References:
Abhilash, S., Das, S., Kalsi, S. R., Das Gupta, M., Mohankumar, K., George, J. P., Banerjee, S. K., Thampi, S. B., & Pradhan, D. (2007). Assimilation of Doppler weather radar observations in a mesoscale model for the prediction of rainfall associated with mesoscale convective systems. Journal of Earth System Science , 116 (4), 275–304. https://doi.org/10.1007/s12040-007-0026-2
Agnihotri, G., Gouda, K. C., & Das, S. (2021). Characteristics of pre-monsoon convective systems over south peninsular India and neighborhood using tropical rainfall measuring mission’s precipitation radar. Meteorology and Atmospheric Physics , 133 (2), 193–203. https://doi.org/10.1007/s00703-020-00740-7
Anderson, M. E., Carey, L. D., Petersen, W. A., & Knupp, K. R. (2011). C-band dual-polarimetric radar signatures of hail. Electronic Journal of Operational Meteorology , 12 (2), 1–30.
Aydin, K., Bringi, V. N., & Liu L. (2000). Rain-Rate Estimation in the Presence of Hail Using S-Band Specific Differential Phase and Other Radar Parameters. Journal of Applied Meteorology , 34 (2), 404–410. https://doi.org/10.1175/1520-0450-34.2.404
Balakrishnan, N., & Zrnić, D. S. (1990). Estimation of rain and hail rates in mixed-phase precipitation. Journal of Atmospheric Sciences47 (5), 565-583. https://doi.org/10.1175/1520-0469(1990)047%3C0565:EORAHR%3E2.0.CO;2
Bhardwaj, P., & Singh, O. (2018). Spatial and temporal analysis of thunderstorm and rainfall activity over India. Atmosfera ,31 (3), 255–284. https://doi.org/10.20937/ATM.2018.31.03.04
Biggerstaff, M. I., & Listemaa, S. A. (2000). An improved scheme for convective/stratiform echo classification using radar reflectivity.Journal of Applied Meteorology , 39 (12), 2129–2150. https://doi.org/10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
Bringi, V. N., and Chandrasekar, V. (2001): Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.
Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W. L., & Schoenhuber, M. (2003). Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis.Journal of the Atmospheric Sciences , 60 (2), 354–365. https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
Bringi, V. N., Thurai, M., Nakagawa, K., Huang, G. J., Kobayashi, T., Adachi, A., Hanado, H., & Sekizawa, S. (2006). Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. Journal of the Meteorological Society of Japan , 84 (4), 705–724. https://doi.org/10.2151/jmsj.84.705
Bringi, V. N., Williams, C. R., Thurai, M., & May, P. T. (2009). Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. Journal of Atmospheric and Oceanic Technology , 26 (10), 2107–2122. https://doi.org/10.1175/2009JTECHA1258.1
Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description.Atmospheric Research , 135136 , 404–414. https://doi.org/10.1016/j.atmosres.2012.06.028
Chandrasekar, V., Bringi, V. N., Balakrishnan, N., & Zrnić, D. S. (1990). Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. Journal of Atmospheric and Oceanic Technology7 (5), 621-629. https://doi.org/10.1175/1520-0426(1990)007%3C0621:ESOMRA%3E2.0.CO;2
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research: Atmospheres ,108 (1). https://doi.org/10.1029/2002jd002347
Cifelli, R., Chandrasekar, V., Lim, S., Kennedy, P. C., Wang, Y., & Rutledge, S. A. (2011). A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. Journal of Atmospheric and Oceanic Technology , 28 (3), 352–364. https://doi.org/10.1175/2010JTECHA1488.1
Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R. T., Miller, M. A., & Martner, B. E. (2000). Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. Journal of Applied Meteorology39 (5), 645-665. https://doi.org/10.1175/1520-0450(2000)039%3C0645:ODOCHA%3E2.0.CO;2
Dhawan, V. B., Tyagi, A., & Bansal, M. C. (2008). Forecasting of thunderstorms in pre-monsoon season over northwest India. Mausam ,59 (4), 433–444.
Dolan, B., & Rutledge, S. A. (2009). A theory-based hydrometeor identification algorithm for X-band polarimetric radars. Journal of Atmospheric and Oceanic Technology , 26 (10), 2071–2088. https://doi.org/10.1175/2009JTECHA1208.1
Dolan, B., Rutledge, S. A., Lim, S., Chandrasekar, V., & Thurai, M. (2013). A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. Journal of Applied Meteorology and Climatology , 52 (9), 2162–2186. https://doi.org/10.1175/JAMC-D-12-0275.1
Doviak, R.J. and Zrni´c, D.S. Doppler Radar and Weather Observations . 2nd edition, San Diego, CA, Academic Press, 1993.
Elio, R., Haan, J. D., & Strong, G. S. (1987). METEOR: An artificial intelligence system for convective storm forecasting. Journal of Atmospheric and Oceanic Technology4 (1), 19-28. https://doi.org/10.1175/1520-0426(1987)004%3C0019:MAAISF%3E2.0.CO;2
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., … & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of geophysics45 (2). https://doi.org/10.1029/2005RG000183
Friedrich, K., Hagen, M., & Einfalt, T. (2006). A quality control concept for radar reflectivity, polarimetric parameters, and Doppler velocity. Journal of Atmospheric and Oceanic Technology ,23 (7), 865–887. https://doi.org/10.1175/JTECH1920.1
Friedrich, K., Higgins, S., Masters, F. J., & Lopez, C. R. (2013). Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. Journal of Atmospheric and Oceanic Technology30 (9), 2063-2080. https://doi.org/10.1175/JTECH-D-12-00254.1
Halder, M., & Mukhopadhyay, P. (2016). Microphysical processes and hydrometeor distributions associated with thunderstorms over India: WRF (cloud-resolving) simulations and validations using TRMM. Natural Hazards , 83 (2), 1125–1155. https://doi.org/10.1007/s11069-016-2365-2
Heese, B., Flentje, H., Althausen, D., Ansmann, A., & Frey, S. (2010). Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination. Atmospheric Measurement Techniques3 (6), 1763-1770. https://doi.org/10.5194/amt-3-1763-2010
Houze, R. A. (1997). Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? Bulletin of the American Meteorological Society , 78 (10), 2179–2196. https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
Hubbert, J., Bringi, V. N., Carey, L. D., & Bolen, S. (1998). CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. Journal of Applied Meteorology , 37 (8), 749–775. https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2
Hubbert, J., Chandrasekar, V., Bringi, V. N., & Meischner, P. (1993). Processing and interpretation of coherent dual-polarized radar measurements. Journal of Atmospheric and Oceanic Technology10 (2), 155-164. https://doi.org/10.1175/1520-0426(1993)010%3C0155:PAIOCD%3E2.0.CO;2
Islam, T., Rico-Ramirez, M. A., Han, D., & Srivastava, P. K. (2012). Artificial intelligence techniques for clutter identification with polarimetric radar signatures. Atmospheric Research ,109110 , 95–113. https://doi.org/10.1016/j.atmosres.2012.02.007
Jameson, A. (1985). Microphysical interpretation of multiparameter radar measurements in rain. Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations. Journal of Atmospheric Sciences42 (6), 607-614. https://doi.org/10.1175/1520-0469(1985)042%3C0607:MIOMRM%3E2.0.CO;2
Jash, D., Resmi, E. A., Unnikrishnan, C. K., Sumesh, R. K., Sreekanth, T. S., Sukumar, N., & Ramachandran, K. K. (2019). Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: An inter-comparison of disdrometer and Micro Rain Radar. Atmospheric Research , 217 , 24–36. https://doi.org/10.1016/j.atmosres.2018.10.014
Jayaratne, E. R., Saunders, C. P. R., & Hallett, J. (1983). Laboratory studies of the charging of soft‐hail during ice crystal interactions. Quarterly Journal of the Royal Meteorological Society109 (461), 609-630. https://doi.org/10.1256/smsqj.46110
Keenan, T. (2003). Hydrometeor classification with a C-band polarimetric radar. Australian Meteorological Magazine , 52 (1), 23–31.
Kumar, K. K., Subrahmanyam, K. V., Kumar, C. P., Shanmugasundari, J., Koushik, N., Ajith, R. P., & Devi, L. G. (2020). C-band dual-polarization Doppler weather radar at Thumba (8.537 N, 76.865 E): initial results and validation. Journal of Applied Remote Sensing14 (4), 044509. https://doi.org/10.1117/1.JRS.14.044509
Lakshmanan, V., Karstens, C., Krause, J., & Tang, L. (2014). Quality control of weather radar data using polarimetric variables.Journal of Atmospheric and Oceanic Technology , 31 (6), 1234–1249. https://doi.org/10.1175/JTECH-D-13-00073.1
Leena, P. P., Pandithurai, G., Gayatri, K., Murugavel, P., Ruchith, R. D., Sakharam, S., Dani, K. K., Patil, C., Dharmaraj, T., Patil, M. N., & Prabhakaran, T. (2019). Analysing the characteristic features of a pre-monsoon thunderstorm event over Pune, India, using ground-based observations and WRF model. Journal of Earth System Science ,128 (4). https://doi.org/10.1007/s12040-019-1136-3
Litta, A. J., & Mohanty, U. C. (2008). Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF-NMM model. Current Science , 95 (2), 204–215.
Litta, A. J., Mohanty, U. C., Das, S., & Mary Idicula, S. (2012). Numerical simulation of severe local storms over east India using WRF-NMM mesoscale model. Atmospheric Research , 116 , 161–184. https://doi.org/10.1016/j.atmosres.2012.04.015
Liu, H., & Chandrasekar, V. (2000). Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. Journal of Atmospheric and Oceanic Technology , 17 (2), 140–164. https://doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2
Löffler-Mang, M., & Joss, J. (2000). An optical disdrometer for measuring size and velocity of hydrometeors. Journal of Atmospheric and Oceanic Technology17 (2), 130-139. https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
Madhulatha, A., & Rajeevan, M. (2018). Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India. Meteorology and Atmospheric Physics ,130 (1), 49–65. https://doi.org/10.1007/s00703-017-0502-4
Manohar, G. K., & Kesarkar, A. P. (2004). Climatology of thunderstorm activity over the Indian region : II . Spatial distribution.Mausam , 1 (January), 31–40.
Marzano, F. S., Scaranari, D., Celano, M., Alberoni, P. P., Vulpiani, G., & Montopoli, M. (2006). Hydrometeor classification from dual-polarized weather radar: Extending fuzzy logic from S-band to C-band data. Advances in Geosciences , 7 , 109–114. https://doi.org/10.5194/adgeo-7-109-2006
Mishra, S., Shanmuga Sundari, J., Channabasava, B., & Anandan, V. K. (2020). First indigenously developed polarimetric C-band Doppler weather radar in India and its first hand validation results. Journal of Electromagnetic Waves and Applications , 34 (6), 825–840. https://doi.org/10.1080/09205071.2020.1742798
Mukhopadhyay, P., Mahakur, M., & Singh, H. A. K. (2009). The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata part I: Doppler radar and satellite observations. Journal of Earth System Science ,118 (5), 441–466. https://doi.org/10.1007/s12040-009-0046-1
Parks, T. W. & Burrus C. S., Digital Filter Design , John Wiley & Sons, 1987, chapter 7
Proakis, J. G., & Manolakis, D. G. (1988). Introduction to digital signal processing . MacMillan Publishing Company.
Pruppacher, H. R., & Beard, K. V. (1970). A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society , 96 (408), 247–256. https://doi.org/10.1002/qj.49709640807
Purdom, J. F. W. (2003). Local severe storm monitoring and prediction using satellite data . 1 (January), 141–154.
Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B., & Rajasekhar, M. (2010). Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India.Annales Geophysicae , 28 (2), 603–619. https://doi.org/10.5194/angeo-28-603-2010
Rajeevan, M., Madhulatha, A., Rajasekhar, M., Bhate, J., Kesarkar, A., & Appa Rao, B. V. (2012). Development of a perfect prognosis probabilistic model for prediction of lightning over south-east India.Journal of Earth System Science , 121 (2), 355–371. https://doi.org/10.1007/s12040-012-0173-y
Rao, Y. P., & Srinivasan, V. (1969). Discussion of typical synoptic weather situation: winter western disturbances and their associated features. Indian Meteorological Department: Forecasting Manual Part III .
Ravi, N., Mohanty, U. C., Madan, O. P., & Paliwal, R. K. (1999). Forecasting of thunderstorms in the pre-monsoon season at Delhi.Meteorological Applications , 6 (1), 29–38. https://doi.org/10.1017/S1350482799000973
Romatschke, U., & Houze, R. A. (2011). Characteristics of precipitating convective systems in the premonsoon season of South Asia. Journal of Hydrometeorology , 12 (2), 157–180. https://doi.org/10.1175/2010JHM1311.1
Roy, S. Sen, Mohapatra, M., Tyagi, A., & Roy Bhowmik, S. K. (2019). A review of nowcasting of convective weather over the Indian region.Mausam , 70 (3), 465–484. https://doi.org/10.54302/mausam.v70i3.227
Ryzhkov, A. V., & Zrnic, D. S. (1998). Polarimetric rainfall estimation in the presence of anomalous propagation. Journal of Atmospheric and Oceanic Technology , 15 (6), 1320–1330. https://doi.org/10.1175/1520-0426(1998)015<1320:PREITP>2.0.CO;2
Ryzhkov, A. V., Zrnic, D. S., Hubbert, J. C., Bringi, V. N., Vivekanandan, J., & Brandes, E. A. (2002). Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. Journal of Atmospheric and Oceanic Technology ,19 (3), 340–354. https://doi.org/10.1175/1520-0426-19.3.340
Sad, H. P., Kumar, P., & Panda, S. K. (2021). Doppler weather radar data assimilation at convective-allowing grid spacing for predicting an extreme weather event in Southern India. International Journal of Remote Sensing , 42 (10), 3681–3707. https://doi.org/10.1080/01431161.2021.1880660
Saha, U., Maitra, A., Midya, S. K., & Das, G. K. (2014). Association of thunderstorm frequency with rainfall occurrences over an Indian urban metropolis. Atmospheric Research , 138 , 240–252. https://doi.org/10.1016/j.atmosres.2013.11.021
Saunders, C. P. R., Keith, W. D., & Mitzeva, R. P. (1991). The effect of liquid water on thunderstorm charging. Journal of Geophysical Research: Atmospheres96 (D6), 11007-11017. https://doi.org/10.1029/91JD00970
Schuur, T. J., Ryzhkov, A. V., Zrnic, D. S., & Schönhuber, M. (2001). Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. Journal of Applied Meteorology , 40 (6), 1019–1034. https://doi.org/10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2
Seliga, T. A., & Bringi, V. N. (1978). Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Science13 (2), 271-275. https://doi.org/10.1029/RS013i002p00271
Singh, O., & Bhardwaj, P. (2019). Spatial and temporal variations in the frequency of thunderstorm days over India. Weather ,74 (4), 138–144. https://doi.org/10.1002/wea.3080
Sisodiya, A., Pattnaik, S., & Baisya, H. (2020). Characterization of Different Rainfall Types from Surface Observations Over a Tropical Location. Pure and Applied Geophysics , 177 (2), 1111–1123. https://doi.org/10.1007/s00024-019-02338-6
Srivastava, K., Roy Bhowmik, S. K., Sen Roy, S., Thampi, S. B., & Reddy, Y. K. (2010). Simulation of high impact convective events over Indian region by ARPS model with assimilation of doppler weather radar radial velocity and reflectivity. Atmosfera , 23 (1), 53–73.
Steiner, M., Houze Jr, R. A., & Yuter, S. E. (1995). Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. Journal of Applied Meteorology and Climatology34 (9), 1978-2007. https://doi.org/10.1175/1520-0450(1995)034%3C1978:CCOTDS%3E2.0.CO;2
Subrahmanyam, K. V., & Baby, S. R. (2020). C-band Doppler weather radar observations during the passage of tropical cyclone ‘Ockhi.’Natural Hazards , 104 (3), 2197–2211. https://doi.org/10.1007/s11069-020-04268-2
Sumesh, R. K., Resmi, E. A., Unnikrishnan, C. K., Jash, D., & Ramachandran, K. K. (2021). Signatures of shallow and deep clouds inferred from precipitation microphysics over windward side of Western Ghats. Journal of Geophysical Research: Atmospheres126 (10), e2020JD034312. https://doi.org/10.1029/2020JD034312
Suresh, R. (2012). Forecasting and nowcasting convective weather phenomena over southern peninsular india - part I: Thunderstorms.Indian Journal of Radio and Space Physics , 41 (4), 421–434.
Takahashi, T. (1978). Riming electrification as a charge generation mechanism in thunderstorms. Journal of Atmospheric Sciences35 (8), 1536-1548. https://doi.org/10.1175/1520-0469(1978)035%3C1536:REAACG%3E2.0.CO;2
Testud, J., Oury, S., Black, R. A., Amayenc, P., & Dou, X. (2001). The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. Journal of Applied Meteorology , 40 (6), 1118–1140. https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2
Thakur, S., Mondal, I., Ghosh, P. B., & De, T. K. (2019). Thunderstorm characteristics over the northeastern region (NER) of India during the pre-monsoon season, 2011 using geosynchronous satellite data. InAdvances in Intelligent Systems and Computing (Vol. 813). Springer Singapore. https://doi.org/10.1007/978-981-13-1498-8_26
Thurai, M., Bringi, V. N., & May, P. T. (2010). CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. Journal of Atmospheric and Oceanic Technology , 27 (5), 932–942. https://doi.org/10.1175/2010JTECHA1349.1
Tokay, A., & Short, D. A. (1996). Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. Journal of Applied Meteorology and Climatology35 (3), 355-371. https://doi.org/10.1175/1520-0450(1996)035%3C0355:EFTRSO%3E2.0.CO;2
Tyagi, A., Sikka, D. R., Goyal, S., & Bhowmick, M. (2012). A satellite based study of pre-monsoon thunderstorms (Nor’westers) over eastern India and their organization into mesoscale convective complexes.Mausam , 63 (1), 29–54.
Ulbrich, C. W., & Atlas, D. (2002). On the separation of tropical convective and stratiform rains. Journal of Applied Meteorology ,41 (2), 188–195. https://doi.org/10.1175/1520-0450(2002)041<0188:OTSOTC>2.0.CO;2
Umakanth, N., Satyanarayana, G. C., Naveena, N., Srinivas, D., & Rao, D. V. B. (2021). Statistical and dynamical based thunderstorm prediction over southeast India. Journal of Earth System Science ,130 (2). https://doi.org/10.1007/s12040-021-01561-x
Unal, C. (2009). Spectral polarimetric radar clutter suppression to enhance atmospheric echoes. Journal of Atmospheric and Oceanic Technology , 26 (9), 1781–1797. https://doi.org/10.1175/2009JTECHA1170.1
Unnikrishnan, C. K., Pawar, S., & Gopalakrishnan, V. (2021). Satellite-observed lightning hotspots in India and lightning variability over tropical South India. Advances in Space Research .
Vivekanandan, J., Zrnic, D. S., Ellis, S. M., Oye, R., Ryzhkov, A. V., & Straka, J. (1999). Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements. Bulletin of the American Meteorological Society , 80 (3), 381–388. https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2
Wang, Y., & Chandrasekar, V. (2009). Algorithm for estimation of the specific differential phase. Journal of Atmospheric and Oceanic Technology , 26 (12), 2565–2578. https://doi.org/10.1175/2009JTECHA1358.1
Williams, C. R., Ecklund, W. L., & Gage, K. S. (1995). Classification of precipitating clouds in the tropics using 915-MHz wind profilers. Journal of Atmospheric and Oceanic Technology12 (5), 996-1012. https://doi.org/10.1175/1520-0426(1995)012%3C0996:COPCIT%3E2.0.CO;2
You, C. H., Lee, D. I., & Kang, M. Y. (2014). Rainfall estimation using specific differential phase for the first operational polarimetric radar in Korea. Advances in Meteorology , 2014 . https://doi.org/10.1155/2014/413717
Zhou, K., Zheng, Y., Li, B., Dong, W., & Zhang, X. (2019). Forecasting Different Types of Convective Weather: A Deep Learning Approach.Journal of Meteorological Research , 33 (5), 797–809. https://doi.org/10.1007/s13351-019-8162-6
Zipser, E. J., & Lutz, K. R. (1994). The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?. Monthly Weather Review122 (8), 1751-1759. https://doi.org/10.1175/1520-0493(1994)122%3C1751:TVPORR%3E2.0.CO;2
Zrnić, D. S., & Ryzhkov, A. (1996). Advantages of rain measurements using specific differential phase. Journal of Atmospheric and Oceanic Technology13 (2), 454-464. https://doi.org/10.1175/1520-0426(1996)013%3C0454:AORMUS%3E2.0.CO;2
Zrnic, D. S., & Ryzhkov, A. V. (1999). Polarimetry for Weather Surveillance Radars. Bulletin of the American Meteorological Society , 80 (3), 389–406. https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2