References
Acuña, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfven
wave current system at Io ‐ Voyager 1 observations. Journal of
Geophysical Research, 86 (A10), 8513–8521.
http://doi.org/10.1029/JA086iA10p08513
Bagenal, F. (1983). Alfven wave propagation in the Io plasma torus.Journal of Geophysical Research, 88 (A4), 3013–3025.
https://doi.org/10.1029/JA088iA04p03013
Bagenal, F. & Dols, V. (2020) The space environment of Io and Europa,Journal of Geophysical Research: Space Physics, 125,e2019JA027485. https://doi.org/10.1029/2019JA027485
Belcher, J. W., Goertz, C. K., Sullivan, J. D., & Acuna, M. H. (1981).
Plasma observations of the Alfvén wave generated by Io. Journal of
Geophysical Research, 30, 8508–8512.
https://doi.org/10.1029/JA086iA10p08508
Bigg, E. K. (1964). Influence of the satellite Io on Jupiter’s
decametric emission. Nature, 203 , 1008.
https://doi.org/10.1038/2031008a0.
Bonfond, B. Grodent, D. Gérard, J.-C. Radioti, A. Dols, V. Delamere,
P.A. & Clarke, J.T. (2009). The Io UV footprint: location, inter-spot
distances and tail vertical extent. J. Geophys. Res. 114, 7224
Bonfond, B. Grodent, D. Gérard, J.-C. Radioti, A. Saur, J. Jacobsen, S.
(2008). UV Io footprint leading spot: a key feature for understanding
the UV Io footprint multiplicity? Geophys. Res. Lett. 35 , 5107
Bonfond, B., Hess, S., Gérard, J.-C., Grodent, D., Radioti, A., Chantry,
V., Saur, J., Jacobsen, S., & Clarke, J. T. (2013). Evolution of the Io
footprint brightness I: Far-UV observations, Planet. Space Sci.,
88, 64.
Chust, T., Roux, A., Kurth, W. S., Gurnett, D. A., Kivelson, M. G., &
Khurana, K. K. (2005) Are Io’s Alfvén wings filamented? Galileo
observations, Planet. Space Sci., 53, 395.
Clarke, J. T., Ajello, J., Ballester, G., Jaffel, L. B., Connerney, J.,
Gérard, J.-C., Gladstone, G R., Grodent, D., Pryor, W., Trauger, J., &
Waite, J. H. (2002). Ultraviolet auroral emissions from the magnetic
footprints of Io, Ganymede, and Europa on Jupiter, Nature, 415.997.
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J.
E. P., Stapelfeldt, K., et al. (1996). Far‐ultraviolet imaging of
Jupiter’s aurora and the Io “footprint”’. Science, 274 (5286),
404–409. https://doi.org/10.1126/science.274.5286.404
Connerney, J. E. P., Baron, R., Satch, T., & Owen T. (1993). Images of
excited H3+ at the foot of the Io flux
tube in Jupiter’s Atmosphere, Science, 262, 1035.
Connerney, J. E. P., Kotsiaros, S.,Oliversen, R. J., Espley, J. R.,
Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of
Jupiter’s magnetic field from Juno’s first nine orbits.Geophysical Research Letters, 45, 2590–2596.
https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R.,
Joergensen, J. L., Kotsiaros, S., et al. (2022). A new model of
Jupiter’s magnetic field at the completion of Juno’s Prime Mission.
Journal of Geophysical Research: Planets, 127, e2021JE007055.
https://doi.org/10.1029/2021JE007055
Crary, F. J, & Bagenal, F. (1997). Coupling the plasma interaction at
Io to Jupiter (1997). Geophys. Res. Lett., 24, 2135.
Dougherty L. P., Bodisch, K. M., & F. Bagenal (2017), Survey of Voyager
plasma science ions at Jupiter: 2. Heavy ions, J. Geophys. Res.
Space Physics, 122, doi:10.1002/2017JA024053.
Elsässer, W. M. (1950). The
hydromagnetic equations, Phys. Rev., 79, 183.
Gérard, J.‐C., Gkouvelis, L., Bonfond, B., Grodent, D., Gladstone, G.
R., Hue, V., et al. (2020). Spatial distribution of the Pedersen
conductance in the Jovian aurora from Juno‐UVS spectral images.Journal of Geophysical Research: Space Physics, 125 ,
e2020JA028142. https://doi.org/10.1029/2020JA028142
Goertz, C. (1980). Io’s interaction with the plasma torus, J.
Geophys. Res., 85, 2949-2956.
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A.,
Martos, Y. M., Viñas, A., et al. (2019). Alfvénic fluctuations
associated with Jupiter’s auroral emissions. Geophysical Research
Letters, 46. https://doi.org/10.1029/2019GL082951
Goldreich, P. & Lynden-Bell, D. (1969). Io: a Jovian unipolar inductor,Astrophys. J., 156, 59.
Gurnett, D. A., & Goertz, C. K.
(1981). Multiple Alfvén wave reflections excited by Io: Origin of the
Jovian decametric arcs. Journal of Geophysical Research, 86(A2),
717–722. https://doi.org/10.1029/JA086iA02p00717
Hinton, P. C., Bagenal, F., &
Bonfond, B. (2019). Alfvén wave propagation in the Io plasma torus.Geophysical Research Letters, 46, 1 242–1249.
https://doi.org/10.1029/2018GL081472
Jacobsen, S., Neubauer, F. M., Saur, J., & Schilling, N. (2007). Io’s
nonlinear MHD‐wave field in the heterogeneous Jovian magnetosphere.Geophysical Research Letters, 34, L10202.
https://doi.org/10.1029/2006GL029187
Lysak, R. L., & Song, Y. (2020). Field line resonances in Jupiter’s
magnetosphere, Geophysical Research Letters, 47, e2020GL089473,
https://doi.org/10.1029/2020GL089473
Lysak, R. L., Song, Y., Elliott, S., Kurth, W., Sulaiman, A. H., &
Gershman, D. (2021). The Jovian ionospheric Alfvén resonator and auroral
particle acceleration. Journal of Geophysical Research: Space
Physics, 126 , e2021JA029886. https://doi.org/10.1029/2021JA029886
Lysak, R. L., Song, Y., Sciffer, M. D., & Waters, C. L. (2015),
Propagation of Pi2 pulsations in a dipole model of the
magnetosphere, J. Geophys. Res. Space Physics, 120,doi:10.1002/2014JA020625.
Lysak, R. L., Song, Y., Waters, C. L., Sciffer, M. D., & Obana, Y.
(2020). Numerical investigations of interhemispheric asymmetry due to
ionospheric conductance.Journal of Geophysical
Research: Space Physics, 125, e2020JA027866.
https://doi.org/10.1029/2020JA027866
Mann,
I. R., Wright, A. N., & Cally, P. S. (1995), Coupling of magnetospheric
cavity modes to field line resonances: a study of resonant widths,J. Geophys. Res., 100, 19,441.
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A.,
Allegrini, F., et al. (2020). Energetic particles and acceleration
regions over Jupiter’s polar cap and main aurora: A broad overview.
Journal of Geophysical Research: Space Physics, 125, e2019JA027699.
https://doi.org/10.1029/2019JA027699
Millward, G., Miller, S., Stallard, T., Aylward, A. D., & Achilleos, N.
(2002). On the dynamics of the Jovian ionosphere and thermosphere. III.
The modeling of auroral conductivity, Icarus, 160, 95-107.
https://doi.org/10.1006/icar.2002.6951
Moirano, A., Mura, A., Adriani, A., Dols, V., Bonfond, B., Waite, J. H.,
et al. (2021). Morphology of the auroral tail of Io, Europa, and
Ganymede from JIRAM L-band imager. Journal of Geophysical
Research: Space Physics, 126, e2021JA029450.
https://doi.org/10.1029/2021JA029450
Mura, A., Adriani, A., Altieri, F., Connerney, J. E. P., Bolton, S. J.,
Moriconi, M. L., et al. (2017). Infrared observations of Jovian aurora
from Juno’s first orbits: Main oval and satellite footprints: Jovian
aurora IR observations from Juno. Geophysical Research Letters, 44(11),
5308–5316. https://doi.org/10.1002/2017GL072954
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F.,
Bagenal, F., et al. (2018). Juno observations of spot structures and a
split tail in Io-induced aurorae on Jupiter, Science, 361,774-777. https://doi.org/10.1126/science.aat1450
Neubauer, F. M. (1980). Nonlinear standing Alfvén wave current system at
Io: Theory, J. Geophys. Res., 85, 1171-1178.
Ray, L. C., Achilleos, N. A., M. F. Vogt, and J. N. Yates (2014), Local
time variations in Jupiter’s magnetosphere-ionosphere coupling system,
J. Geophys. Res. Space Physics, 119, 4740–4751,
doi:10.1002/2014JA019941.
Ray, L. C., Su, Y.-J., Ergun, R. E., Delamere, P. A. & Bagenal, F.
(2009), Current-voltage relation of a centrifugally confined plasma,J. Geophys. Res., 114, A04214, doi:10.1029/2008JA013969.
Saur, J. (2004). A model of Io’s local electric field for a combined
Alfvénic and unipolar inductor far‐field coupling. Journal of
Geophysical Research, 109, A01210.
https://doi.org/10.1029/2002JA009354
Schlegel, S., & Saur, J. (2022). Alternating emission features in Io’s
footprint tail: magnetohydrodynamical simulations of possible causes.Journal of Geophysical Research: Space Physics, 127,e2021JA030243. https://doi.org/10.1029/2021JA030243
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S.,
Gurnett, D. A., Imai, M., et al. (2020). Wave‐particle interactions
associated with Io’s auroral footprint: Evidence of Alfvén, ion
cyclotron, and whistler modes. Geophysical Research Letters, 47,e2020GL088432. https://doi.org/10.1029/2020GL088432
Szalay, J. R., Bagenal, F., Allegrini, F., Bonfond, B., Clark, G.,
Connerney, J. E. P., et al. (2020). Proton acceleration by Io’s Alfvénic
interaction. Journal of Geophysical Research: Space Physics, 125 ,
e2019JA027314. https://doi.org/10.1029/2019JA027314
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S.,
Clark, G.. et al. (2018), In situ observations connected to the Io
footprint tail aurora, J. Geophys. Res.: Planets, 123, 3061, doi:
https://doi.org/10.1029/2018JE005752
Takahashi, K., Lysak, R., &
Vellante, M. (2022). Statistical analysis of Pi2 pulsations observed by
Van Allen Probes. Journal of Geophysical Research: Space Physics,
127, e2022JA030674. https://doi.org/10.1029/2022JA030674
Takahashi, K., Lysak, R. L., Vellante, M., Kletzing, C. A., Hartinger,
M. D., & Smith, C. W. (2018), Observation and numerical simulation of
cavity mode oscillations excited by an interplanetary shock, J.
Geophys. Res. Space Physics, 123 , 1969, doi: 10.1002/2017JA024639.