Society , 80 (3), 389–406.
https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2