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Abstract17

The effects of instrument noise on estimating the spectral attenuation rates of ocean waves18

in sea ice are explored using synthetic observations in which the true attenuation rates19

are known explicitly. The spectral shape of the energy added by noise, relative to the20

spectral shape of the true wave energy, is the critical aspect of the investigation. A neg-21

ative bias in attenuation that grows in frequency is found across a range of realistic pa-22

rameters. This negative bias decreases the observed attenuation rates at high frequen-23

cies, such that it can explain the rollover effect commonly reported in field studies of wave24

attenuation in sea ice. The published results from four field experiments are evaluated25

in terms of the noise bias, and a spurious rollover (or flattening) of attenuation is found26

in all cases. Remarkably, the wave heights are unaffected by the noise bias, because the27

noise bias occurs at frequencies that contain only a small fraction of the total energy.28

Plain Language Summary29

Many previous studies have determined the rate at which ocean surface waves de-30

cay as they travel through sea ice. This work identifies a systematic bias in those results,31

using both published data and synthetic data to demonstrate the effect. The bias rec-32

onciles an existing debate on the physical mechanisms causing waves to decay in sea ice.33

1 Introduction34

Ocean surface wave attenuation in sea ice is an established phenomenon (Squire,35

2007, 2020) and has been extensively studied using field measurements of wave energy36

E as a function of frequency f . The attenuation of spectral wave energy E(f) is often37

expressed as an exponential decay with distance x, such that38

E(f, x) = E(f, 0)e−α(f)x. (1)

The attenuation rate α controls the reduction of wave energy from the incident waves39

in open water (x = 0) to some position within the sea ice. The attenuation rate is then40

a function of frequency, most commonly a power law,41

α(f) = af b, (2)

where a and b are constants determined for different ice types during previous studies.42

Meylan et al. (2018) provide a comprehensive review of the frequency dependence of α(f).43

Although α(f) is generally thought to increase with frequency f , many field ex-44

periments have suggested a “rollover” in which α(f) eventually decreases at the high-45

est frequencies. These are frequencies commonly referred to as the “tail” of the wave en-46

ergy spectrum. Wadhams (1975) first noted the rollover, and it was described more fully47

in the seminal work of Wadhams et al. (1988), who find a rollover in the spectral atten-48

uation rates across many experiments with varying ice types and wave conditions. The49

rollover is challenging to diagnose because most field observations simply provide the ra-50

tio of energy at different locations E(f, x1), E(f, x2) and not the actual loss of energy51

caused by the sea ice. Wadhams et al. (1988) describes two possible mechanisms that52

might cause the observed rollover, both of which essentially replace (or input) some of53

the wave energy at high frequencies: 1) input of addition wave energy by wind, and 2)54

nonlinear transfer of wave energy from lower frequencies to higher frequencies. Masson55

and LeBlond (1989) consider this further and suggest that winds can input considerable56

energy into waves in partial ice cover. The various field experiments in Wadhams et al.57

(1988) dataset report the rollover effect in a range of conditions, including very light winds58

and small waves with little likelihood of significant nonlinearity. The ubiquity of the rollover59

is difficult to explain by the two above mechanisms alone.60
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Recent work has explored both mechanisms suggested by (Wadhams et al., 1988),61

including a more thorough framework for nonlinear transfers (Polnikov & Lavrenov, 2007)62

and testing wind input effects (Li et al., 2017; Rogers et al., 2016). Particularly, Li et63

al. (2017) provide a comprehensive treatment of wind input using modern field obser-64

vations and a spectral wave model. They conclude that wind input at high frequencies65

is sufficient to replace some of the wave energy attenuated at high-frequencies, such that66

reanalysis of the data no longer indicates a rollover in the spectral attenuation rates (though67

a rollover does appear without considering wind input).68

Here, we explore instrument noise as another possible explanation for the emer-69

gence of spurious rollovers in attenuation rates from field experiments. Assuming that70

the noise in the raw data are random errors with Gaussian statistics, the noise will con-71

tribute additional variance to the raw data, and this will elevate the spectral wave en-72

ergy densities E(f, x) determined from the raw data. In terms of variance, this bias in73

energy will always be positive, even though the actual errors are symmetric with zero-74

mean. According to the Bienayme theorem, the total variance (energy) will be the sum75

of the true variance from the wave signal and the variance from the noise, because there76

are no cross-terms from these uncorrelated signals. Following Parseval’s theorem, this77

variance is preserved in the calculation of frequency spectra, such that78

E(f, x) = Es(f, x) + En(f). (3)

The observed wave energy spectra E(f, x) is thus a sum of the energy in the wave sig-79

nal Es(f, x) and the variance added by instrument noise En(f). Although the assump-80

tion of Gaussian errors in the raw data would result in a constant “white” spectral shape81

for En(f), the effects of filters and other processing may produce an En(f) that is a strong82

function of frequency. This will be explored in the Methods section.83

Previous studies have been well-aware of instrument noise and typically applied cut-84

off levels below which E(f, x) observations are not used. However, the spectral shape of85

the noise energy En(f) has not been considered, nor have the possible effects of instru-86

ment noise on the shape of the spectral attenuation. Most importantly, the value of En(f)87

will remain at the same level while Es(f, x) decreases with x due to attenuation by sea88

ice, such that the relative amount of noise increases with distance. For example, Cheng89

et al. (2017) tried to avoid noise contamination by using a constant cutoff of E(f, x) >90

10−5 m2/Hz in processing data from the Arctic Sea State experiment (Thomson et al.,91

2018). This choice of noise floor is coincidentally the same as the cutoff in (Wadhams92

et al., 1988). Even though Cheng et al. (2017) did not observe a rollover, they did find93

a flattening of attenuation rate α at high frequencies and large distances, which they at-94

tributed to wind input. More critically, Meylan et al. (2014) did not see a rollover in at-95

tenuation rates when analyzing Antarctic wave data with a constant cutoff level of E(f, x) >96

10−2, yet Li et al. (2017) analyzed the same data with a much lower cutoff and did see97

a strong rollover in attenuation rate.98

Here, we present a framework to understand the bias in attenuation caused by the99

spectral slope of energy from noise En(f) relative to the spectral slope of energy from100

the wave signal Es(f). We revisit four different field experiments from the literature to101

confirm assumptions about the shape of En(f) with empirical evidence in the observed102

energy spectra. We then create synthetic wave energy spectra with known spectral at-103

tenuation rates, and then explore the inferred attenuation rates after the variance from104

instrument noise is added to the synthetic spectra. The general parametric form of bias105

in attenuation is also derived. The discussion focuses on the spurious nature of previ-106

ous ‘rollover’ results and presents recommendations for avoiding noise bias in using field107

observations of wave spectra in ice.108
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Table 1. Case studies and input parameters for spectral noise effects. The incident wave ener-

gies and true attenuation rates are reported for the peak frequency fp.

Case E(fp, 0) [m2/Hz] αt(fp) [1/m] b Hn [m] r x [m]

CODA 2019 2e0 1e-4 2 0.10 -4 0-6e3
SeaState 2015 1e1 1e-5 2 0.03 -4 0-100e3
SIPEX 2012 1e1 1e-5 2 0.03 -4 0-250e3
STiMPI 2000 1e0 5e-5 3 0.15 -4 0-100e3

2 Methods109

2.1 Specification of case studies110

Case studies are chosen to span a wide range of methodologies and published spec-111

tral attenuation rates. Not all of these cases reported a complete rollover in published112

attenuation rates; the intent is to show the full range of noise effects on attenuation es-113

timates. The true attenuation rate αt(f) = af b specified for each case study is selected114

to match the attenuation determined at the peak frequency fp, since that is most likely115

to be robust to noise effects preferentially affecting the higher frequencies. Table 1 sum-116

marizes the conditions for each case study and the parameters used to create synthetic117

(true) spectra with added noise. Case studies are referred to by experiment name, rather118

than the publication(s) of those results.119

The first two case studies use observations from SWIFT buoys (Thomson, 2012),120

which use GPS velocities in onboard processing (Herbers et al., 2012) and accelerom-121

eter data in post-processing. The first case was collected in 2019 along the coast of Alaska122

in pancake ice as part of the Coastal Ocean Dynamics in the Arctic (CODA) program.123

The second case was collected in 2015 in the Beaufort Sea in pancake ice (Wave Exper-124

iment 3) as part of the Arctic Sea State program (Rogers et al., 2016; Cheng et al., 2017;125

Thomson et al., 2018). The third case uses observations from custom buoys during SIPEX126

in the Antarctic Marginal Ice Zone (MIZ) in 2012, as described in Kohout et al. (2014,127

2015). The fourth case uses observations from custom buoys during STiMPI in the Wed-128

dell Sea in pancake ice in 2000, as described in Doble et al. (2015).129

2.2 Spectral energy of the wave signal, Es(f)130

Ocean waves typically have an energy spectrum with a power law in the spectral131

tail (i.e., frequencies above the peak frequency fp) and the overall level can be described132

by the conventional definition of the significant wave height Hs,133

Es(f > fp, x) ∼ fq Hs = 4

√∫
Es(f)df. (4)

In open water, we expect the familiar shape q = −4 of the equilibrium tail (Phillips,134

1985; Thomson et al., 2013; Lenain & Melville, 2017). Figure 1 shows the energy spec-135

tra from observations in the four case studies, which are bin-averaged by Hs and pre-136

sented in logarithmic space to visualize the fq dependence. The q = −4 shape is clear137

for open water observations (which are the largest Hs bins) in the CODA 2019 and SeaSt-138

ate 2015 case studies. This q = −4 shape in the spectrum is related to a wave field with139

constant geometric steepness of the waves themselves, expressed as a spectrum of mean-140

square-slope mss(f) = Es(f)f4 that has a constant level in f (see (Thomson et al., 2013)).141
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Figure 1. Wave spectra from actual field observations (not synthetic) during each of the four

case studies. Spectra are binned by wave height (see legend), and a dashed black line shows the

estimated noise energy following Eq. 5.

In sea ice, the spectral shape is typically observed to be much steeper (q < −4),142

which is consistent with largest Hs bins in the SIPEX 2012 and STiMPI 2000 case stud-143

ies (Figure 1). These experiments did not include wave observations in open water, so144

all wave spectra already have slopes q < −4. This high-frequency tail and the implied145

changes for wave steepness are the focus of the present study.146

2.3 Spectral energy of noise, En(f)147

There is additional variance (energy) from noise En(f) in observed wave spectra,148

following Eq. 3. The energy from noise has a generic frequency exponent r and is scaled149

with a noise height Hn (analogous to significant wave height):150

En(f) ∼ fr, Hn = 4

√∫
En(f)df. (5)

The noise height Hn is thus four times the standard deviation of the Gaussian random151

noise in the raw measurements of wave elevations. Note, again, that the effect of noise152

in the raw data is to increase the total variance, such that the noise height Hn is a bias153

in the true wave height Hs, not a symmetric error.154

The noise height Hn is used as a general characterization of the level of noise En(f),155

though wave elevations rarely are measured directly. The type of sensor used for the raw156

measurements and the subsequent processing to estimate wave elevations will control the157
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frequency exponent r. The expected exponents are r = −4 for the double-integration158

of accelerometers, or r = −2 for the single-integration of GPS velocities, or r = 0 (white159

noise) from direct measurements of heave (such as from an altimeter or LIDAR).160

Figure 1 shows the spectral shape of energy from noise for each case study, with161

Hn values determined from sensor specifications. These shapes are the result of accelerom-162

eter noise that is purely random (white) noise and becomes r = −4 with double inte-163

gration in time. Each integration in time is equivalent to a factor f−1, and then the f−2
164

effect from double integration is squared to get f−4 when calculating energy (instead of165

amplitude). For each experiment, the wave spectra in Figure 1 show the clear effects of166

the noise energy as a change in the slope of the spectra at the higher frequencies of the167

smallest Hs bin. Although all of the experiments in Figure 1 use accelerometer measure-168

ments with an effective r = −4 shape in noise energy, it is important to note that other169

experiments may have different measurements. One such example is Ardhuin et al. (2020),170

who use GPS velocities as the raw data and thus likely have noise energy with an r =171

−2 shape.172

The dashed black lines in Figure 1 show the noise energy En(f) for each case study.173

For CODA 2019 and SeaState 2015, these are determined empirically by collecting raw174

data on land with a stationary SWIFT buoy. For SIPEX 2012 and STiMPI 2000, these175

are inferred from the change in slope in the tail of the spectrum during small Hs con-176

ditions. The observed change in the slope of E(f) would imply that the geometric wave177

steepness of the waves at the highest frequencies is much steeper than at other frequen-178

cies. There are no visual observations to support such an abrupt change in the waves,179

and instead, we interpret this change in the slope of E(f) as the emergence of noise from180

the double-integration of the raw accelerometer data. In summary, when Hs is small, En(f) >181

Es(f) at the higher frequencies, even though Hn < Hs.182

The additional energy from the instrument noise En(f) makes it impossible to mea-183

sure energy less than the dashed lines, so when the wave signal Es(f) becomes weak, the184

observed spectra E(f) converge to the dashed lines of En(f). When waves are larger,185

the noise energy is a negligible fraction of the total energy, and the effects are not read-186

ily detected in the spectral shape. Although both CODA 2019 and SeaState 2015 use187

SWIFT buoys, the effective Hn is different between these experiments because of differ-188

ent filters used to suppress low-frequency drift during the double integration of accelerom-189

eter data. Although both the SeaState 2015 and SIPEX 2012 datasets have Hn = 3190

cm, the spectral levels of En(f) are slightly different because the processed spectra have191

different resolution in frequency df (see Eq. 5).192

2.4 Synthetic spectra193

In the synthetic tests that follow, the incident open-water wave spectra Es(f, x =194

0) are specified using Pierson–Moskowitz spectra for fully developed seas, following Alves195

et al. (2003). In open water, this q = −4 (Eq. 4) shape is known to persist even in the196

case of a pure swell without wind (Vincent et al., 2019), though the Pierson–Moskowitz197

spectra was developed for a pure wind sea. The synthetic wave spectra use a frequency198

range of 0.05 < f < 0.5 Hz and a resolution df = 0.01 Hz, which is similar to many199

modern wave buoys.200

A given incident wave spectrum E(f, 0) = Es(f, 0) + En(f), designed to match201

a given case study, is attenuated with distance x into the ice at regular intervals simi-202

lar to the measurements from that case study. This noise is not cumulative in x and is203

assumed independent of the wave signal; it is a specified additional spurious energy for204

each observation E(f, x). Using a specified (true) attenuation rate αt(f) with a frequency205

exponent b (Eq. 1), a true wave spectrum Es(f, x) at each distance is obtained. This true206

spectrum already includes the energy from noise En(f) added in the incident wave spec-207

trum at x = 0 (Eq. 4), but it does not include the energy from noise of the other mea-208
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surement at position x. That noise energy is explicitly added to create total spectra, E(f, x),209

following Eq. 3. The key point is that the energy of the noise does not decay with dis-210

tance x, though the wave energy does, and each total spectrum has noise energy added211

independently. The noise energy added to the incident wave spectrum E(f, 0) likely has212

negligible effects, because the wave energy is generally much larger than the noise en-213

ergy in defining E(f, 0) at the ice edge. Farther into the ice, however, the noise energy214

in any particular measurement may be a much more significant fraction of the observed215

energy E(f, x), especially for the higher frequencies.216

2.5 Inferred attenuation rates from spectra with noise217

Using the synthetic spectra, inferred attenuation rates are estimated by least-squares218

fitting Eq. 1 with219

α(f) = − 1

x2 − x1
ln

(
E(f, x2)

E(f, x1)

)
(6)

at each frequency f using pairs of positions x1, x2. Using x1 = 0 is most consistent with220

the definition in Eq. 1, however this is not always measured in field experiments and we221

therefore explore the more general case of arbitrary x1, x2 with x2 > x1. There are sev-222

eral other options for fitting Eq. 1, though the choice of the fitting method is not impor-223

tant for the present study, given that true attenuation rates are known a priori. Inferred224

attenuation is then compared with the true attenuation that was specified in producing225

the synthetic results, especially in regards to frequency dependence. The overall frequency226

dependence b is inferred by least-squares fitting Eq. 2 with227

b =
ln f

ln(α(f))
(7)

from the peak frequency fp of the incident spectrum E(f, 0) to the max frequency ob-228

served f = 0.5 Hz. This inferred b is somewhat sensitive to the choice of frequency range229

for fitting, but it is only meant to show qualitative effects for values relevant to the case230

studies. Using frequencies f > fp centers the results on the tail of the wave energy spec-231

trum, where rollovers have been reported in previous studies.232

3 Results233

The results begin with the general effect of the spurious variance (energy) added234

to observed wave energy spectra, followed by the case studies. The energy from noise235

causes substantial changes to the shape of the observed attenuation rates, in general, and236

for all the cases examined herein. The case studies provide both a practical sense of the237

problem, as well as an exploration of the parameter space that cannot be fully described238

by the assumptions in the general solution.239

3.1 Generalized effects of noise240

Combining Eqs. 1 and 3 gives the general form of the observed α(f) as a function241

of the true αt(f) and the ratio of noise energy En(f) to the true spectral energy of the242

wave signal Es(f),243

α(f) = αt(f)− 1

x
ln

(
1 +

En(f)

Es(f, x)

)
. (8)

Previous studies have applied a uniform cutoff in E(f, x) (with implied r = 0 in Eq. 5)244

and discarded any attenuation calculated for En(f)
Es(f,x)

> 1. The problem is that such a245

ratio is unlikely to be constant in frequency. Even for ratios of
E(fp)
Es(fp,x)

∼ 1, the abso-246

lute error in α(f) at any particular f may be small, but the error in the dependence on247

f may be severe (because the bias grows in f). In particular, if the spectral shapes of248

En(f), Es(f, x) diverge, the effects of noise energy will be a strong function of frequency.249
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Assuming that Es(f, x) and En(f) are both power laws in f , the error in atten-250

uation grows with approximately ln(f). The specific rate comes from the ratio of the power251

laws, which is almost assured to be positive given that Es(f, x) will only steepen from252

an initial q = −4. (There are no known or proposed mechanisms for a natural wave en-253

ergy spectrum ever to have a slope less than f−4.) The noise spectra have at most a slope254

of r = −4 for accelerometer measurements, and less for other methods. Thus, wave en-255

ergy in sea ice will tend to decrease with frequency faster than the noise energy decreases256

with frequency, and a negative bias in attenuation that grows with frequency is almost257

assured.258

The general form of the bias in attenuation is controlled by the ratio259

En(f)

Es(f, x)
∼ fr−q, (9)

and thus for any q < r the negative bias in attenuation will grow in frequency. Figure 2260

illustrates the attenuation bias for Hn

Hs
= 0.05 at the peak frequency fp and various r−261

q combinations. Given the typical range of 10−5 < α(f) < 10−3, the errors for in Fig-262

ure 2 are significant. For any attenuation that grows in frequency (Eq. 2), the slope of263

Es(f, x) will become more and more negative in ice (i.e., q < −4) and thus for any rea-264

sonable range of noise shape (−4 < r < 0), the ratio will grow. Thus it is only for the265

rare case of a constant true attenuation that maintains q = −4 within the ice and noise266

shape of r = −4 that the bias in observed attenuation will be constant. In some con-267

ditions the growing bias may only be sufficient to flatten the observed attenuation rates;268

in others, it will cause an apparent rollover in attenuation at high frequencies. This flat-269

tening is expected for the particular case of an open water E(f, x = 0) that is used for270

all attenuation calculations, since both exponents q, r will tend to −4.271

Another mechanism by which Es(f, x) could retain the f−4 shape for all x is through272

wind input, which is often discussed in relation to the spectral shape of wave attenua-273

tion in sea ice. If wind input in sea ice was analogous to the equilibrium concepts of Phillips274

(1985), then Es(f, x) ∼ f−4 could be maintained, even as the overall Es(f, x) was re-275

duced by an attenuation that was not constant in frequency. Even with wind input, f−4
276

remains a bound on the slope of the true wave spectra. Figure 2 shows that even in such277

conditions, the negative bias in α(f) is likely to grow in frequency, and thus the shape278

of inferred α(f) will be altered.279

The spatial dependence 1
x in Eq. 8 is also worth noting, since it may cause severe280

bias at short distances even when the ratio En(f)
Es(f,x)

is small. Indeed, Li et al. (2017) note281

changes in the rollover period for different distances that may be related to the atten-282

uation bias changing with 1
x . Figure 2 uses a distance of x = 10 km, which is within283

the range of all field experiments discussed herein.284

The role of distance and the effect of true spectra Es(f, x) that steepen beyond q =285

−4 within ice are explored in the case studies that follow, using the parameters in Ta-286

ble 1. There are figures and descriptions for each case, following a standard format. Each287

case has some range of x and f for which the noise has a strong effect on the inferred288

α(f). However, the significant wave heights are rarely affected by the noise, even far within289

the ice. The practical result is that noise energy remains a small fraction of the total en-290

ergy for all cases, but it has significant effects on the spectral shape of inferred atten-291

uation. In summary, noise can affect Hs no more than the value of Hn, but noise can292

make the apparent α go all the way to zero.293

3.2 CODA 2019294

The Chukchi Sea CODA 2019 case study results are shown in Figure 3. Panel (a)295

shows true spectra that steepen with distance into the ice, and panel (b) shows observed296

spectra that begin to approach the r = −4 noise floor slope at the highest frequencies.297
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Figure 2. Bias in observed α(f) as a function of frequency for combined signal and noise ex-

ponents r − q. Example shown is for a distance of 10 km into the sea ice and a ratio of noise to

true wave heights Hn/Hs = 5%.

In panel (c), the attenuation rates estimated from the observations (Eq. 6) have a neg-298

ative bias that flattens the frequency response away from the true attenuation. Thus the299

fitted exponent shown in panel (e) deviates from the true b = 2 with increasing distance300

into the ice. In panel (d), the observed wave heights agree well with the true wave heights.301

This case study is a best-case scenario, in which the negative bias in attenuation302

is small and limited to flattening α(f) at a few frequencies. This is because the noise is303

steep (r = −4) and the distances are short (0 < x < 6 km) such that the true energy304

spectra do not become much steeper than f−4.305

3.3 Sea State 2015306

The Sea State 2015 case study results are shown in Figure 4. Panel (a) shows true307

spectra that steepen dramatically with the longer distances into the ice, and panel (b)308

shows observed spectra that clearly tend to the r = −4 noise floor slope at many fre-309

quencies. In panel (c), the attenuation rates estimated from the observations (Eq. 6) have310

a negative bias that flattens the frequency response away from the true attenuation (b =311

2). This trend is similar to the Cheng et al. (2017) results from analyzing the actual field312

data, in which a flattening of α(f) is evident for f > 0.3 Hz in their Figure 4. Cheng313

et al. (2017) attributed this flattening to wind input; here, we show that it is more likely314
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Figure 3. Synthetic results for the Chukchi Sea CODA 2019 case study. (a) true wave energy

spectra (colors show distance into the ice). (b) observed wave energy spectra with noise added

(colors show distance into ice). (c) true attenuation rate (black dashed line) and observed atten-

uation rate (colors show distance into ice). (d) wave heights as a function of distance into the

ice that are specified as true (black dashed line) and observed (red circles). (e) exponent of fre-

quency power law in attenuation that is determined from observations (red circles) and specified

as true (black dashed line).

caused by negative bias from spectral noise in the observations. In both the synthetic315

observations and the actual field observations, a full rollover in the observed α does not316

occur. The r = −4 shape of the noise is only sufficient to flatten α in frequency; a full317

rollover (decrease of α(f) in frequency) would require noise with a different shape (i.e.,318

r = −2 or r = 0). As the spurious flattening of α(f) expands in frequency, the fitted319

exponent b shown in panel (e) deviates from the true b = 2 with increasing distance320

into the ice. Despite the noticeable bias in α(f), the observed wave heights agree well321

with the true wave heights (Figure 4d).322

3.4 SIPEX 2012323

The Antarctic MIZ 2012 case study results are shown in Figure 5. All of the ob-324

served spectra in panel (b) are effected by noise energy, even though the imposed noise325

height is only Hn = 3 cm. In panel (c), the observed attenuation rates have a clear rollover326

in frequency that is spurious relative to the b = 2 dependence of the true attenuation.327

–10–



manuscript submitted to JGR: Oceans

Figure 4. Synthetic results for the Beaufort Sea State 2015 case study. Panels as in Figure 3.

Panel (e) shows severe bias in the fitted b because of the spurious rollover. This is sim-328

ilar to the rollovers reported in (Li et al., 2017), though that study attributes the rollovers329

to wind input. Here, the noise bias causes a spurious rollover that shifts to lower frequen-330

cies at longer distances; that pattern is qualitatively consistent with rollover patterns re-331

ported in Li et al. (2017). In panel (d), the observed wave heights continue to agree well332

with the true wave heights, because Hn is small.333

We can repeat the approach of Meylan et al. (2014), who analyzed the actual field334

observations using a constant cutoff E(f) > 10−2 m2/Hz that is well above the imposed335

En(f) at any frequency. That applies a constraint En(f)
E(f,x) �

1
10 at all frequencies. With336

this new constraint, the synthetic observations no longer have much rollover in observed337

attenuation rates (not shown). However, the cutoff creates severe limitations on the fre-338

quencies f that can be analyzed at any particular distance x. The higher frequencies (f >339

0.15 Hz) have energies below the cutoff at all x, and thus no attenuation values are cal-340

culated for those frequencies.341

3.5 STiMPI 2000342

The Weddell Sea STiMPI 2000 case study results are shown in Figure 6. The spec-343

ified noise energy clearly affects the observed spectra in panel (b), relative to the true344

spectra in panel (a). In panel (c), the noise bias causes spurious rollovers in the observed345

attenuation rates which are similar to the rollovers reported in the Li et al. (2017) anal-346
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Figure 5. Synthetic results for the Antarctic SIPEX 2012 case study. Panels as in Figure 3.

ysis of the actual field data. The fitted exponent shown in panel (e) rapidly deviates from347

the true b = 3 with increasing distance into the ice, where b = 3 is specified instead348

of b = 2 following the results in Meylan et al. (2018). The noise bias is sufficient to cause349

the apparent rollover. For both of these cases addressed in Li et al. (2017), it may be350

that noise bias and wind input contribute together in producing apparent rollovers in351

attenuation rates. Again, in panel (d), the observed wave heights agree well with the true352

wave heights.353

4 Discussion354

Results suggest that negative bias in attenuation rates at high frequencies is a com-355

mon issue for most field observations. Along with wind input and nonlinear mechanisms356

that may affect the high-frequency tail of ocean wave spectra, spurious energy from in-357

strument noise is an explanation for all of the rollovers in attenuation that have been358

reported in the literature.359

The following guidelines are recommended for future use of field observations in360

the estimation of spectral attenuation rates:361

• Do not apply a constant cutoff in spectral wave energy, as this implies a flat noise362

spectrum (r = 0) that is unlikely for most observations.363
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Figure 6. Synthetic results for the Weddell Sea STiMPI 2000 case study. Panels as in Fig-

ure 3.

• Determine the spectral shape of the noise empirically, including any filters used364

in post-processing and the deployment specifics.365

• Consider the ratio En(f)/Es(f, x) as a function of frequency and location, and366

avoid calculations of attenuation for any observation with appreciable En(f)
E(f,x) .367

• Check for convergence of attenuation results applying minimum E(f) cutoffs as368

En(f)
E(f,x) → 0.369

The deployment specifics in the second point are particularly important, given the com-370

mon practice of placing wave measurement devices on ice floes. The hydrodynamic re-371

sponse of ice floes will depend on their dimensions and mass, such that they may have372

a damped response at high frequencies and the noise floor may be elevated relative to373

testing a device floating in open water. The frequencies affected can be estimated fol-374

lowing the methods of Thomson et al. (2015), who report on the analogous condition of375

a wave buoy with a dramatic increase in size resulting from biofouling.376

It is important to restate that the noise bias reported herein has a negligible ef-377

fect on the total energy (and thus wave heights). Bulk attenuation rates can be deter-378

mined robustly, even in the presence of noise. It is the spectral tail (high frequencies)379

in which much care is required.380
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4.1 Noise effects at low frequencies381

Although the focus herein is on high frequencies, energy from noise also can bias382

attenuation results at low frequencies. As shown in Figure 1, the f−4 shape appears to383

persist at low frequencies, though the actual level may vary depending on filters applied384

to reduce drift in the raw accelerometer data. We thus include a brief investigation of385

low-frequency noise bias by recalculating the attenuation coefficients from SIPEX 2012,386

as published in Meylan et al. (2014).387

We note that the original data analysis in Meylan et al. (2014) was based on a fre-388

quency independent noise cut off (r = 0). In that analysis the noise floor was set suf-389

ficiently high to avoid the roll over; indeed no analysis was completed for any periods390

T < 6 s (or f > 0.15 Hz). Although sufficiently conservative to avoid spurious calcu-391

lations in the high-frequency tail, this cutoff had a secondary effect of suppressing mea-392

surements which were valid for long periods. Figure 7 shows the sensitivity to the noise393

cutoff by comparing the median attenuation with a fixed noise floor cutoff (r = 0, as394

used in Meylan et al. (2014)) and using three different levels of noise floor cutoffs that395

are empirical power laws in frequency (r = −4).396

The left panels of Figure 7 show attenuation results with three different levels of397

f−4 cutoff applied. The right panels show the median attenuation as a function of pe-398

riod for the two of the three levels. The black curves are from the original analysis of399

Meylan et al. (2014), for comparison. The constant noise floor applied in original anal-400

ysis lowered the attenuation at short periods and raised it at long periods. The correct401

analysis is the lower right panel, and the blue line is the fit to the power law. This anal-402

ysis suggests a power law with b = 3 for the true attenuation, which is within the range403

of expected exponents (Meylan et al., 2018).404

Just as the negative bias in attenuation rate at high frequencies results from ex-405

ponents r − q > 0, the positive bias in attenuation rate at low frequencies is the con-406

sequence of r− q < 0. At these low frequencies, the noise energy En(f) is more steep407

than the signal energy Es(f), because the signal is outside of the equilibrium wind wave408

range. The general result is the same: the frequency dependence of the attenuation rates409

will be sensitive to the noise cutoff, even when the absolute error in the attenuation rates410

is small.411

5 Conclusions412

Instrument noise in wave measurements causes a bias in attenuation rates that man-413

ifests in spurious relations between frequency and attenuation rates. This is sufficient414

to explain the rollover in attenuation rates observed for several studies from a variety415

of different wave-ice buoys. A general form of the noise bias (Eq. 8) can be applied to416

avoid this issue in future analysis.417
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Figure 7. Low-frequency attenuation rates from SIPEX as a function of wave period apply-

ing noise cutoffs of (a) E(f)f−4 < 10−8, (b) E(f)f−4 < 10−7, and (c) E(f)f−4 < 10−6. (d)

The median attenuation rates (red dots) for E(f)f−4 < 10−8 and the results from the previous

analysis in (Meylan et al., 2014) (black dots). (e) The median attenuation rates (red dots) for

E(f)f−4 < 10−6 (which is the correct noise floor shown in Figure 1) and the results from the

previous analysis in (Meylan et al., 2014) (black dots). The blue dotted line is the straight line fit

to the red dots, α(f) ∼ f3.
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