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Summary

We introduce a new algorithm to find feedback Nash equilibria of a stochastic dif-
ferential game. Our computational approach is applied to analyze optimal policies to
nurture a romantic relationship in the long term. This is a fundamental problem for
the applied sciences, which is naturally formulated in this work as a stochastic differ-
ential game with nonlinearities. We use our computational model to analyze the risk
of marital breakdown. In particular, we introduce the concept of "love at risk" which
allows us to estimate the probability of a couple breaking up in the face of possible
unfavorable scenarios.
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1 INTRODUCTION

The purpose of this work is twofold. Firstly, we introduce a new algorithm to find feedback Nash equilibria of stochastic dif-
ferential games and, secondly, we apply our methodology to a problem of significance in the social sciences, related to human
behavior.

The numerical analysis of stochastic differential games (SDG) is currently a topic of growing interest (see early publica-
tions1,2 and recent contributions3,4,5,6,7,8). Most contributions in the literature on differential games focus on the study of the
theoretical properties of certain classes of SDGs. Also, various works that formulate economic and social problems as SDG
(see e.g.9,10,11) obtain their solutions by using heuristic approximations to avoid solving the stochastic Hamilton-Jacobi-Bellman
(HJB) equations of the problem. The most extended approach to dealing with problems with more than two players is the ap-
proximation by a linear quadratic problem or using of open-loop solutions (see, for example,5). An algorithm has been recently
proposed12 to find feedback Nash equilibrium for a class of finite-horizon stochastic differential games by solving a system of non
stationary HJB equations. In this paper, our goal is to solve an infinite-horizon autonomous SDG, which is a common problem
in economics and management (see e.g.13). Our computational approach below involves solving a stationary HJB system. This
seems a useful contribution to the field, given the lack of algorithms to solve directly these kinds of problems.

Our approach here extends the idea in14, where an algorithm –called RaBVItG (Radial Basis Value Iteration Game)– is
introduced to solve the HJB system to find feedback Nash equilibria of deterministic differential games. The core of the algorithm
consists of two main loops: value iteration, as in15,16,17 plus game iteration, as introduced in14). More precisely, RaBVItG uses
game iteration to find the Nash Equilibrium corresponding to a fixed value of the game and, then, value iteration finds a fixed
point solution for the coupled system of value functions (one per player). The feedback Nash equilibrium of the deterministic
differential game is found as the convergent solution of both iterations. We introduce below a stochastic version of the RaBVItG
algorithm to find feedback Nash equilibria of a SDG.
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The second objective of this work is to evaluate the risk of rupture in a dyadic romantic relationship that is intended to
last. This is a problem of enormous interest in the social sciences, due to the relevance of long-term romantic relationships -in
particular marriage- in most societies18. Furthermore, there is an epidemic of failed marriages in the West (see e.g.19) which is
not well understood in the field of marital psychology20. To formulate our problem we model a long-term romantic relationship
as an optimal control problem, as originally proposed in21 and22, and then extended in23. The quality of the relationship is
monitored by a state variable 𝑥(𝑡) (called feeling) whose evolution is controlled by the effort exerted by both partners to keep
the relationship alive and well. The couple’s problem consists of finding the optimal effort control paths to stay together forever
(see23). In particular, for the relationship to be viable the feeling must stay above a certain critical value 𝑥𝑚𝑖𝑛 > 0. Once 𝑥(𝑡)
drops below the level 𝑥𝑚𝑖𝑛, the relationship enters a risk zone and is in danger of breaking down. It was found in21 that two
effects contribute to hindering the viability of the relationship. First, the feeling is subject to decay as time goes by and, second,
there is a tendency to reduce effort below the level required for the relationship to last, thus moving the relationship away from
the unique equilibrium path of feeling-effort for the relationship. These two inertial forces can make the feeling approach the
risk zone where the breakup is likely. Figure 1 below illustrates the idea of this hindering mechanism to put love at risk (see21).
Regarding the problem of love at risk, the point of interest in this paper is to estimate the critical value 𝑥𝑚𝑖𝑛 under a more realistic

Figure 1 Basic mechanism operating to put love at risk (adapted from21)

version of the original model21, where the effort variable is common for both partners and the evolution of the feeling is governed
by a deterministic equation. First, we assume here, as in the differential game formulationn23, that each partner could make
effort differently, so there are two different effort variables 𝑐1(𝑡) and 𝑐2(𝑡) controlling the feeling dynamics. Furthermore, we
extend both formulations of the couple’s relationship by considering that the feeling 𝑥(𝑡) is a random variable whose evolution
is governed by a stochastic differential equation. We thus introduce a new model formulation of the couple’s problem as a SDG.
This stochastic generalization allows us to introduce the idea of “probability of rupture" at a certain moment of the relationship,
which can be obtained from the probability distribution of 𝑥(𝑡) once the threshold value 𝑥𝑚𝑖𝑛 is estimated. Using the well-known
idea of “value at risk" in finance24 we provide an estimate of the threshold value 𝑥𝑚𝑖𝑛 that will be called Love at Risk (LaR) below.

The paper is organized as follows. In Section 2, we present the mathematical model of the couple’s sentimental dynamics as a
SDG. We pay attention here to the main output of the model solution, namely the stochastic feedback Nash equilibrium, and the
feedback mappings that are required for its numerical approximation. In Section 3 we present the computational model. Firstly,
we present the discretization of the involved equations and the way to implement the RaBVItG algorithm to solve numerically the
couple’s problem. In section 4 we analyze several numerical experiments for different types of couples and how our stochastic
computational scheme renders new information compared with the deterministic versions of the couple’s problem. We also
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show how the threshold value LaR can be determined using our stochastic structure to estimate the probability of dissolution of
a given couple.

2 MATHEMATICAL MODEL

Our model is a stochastic two–person generalization of the optimal control model for a long-term romantic relationship intro-
duced in21. A deterministic differential game model was considered in23. Also, a mean-field stochastic version of the original
model was considered in25. In this paper, the state of the relationship at time 𝑡 ≥ 0 is described by 𝑥(𝑡) –the feeling variable–,
which is modeled by a stochastic process {𝑥(𝑡)}𝑡≥0, with 𝑥 ∶ [0,∞) → 𝑋 ⊆ ℝ+, being 𝑋 the state space. The feeling evolves
according to a stochastic differential equation

d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑐1 (𝑡) + 𝑎2𝑐2 (𝑡)
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤, (1)

where 𝑟, 𝑎1, 𝑎2 > 0 and, for 𝑖 = 1, 2, 𝑐𝑖 ∶ [0,∞) → ℝ+ is a (piece-wise continuous) function that measures the effort put into
the relationship by partner 𝑖 at time 𝑡, and 𝑤(𝑡) is a Wiener process. Equation (1) thus is a general version of the differential
equation presented in23, called the “second law of thermodynamics for sentimental relationships". Here the time evolution of
the feeling includes a random term, due to the fact that the couple’s evaluation of the state of the relationship may be subjected
to some observational error or uncertainty at any time 𝑡. The total well-being 𝑊𝑖 of each partner 𝑖 is defined as the conditional
expectation

𝑊𝑖
(

𝑐𝑖
)

= 𝔼
⎛

⎜

⎜

⎝

∞

∫
0

𝑒−𝜌𝑖𝑡
(

𝑈𝑖 (𝑥 (𝑡)) −𝐷𝑖
(

𝑐𝑖 (𝑡)
))

d𝑡|𝑥(0) = 𝑦
⎞

⎟

⎟

⎠

, 𝑖 = 1, 2, (2)

where 𝑈𝑖 and 𝐷𝑖 are, respectively, the utility of feeling and disutility of effort, while 𝜌𝑖 > 0 is the individual rate of temporal
preference. These objective functionals are stochastic versions of the deterministic well-being functionals considered in23. The
functions𝑈 and𝐷 are assumed to satisfy the same properties as in23, namely𝑈 ′

𝑖 (𝑥) > 0,𝑈 ′′
𝑖 (𝑥) < 0, and𝑈 ′

𝑖 (𝑥) → 0 as 𝑥 → +∞,
and also 𝐷′′

𝑖 (𝑐𝑖) > 0, 𝐷′
𝑖(𝑐

∗
𝑖 ) = 0 for some 𝑐∗𝑖 ≥ 0, 𝐷′

𝑖(𝑐𝑖) → +∞ as 𝑐𝑖 → +∞, for 𝑖 = 1, 2.. Notice that 𝑐∗𝑖 gives the effort level
preferred (myopically) by partner 𝑖. The underlying psychological rationale behind these assumptions is explained in detail in21.

The couple’s problem considered in this paper can thus be stated as follows. Given the feeling dynamics (1), and the initial
feeling level 𝑥(0) = 𝑥0, find the effort trajectories 𝑐∗1 (𝑡), 𝑐

∗
2 (𝑡) such that each individual well-being integral (2) is maximal. This

is an infinite-horizon stochastic differential two-person game. Notice that the relationship will be viable as long as that the state
of relationship 𝑥(𝑡) remains above a certain value 𝑥𝑚𝑖𝑛 > 0 (see Figure 1). Let us define the pair

(

𝑐♡1 (𝑡) , 𝑐♡2 (𝑡)
)

that solves the
couple’s problem. We aim to find a Nash equilibrium for this differential game. The differential game is autonomous so we
consider stationary feedback solutions of the problem, that are of defined as 𝑐𝑖 = 𝑆𝑖 (𝑥), being 𝑆𝑖 ∶ 𝑋 → ℝ+ the feedback
map that provides the effort by player 𝑖 for the feeling 𝑥. We look for a couple of optimal strategies

(

𝑆♡

1 (⋅) , 𝑆♡

2 (⋅)
)

, such that
𝑆♡

𝑖 ∶ 𝑋 → ℝ+ is a stationary feedback Nash equilibrium of the stochastic differential game. Indeed, this equilibrium is attained
if 𝑆♡

1 (𝑥 (𝑡)) solves

max
𝑐1(𝑡)

𝔼
⎛

⎜

⎜

⎝

∞

∫
0

𝑒−𝜌1𝑡
(

𝑈1 (𝑥 (𝑡)) −𝐷1
(

𝑐1 (𝑡)
))

d𝑡|𝑥(0) = 𝑦
⎞

⎟

⎟

⎠

(3)

with d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑐1 (𝑡) + 𝑎2𝑆
♡

2 (𝑥 (𝑡))
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤, and also 𝑆♡

2 (𝑥 (𝑡)) solves

max
𝑐2(𝑡)

𝔼
⎛

⎜

⎜

⎝

∞

∫
0

𝑒−𝜌2𝑡
(

𝑈2 (𝑥 (𝑡)) −𝐷2
(

𝑐2 (𝑡)
))

d𝑡|𝑥(0) = 𝑦
⎞

⎟

⎟

⎠

(4)

with d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑆
♡

1 (𝑥 (𝑡)) + 𝑎2𝑐2 (𝑡)
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤, where 𝑦 = 𝑥0, and 𝑐𝑖(𝑡) ∈ ℝ+ for 𝑡 ≥ 0.
Assume that there exists a stochastic feedback Nash equilibrium 𝑆♡ =

(

𝑆♡

1 , 𝑆
♡

2

)

for the couple’s problem. Let 𝑣♡𝑖 ∶ 𝑋 → ℝ
be the value function of partner 𝑖, defined by

𝑣♡𝑖
(

𝑥0
)

= 𝑊𝑖
(

𝑆♡

𝑖 (𝑥 (𝑡))
)

, 𝑖 = 1, 2.
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where 𝑆♡

𝑖 (𝑥 (𝑡)) is the optimal feedback control problem for partner 𝑖 with initial state 𝑥(0) = 𝑥0. The value functions 𝑣♡𝑖 must
satisfy the stochastic Hamilton-Jacobi-Bellman (HJB) equations, which in this case are given by

⎧

⎪

⎨

⎪

⎩

𝜌1𝑣1 (𝑥) = max𝑐1∈ℝ+

{

𝑈1 (𝑥) −𝐷1
(

𝑐1
)

+ 𝑣′1 (𝑥)
(

−𝑟𝑥 + 𝑎1𝑐1 + 𝑎2𝑆
♡

2 (𝑥)
)

+ 1
2
𝑣′′1 (𝑥) 𝜎

2 (𝑥)
}

,

𝜌2𝑣2 (𝑥) = max𝑐2∈ℝ+

{

𝑈2 (𝑥) −𝐷2
(

𝑐2
)

+ 𝑣′2 (𝑥)
(

−𝑟𝑥 + 𝑎1𝑆
♡

1 (𝑥) + 𝑎2𝑐2
)

+ 1
2
𝑣′′2 (𝑥) 𝜎

2 (𝑥)
}

.
(5)

The solution of (5) gives the stochastic feedback maps 𝑆♡

𝑖 ∶ 𝑋 → ℝ+, 𝑖 = 1, 2, defined as

⎧

⎪

⎨

⎪

⎩

𝑆♡

1 (𝑥) = 𝑎𝑟𝑔max𝑐1∈ℝ+

{

𝑈1 (𝑥) −𝐷1
(

𝑐1
)

+ 𝑣′1 (𝑥)
(

−𝑟𝑥 + 𝑎1𝑐1 + 𝑎2𝑆
♡

2 (𝑥)
)

+ 1
2
𝑣′′1 (𝑥) 𝜎

2 (𝑥)
}

,

𝑆♡

2 (𝑥) = 𝑎𝑟𝑔max𝑐2∈ℝ+

{

𝑈2 (𝑥) −𝐷2
(

𝑐2
)

+ 𝑣′2 (𝑥)
(

−𝑟𝑥 + 𝑎1𝑆
♡

1 (𝑥) + 𝑎2𝑐2
)

+ 1
2
𝑣′′2 (𝑥) 𝜎

2 (𝑥)
}

,
(6)

which constitute a a feedback Nash stocashtic equilibirum of the problem. Given 𝑥(0) = 𝑥0, inserting 𝑆♡

𝑖 (𝑥(𝑡)), 𝑖 = 1, 2, into
(1), we obtain

d𝑥 (𝑡) =
[

−𝑟𝑥(𝑡) + 𝑎1𝑆
♡

1 (𝑥 (𝑡)) + 𝑎2𝑆
♡

2 (𝑥 (𝑡))
]

d𝑡 + 𝜎 (𝑥 (𝑡)) d𝑤,
that is, the optimal evolution of the stochastic process

{

𝑥♡(𝑡)
}

𝑡≥0 which solves the (stochastic) couple’s problem with initial
state 𝑥0.

3 A COMPUTATIONAL MODEL

General existence or uniqueness results for feedback Nash equilibria for differential games are not available in the literature26,
except for some particular cases, namely the so-called Linear Quadratic models5. Thus, a computational approach is required
to find a solution. As far as we know, the following method, that can be considered as a generalization of14, is novel. We are not
aware of other available similar algorithm to solve an infinite horizon SDG in feedback Nash equilibrium. While it can be applied
to a general class on 𝑛-player SDG, we present the algorithm adapted to the SDG model for the couple’s problem described in
the preceding section.

The model is discretized in a Semi-Lagrangian way (see, for instance,27). This implies first discretizating in time and space
and the using numerical interpolation (in this case, using radial base functions- see14). The discretization of (2) is performed
through the trapezoid rule, taking ℎ > 0 as a time step. Given a value of the state variable 𝑦 ∈ 𝑋, consider the following discrete
version of (2):

𝑊 ℎ
𝑖

(

𝑐ℎ𝑖
)

= 𝔼

{

ℎ
∞
∑

𝑘=0
𝑒−𝜌𝑖𝑘

(

𝑈𝑖
(

𝑥𝑘
)

−𝐷𝑖
(

𝑐𝑖,𝑘
))

|𝑥0 = 𝑦

}

, 𝑖 = 1.2, (7)

where 𝑐ℎ𝑖 =
{

𝑐𝑖,𝑘
}

𝑘≥0 is a sequence of (feasible) controls for partner 𝑖, defined by the piece-wise constant function 𝑐ℎ𝑖 (𝜏) =
𝑐𝑖,𝑘, 𝜏 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝑡𝑘 = ℎ𝑘, 𝑘 ∈ ℕ ∪ {0}. Furthermore, the sequence 𝑥𝑘 = 𝑥(𝑡𝑘) is obtained by time discretization of (1)
using the Euler-Maruyama scheme (see, for instance,28), that is,

𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓
(

𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘
)

+ 𝜎
(

𝑥𝑘
)

𝜉𝑘, (8)

with 𝑓 (𝑥, 𝑐1, 𝑐2) = −𝑟𝑥 + 𝑎1𝑐1 + 𝑎2𝑐2, 𝑥0 = 𝑦, and 𝜉𝑘 denotes the increment of a standard Brownian motion 𝑤(𝑡) in the interval
[𝑡𝑘, 𝑡𝑘+1). Then, the corresponding discrete value function is for partner 𝑖 = 1, 2 is given by

𝑣ℎ𝑖 (𝑦) = max
𝑐ℎ𝑖

𝑊 ℎ
𝑖

(

𝑐ℎ𝑖
)

.

It can be proven (see29) that, given that (2) is defined as an expected value, the Gaussian variable 𝜉𝑘 can be replaced –in a
computationally efficient way– by a discrete variable with probability distribution

ℙ
(

𝜉𝑘 =
√

ℎ
)

= ℙ
(

𝜉𝑘 = −
√

ℎ
)

= 1
2
.

Therefore, we can redefine (8) as a set of two displacements,

𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑑 , 𝑑 = 1, 2,
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where
{

𝛿1 = ℎ𝑓 (𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘) + 𝜎(𝑥𝑘)
√

ℎ,
𝛿2 = ℎ𝑓 (𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘) − 𝜎(𝑥𝑘)

√

ℎ.
Next, for the sake of simplicity, we will write

𝛿𝑑 = ℎ𝑓
(

𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘
)

+ 𝜎
(

𝑥𝑘
)

(

±
√

ℎ
)

.

The Dynamic Programming Principle (DPP) in discrete time implies that the discrete value functions satisfy (see27)
⎧

⎪

⎨

⎪

⎩

𝑣ℎ1 (𝑦) = max𝑐1∈ℝ+

{

ℎ
(

𝑈1 (𝑦) −𝐷1
(

𝑐1
))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑣

ℎ
1

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑐1, 𝑆ℎ
2 (𝑦)

))

}

,

𝑣ℎ2 (𝑦) = max𝑐2∈ℝ+

{

ℎ
(

𝑈2 (𝑦) −𝐷2
(

𝑐2
))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑣

ℎ
2

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑆ℎ
1 (𝑦) , 𝑐2

))

}

,
(9)

together with the corresponding discrete version of (6), namely
⎧

⎪

⎨

⎪

⎩

𝑆ℎ
1 (𝑦) = 𝑎𝑟𝑔max𝑐1∈ℝ+

{

ℎ
(

𝑈1 (𝑦) −𝐷1
(

𝑐1
))

+ (1−𝜌1ℎ)
2

∑2
𝑑=1 𝑣

ℎ
1

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑐1, 𝑆ℎ
2 (𝑦)

))

}

,

𝑆ℎ
2 (𝑦) = 𝑎𝑟𝑔max𝑐2∈ℝ+

{

ℎ
(

𝑈2 (𝑦) −𝐷2
(

𝑐2
))

+ (1−𝜌2ℎ)
2

∑2
𝑑=1 𝑣

ℎ
2

(

𝑦 + 𝛿𝑑
(

𝑦, 𝑆ℎ
1 (𝑦) , 𝑐2

))

}

.
(10)

To obtain an numerical approximation of the functions 𝑣ℎ𝑖 , satisfying (9), we consider a spatial discretization of the state space.
Let us define 𝑋̃ =

{

𝑦𝑗
}

𝑗=1,...,𝑄 ⊂ 𝑋 a set of arbitrary 𝑄 points. Notice that, in general, the points 𝑦♯𝑖 = 𝑦𝑗 + 𝛿𝑑
(

𝑦𝑗 , 𝑐1, 𝑐2
)

in (9)
do not belong to 𝑋̃. To find approximate values 𝑣̃ℎ𝑖

(

𝑦𝑗
)

of 𝑣ℎ𝑖
(

𝑦𝑗
)

for 𝑦𝑗 ∈ 𝑋̃, 𝑖 = 1, 2, the values 𝑣ℎ𝑖
(

𝑦♯
)

in (9) are calculated
through a collocation mesh-free algorithm using the set of scattered nodes 𝑋̃ 30, by means of

⎧

⎪

⎨

⎪

⎩

𝑣̃ℎ1
(

𝑦𝑗
)

= max𝑐1∈ℝ+

{

ℎ
(

𝑈1
(

𝑦𝑗
)

−𝐷1
(

𝑐1
))

+
(

1 − 𝜌1ℎ
)

𝑅𝐵𝐹
[

𝑉1
] (

𝑦#1
)

}

,

𝑣̃ℎ2
(

𝑦𝑗
)

= max𝑐2∈ℝ+

{

ℎ
(

𝑈2
(

𝑦𝑗
)

−𝐷2
(

𝑐2
))

+
(

1 − 𝜌2ℎ
)

𝑅𝐵𝐹
[

𝑉2
] (

𝑦#2
)

}

,
(11)

with discrete feedback strategies
⎧

⎪

⎨

⎪

⎩

𝑆̃ℎ
1

(

𝑦𝑗
)

= 𝑎𝑟𝑔max𝑐1∈ℝ+

{

ℎ
(

𝑈1
(

𝑦𝑗
)

−𝐷1
(

𝑐1
))

+
(

1 − 𝜌1ℎ
)

𝑅𝐵𝐹
[

𝑉1
] (

𝑦#1
)

}

,

𝑆̃ℎ
2

(

𝑦𝑗
)

= 𝑎𝑟𝑔max𝑐2∈ℝ+

{

ℎ
(

𝑈2
(

𝑦𝑗
)

−𝐷2
(

𝑐2
))

+
(

1 − 𝜌1ℎ
)

𝑅𝐵𝐹
[

𝑉1
] (

𝑦#2
)

}

.
(12)

where
⎧

⎪

⎨

⎪

⎩

𝑦♯1 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 , 𝑐1, 𝑆̃ℎ
2

(

𝑦𝑗
))

+ 𝜎
(

𝑦𝑗
)

(

±
√

ℎ
)

,

𝑦♯2 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 , 𝑆̃ℎ
1

(

𝑦𝑗
)

, 𝑐2
)

+ 𝜎
(

𝑦𝑗
)

(

±
√

ℎ
)

,

and 𝑅𝐵𝐹 [𝑉𝑖], 𝑖 = 1, 2, denoting the average of the 𝑖-th value function’s approximation by radial basis functions31. Specifically,
for 𝑦♯ that does not belong to 𝑋̃, we have, for 𝑖 = 1, 2,

𝑣̃ℎ𝑖
(

𝑦#𝑖,𝑑
)

≈ 𝑅𝐵𝐹
[

V𝑖
]

= 1
2

2
∑

𝑑=1

𝑄
∑

𝑗=1
𝜆𝑖,𝑗Φ

(

‖

‖

‖

𝑦#𝑖,𝑑 − 𝑦𝑗
‖

‖

‖

)

,

where
𝑦♯𝑖,𝑑 = 𝑦𝑗 + ℎ𝑓

(

𝑦𝑗 ,
[

𝑐1, 𝑐2
])

± 𝜎
(

𝑦𝑗
)

√

ℎ,

and 𝜆𝑖,𝑗 ∈ ℝ are weighting coefficients, with Φ
(

‖

‖

‖

𝑦 − 𝑦𝑗
‖

‖

‖

)

= exp
(

−‖
𝑦−𝑦𝑗‖

2

𝜎2

)

, and 𝜎 > 0 (see30 ). In addition, for 𝑖 = 1, 2,

and 𝑗 = 1, ..., 𝑄, the parameters 𝜆𝑖,𝑗 , are obtained by solving

A𝜆̄𝑖 = V𝑖,

where A is the matrix with entries A𝑗,𝑙 = Φ
(

‖

‖

‖

𝑦𝑙 − 𝑦𝑗
‖

‖

‖

)

for 𝑗 = 1, ..., 𝑄, and 𝜆̄𝑖 =
[

𝜆𝑖,1, ...., 𝜆𝑖,𝑄
]𝑇 .



6 Jorge Herrera y José-Manuel Rey

Algorithm pseudocode
The algorithm to produce a solution of the discretized problem of the previous section is called RaBVItG, which refers to Radial
Basis approximations, Value Iteration and Game Iteration. It essentially consists of two main loops: game iteration, to find a
Nash Equilibrium for a given value function, and value iteration, to improve the approximation of the value function, given
a previously obtained equilibrium. Both iterations are sequentially interspersed until convergence is reached. We provide the
details below.

Let V𝑖 and 𝐶𝑖 be 𝑄−dimensional arrays of real values for the value functions and for the effort controls of each partner 𝑖 = 1, 2
evaluated at the points 𝑦𝑗 ∈ 𝑋̃:

V𝑖 =
[

𝑣̃ℎ𝑖
(

𝑦1
)

, ..., 𝑣̃ℎ𝑖
(

𝑦𝑄
)]𝑇 , C𝑖 =

[

𝑐ℎ𝑖
(

𝑦1
)

, ..., 𝑐ℎ𝑖
(

𝑦𝑄
)]𝑇 , 𝑖 = 1, 2.

Let V =
[

V1,V2
]

and C =
[

C1,C2
]

, denote the arrays storing the information for both partners. Let 𝑇𝑖 =
[

𝑇𝑖,1, ..., 𝑇𝑖,𝑄
]

∶ ℝ𝑄 →
ℝ𝑄 and 𝐺𝑖 =

[

𝐺𝑖,1, ..., 𝐺𝑖,𝑄
]

∶ ℝ𝑄 → ℝ𝑄 be two operators defined component-wise by

𝑇𝑖,𝑗
(

V𝑖
)

= ℎ
(

𝑈𝑖
(

𝑦𝑗
)

−𝐷𝑖
(

𝑐𝑖
))

+
(

1 − 𝜌𝑖ℎ
)

𝑅𝐵𝐹
[

V𝑖
] (

𝑦𝑗 + 𝛿𝑑
)

, 𝑗 = 1, ..., 𝑄,

and
𝐺𝑖,𝑗

(

V𝑖
)

= 𝑎𝑟𝑔 max
𝑐𝑖∈ℝ+

{

ℎ
(

𝑈𝑖
(

𝑦𝑗
)

−𝐷𝑖
(

𝑐𝑖
))

+
(

1 − 𝜌𝑖ℎ
)

𝑅𝐵𝐹
[

V𝑖
] (

𝑦𝑗 + 𝛿𝑑
)

}

, 𝑗 = 1, ..., 𝑄, (13)

with 𝛿𝑑 , 𝑑 = 1, 2, the set of displacements:

𝛿𝑑 = ℎ𝑓
(

𝑦𝑗 ,
[

𝑐1, 𝑐2
])

± 𝜎
(

𝑦𝑗
)

√

ℎ.

Next we explain the two main loops of RaBVItG.

1. Game Iteration. Given 𝑠 = 0, 1, , ..., we generate a candidate C𝑠+1
𝑖 to optimal control policy at step 𝑠 + 1 for partner 𝑖, as

follows:
C𝑠+1
𝑖 = 𝜃C𝑠

𝑖 + (1 − 𝜃)𝐺𝑖
(

C𝑠,V𝑟
𝑖

)

, 𝑖 = 1, 2,
where 𝐺𝑖 is defined in (13), 𝜃 ∈ (0, 1) is a weighting coefficient –see32, and 𝑉 𝑟

𝑖 is defined below. The Game Iteration loop
follows the scheme

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐𝑠+11,𝑗 ≡ 𝜃𝑐𝑠1,𝑗 + (1 − 𝜃) 𝑎𝑟𝑔max𝑐1∈ℝ+

{

ℎ
(

𝑈1
(

𝑦𝑗
)

−𝐷1
(

𝑐1
))

+
(

1 − 𝜌1ℎ
)

𝑅𝐵𝐹
[

V𝑟
1

]

(

𝑦♯1
)}

,

𝑐𝑠+12,𝑗 ≡ 𝜃𝑐𝑠2,𝑗 + (1 − 𝜃) 𝑎𝑟𝑔max𝑐2∈ℝ+

{

ℎ
(

𝑈2
(

𝑦𝑗
)

−𝐷2
(

𝑐2
))

+
(

1 − 𝜌2ℎ
)

𝑅𝐵𝐹
[

V𝑟
2

]

(

𝑦♯2
)}

,

𝑦♯1 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 ,
[

𝑐1, 𝑐𝑠2,𝑗
])

± 𝜎
(

𝑦𝑗
)
√

ℎ,

𝑦♯2 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 ,
[

𝑐𝑠1,𝑗 , 𝑐2
])

± 𝜎
(

𝑦𝑗
)
√

ℎ,

for 𝑠 = 0, 1, ...., where 𝑐𝑠𝑖,𝑗 ≡ 𝑐𝑠𝑖,𝑗
(

𝑦𝑗
)

. This scheme is iterated until a convergence criterion is satisfied, that is,
‖

‖

C𝑠+1 − C𝑠
‖

‖

< 𝜖1, for a given 𝜖1 > 0 (‖⋅‖ is the Euclidean norm). Given value functions V𝑟
𝑖 , 𝑖 = 1, 2, a candidate for

feedback Nash equilibrium is thus obtained:
C𝑠+1 =

[

C𝑠+1
1 ,C𝑠+1

2

]

.
This is the input for the next loop, to produce an estimate of the functions V𝑟+1

𝑖 , 𝑖 = 1, 2.

2. Value Iteration. Given a candidate C𝑠+1 for the feedback Nash equilibrium, obtained from the previous loop, the value
functions at step 𝑟 + 1 are updated as follows:

V𝑟+1
𝑖 = 𝑇𝑖

(

V𝑟
𝑖 ; C

𝑠+1) , 𝑖 = 1, 2,

where 𝑇𝑖 =
[

𝑇𝑖,𝑗
]

are defined component-wise, for 𝑗 = 1, ..., 𝑄, by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇1,𝑗 ≡ ℎ
(

𝑈1
(

𝑦𝑗
)

−𝐷1

(

𝑐𝑠+11,𝑗

))

+
(

1 − 𝜌1ℎ
)

𝑅𝐵𝐹
[

V𝑟
1

]

(

𝑦♯1
)

,

𝑇2,𝑗 ≡ ℎ
(

𝑈2
(

𝑦𝑗
)

−𝐷2

(

𝑐𝑠+12,𝑗

))

+
(

1 − 𝜌2ℎ
)

𝑅𝐵𝐹
[

V𝑟
2

]

(

𝑦♯2
)

,

𝑦♯1 ≡ 𝑦♯2 = 𝑦𝑗 + ℎ𝑓
(

𝑦𝑗 ,
[

𝑐𝑠+11,𝑗 , 𝑐
𝑠+1
2,𝑗

])

± 𝜎
(

𝑦𝑗
)
√

ℎ.
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This loop is iterated until satisfying the convergence criterion ‖

‖

V𝑟+1 − V𝑟
‖

‖

< 𝜖2, with 𝜖2 > 0 given. Candidate solution
for the value functions are thus obtained,

V𝑟+1 =
[

V𝑟+1
1 ,V𝑟+1

2

]

.

Once the convergence conditions are met, the algorithm generates the outputs

V♡ =
[

V♡

1 ,V
♡

2

]

,C♡ =
[

C♡

1 ,C
♡

2

]

as the computational solutions for the value functions and control policies of the couple’s problem. Notice that V♡ and C♡ is an
approximate fixed-point of the numerical scheme

{

C𝑠+1 = 𝐺(C𝑠,V𝑟,Δ),
V𝑟+1 = 𝑇 (V𝑟,C𝑠+1,Δ),

where Δ denotes the chosen set of spatio-temporal discretization parameters. Once
(

C♡,V♡
)

are obtained, we can recover the
corresponding approximated feedback maps defined in (12).

For the purpose of our model analysis below, we take 𝑓
(

𝑦,
[

𝑐1, 𝑐2
])

= −𝑟𝑦 + 𝑎1𝑐1 + 𝑎2𝑐2, and 𝜎
(

𝑦𝑗
)

≡ 𝜎 constant..

4 NUMERICAL ANALYSIS

We present here the numerical results for the couple’s problem defined in section 3 for the functional and parameter input
specification given in Table 1. Notice that our model inputs satisfy all model assumptions specified in section 2. Furthermore,
it is a convenient choice for the sake of comparison with previous works23 and33 where the same set of inputs is considered.
The algorithm code has been written and run in MATLAB. The set of parameter values used in the computational experiments
below are ℎ = 1∕12, 𝜖1 = 0.001, 𝜖2 = 0.0001, 𝑄 = 15, 𝑥 ∈ 𝑋 = [0, 5] and 𝜃 = 0.95.

Table 1 Model inputs: functions and parameters

𝑟 𝑎1 𝑎2 𝜎 𝐷𝑖 𝑐∗𝑖 𝑈𝑖 𝜌𝑖

Homogamous

−2

1.75 1

1.75

(𝑐𝑖−𝑐∗𝑖 )
2

0.2 5 ln (𝑥 + 1) 0.1

1.25
0.5
0

Heteterogamous 1 1

1.75
1.25
0.5
0

4.1 Preliminary analysis: uncertainty effect
In Figures 2 and 3, we show the effort feedback policies and the value (well-being) functions for each partner, for two types
of couples, homogamous and heterogamous, respectively. They differ here only in the effort efficiency of each partner, which
is represented by 𝑎1 and 𝑎2. Homogamous couples are formed by partners with 𝑎1 = 𝑎2, otherwise they are heterogamous.
Different implications of this asymmetry are discussed in detail in23. The effort and value curves in Figures 2 and 3 correspond
to different levels of stochasticity, i.e. 𝜎 = 0.5, 1.25, 1.75. The curves corresponding to the deterministic case (𝜎 = 0) are also
provided, so our results can be compared with those in23, where the non-stochastic case is analyzed. It allows us to analyze the
impact of stochasticity on effort policies and well-being compared with the benchmark case of a deterministic feeling dynamics.

It follows from the analysis that, as the uncertainty 𝜎 about the true state of the relationship increases, both partners’ effort
curves monotonically shift upwards and their welfare curves (value functions) shift downwards. As a consequence, in the face
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Figure 2 Computational feedback analysis of a homogamous couple (𝑎1 = 𝑎2 = 1) at different 𝜎 values
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Figure 3 Computational feedback analysis of a heterogamous couple (𝑎1 = 1, 𝑎2 = 1.75) at different 𝜎 values
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of uncertainty, couples must make more effort and expect less reward in terms of well-being. This qualitative effect holds in
general for both homogamous and heterogamous couples, as figures 2 and 3 show.
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4.2 Love at Risk
To assess the probability of breakup of a romantic relationship we now pay attention to the model parameter 𝑥𝑚𝑖𝑛, mentioned in
section 1, below which the feeling variable must remain to guarantee a sufficiently rewarding relationship. This is the threshold
feeling level for the relationship to start facing a risk of breakup (see Figure 1). This parameter can be thought of as a value at
risk, which is defined in finance as a probabilistic measure of incurring a given loss24. In a similar fashion, for a given probability
𝛼 ∈ (0, 1), we define the value Love at Risk (LaR) (at a certain time 𝑘 > 0) as the feeling value 𝑥𝑚𝑖𝑛 such that

ℙ
(

𝑥♡𝑘 ≤ 𝑥𝑚𝑖𝑛
)

= 𝛼

where 𝑥♡𝑘 is the (optimal) solution of the computational couple’s problem defined in section 3, and ℙ is its probability function,
so that 𝑥𝑚𝑖𝑛 is the 𝛼-percentile of the distribution of 𝑥♡𝑘 .

In order to illustrate our methodology, we consider realistic estimates of the probability of divorce in the US. They are shown
in Figure 4, where different values of 𝛼 = 𝛼(𝑘) are given, for different cohorts of marriages, 𝑘 months after the wedding, for
𝑘 = 60, 120, 180, 240 .

Without loss of generality, we consider a heterogamous marriage, as specified in Table 1, which may be facing a certain
uncertainty 𝜎 in the their feeling dynamics (1). To estimate the Love at Risk value for such kind of marriage, five years after the
wedding, we proceed as follows. We compute a large sample of realizations of the optimal solution 𝑥♡(𝑘) for the computational
stochastic model in section 3, for 𝜎 = 0, 0.5, 1.25, 1.75. Given that the time variable 𝑘 in our computational model corresponds
to months, we generate an estimate of the probability densities of the random variable 𝑥∗(60) for the different values of 𝜎. They
are displayed in Figure 5. According to Figure 4, 𝛼(𝑘 = 60) ≈ 0.10, on average, over the marriage cohorts. The LaR level at
five years can thus be estimated as the first decile of the feeling distribution corresponding to each 𝜎 value in Figure 5.

Figure 4 Share of marriages ending in divorce in the US: percentage of straight couples who divorced after a given number of
years of marriage (Source: Our World in Data and34).

In general, the LaR level fluctuates with the type of couple, the time after the wedding and the noise term in the feeling
dynamics. For the heterogamous couple under consideration here, it is apparent from Figure 5 that the LaR level after five years
decreases as 𝜎 increases.
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Figure 5 Love at Risk for a heterogamous couple with 𝑎1 = 1,𝑎2 = 1.75 at 𝑘 = 60 at different 𝜎 values. Empirical densities are
obtained from a sample of 10 000 feeling trajectories.

Notice that both the probability estimates of rupture 𝛼 = 𝛼(𝑘) in the US, given in Figure 4, and the distribution of the
(controlled) feeling variable 𝑥♡ = 𝑥♡𝑘 of the couple’s problem vary with 𝑘. As a consequence, the LaR level 𝑥𝑚𝑖𝑛 = 𝑥𝑚𝑖𝑛(𝑘) also
varies with 𝑘, and it can be estimated in a dynamic fashion using our computational model. To obtain the sequence of LaR levels
𝑥𝑚𝑖𝑛(𝑘) for the heterogamous couple under study and for the different levels of uncertainty 𝜎, we proceed as follows. Given 𝜎, we
generate the distribution of the feeling 𝑥♡𝑘 for each 𝑘 from a sample of 10 000 realizations of the following stochastic numerical
scheme obtained in section 3:

(SM1)
⎧

⎪

⎨

⎪

⎩

𝑐𝑖,𝑘 = 𝑆̃ℎ
𝑖
(

𝑥𝑘
)

, 𝑖 = 1, 2,
𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓 (𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘) +

√

ℎ𝜎𝜉𝑘
𝑥0 ∈ 𝑋.

Notice that the scheme above defines a stabilization mechanism for the relationship, since the control policies defined by the
stochastic feedback Nash maps allow partners to react optimally to perturbations of the feeling at any time. Once the distribution
𝑥♡𝑘 is simulated, we estimate the sequence of LaR levels at time 𝑘, 𝑥𝑚𝑖𝑛(𝑘), from condition ℙ(𝑥♡𝑘 ≤ 𝑥𝑚𝑖𝑛) = 𝛼(𝑘), where the
probability values 𝛼(𝑘) are obtained from the data source of Figure 4.

In figure 6 we show the simulation of the model above for an initial value 𝑥0 = 3. The figure displays the different percentile
trajectories (from 10 to 80) of the feeling variable 𝑥♡𝑘 for the different levels of 𝜎, as well as the corresponding effort trajectories
of each partner. The curve in pink corresponds to the dynamic LaR levels estimated by the computational model. As in the
static exercise above (𝑘 = 60), it can be seen that, for every 𝑘 > 0, the LaR curves are convex, monotonically decreasing as 𝜎
increases, and they eventually approach a stationary value.

4.3 Estimating the probability of breakup in the face of a shock
Regarding the odds of survival of a relationship whose evolution is described by our control model, we analyze how the couple
react optimally in the face of a shock. This is a relevant question since relationships are subjected to external shocks over the
life course (see e.g.35). Notice that the feedback control mechanism provided by our analysis in section 3 is particularly useful
here, since it allows partners to adjust their effort levels after a perturbation of the feeling to drive it back to a successful path.
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Figure 6 Simulations for the stochastic process of the feeling for different 𝜎 values, together with the corresponding effort
distributions for both partners of a heterogamous couple with 𝑎1 = 1 and 𝑎2 = 1.75. The dynamic LaR level is plotted in
pink. Values of 𝛼(𝑘) are approximated using data from Table (2). Trajectories corresponding to percentiles 10 to 80 are also
represented.

We address the shock problem by estimating the change in the probability of breakup after a shock of the feeling occurs
at a given time 𝑘 > 0. Assume that the feeling is affected by a certain sequence of punctual shocks 𝑠− = {𝑠𝑘}𝑘≥0. Then the
stabilization mechanism provided by the feedback analysis reads as follows

(SM2)
⎧

⎪

⎨

⎪

⎩

𝑐𝑖,𝑘 = 𝑆̃ℎ
𝑖
(

𝑥𝑘
)

, 𝑖 = 1, 2,
𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑓 (𝑥𝑘, 𝑐1,𝑘, 𝑐2,𝑘) +

√

ℎ𝜎𝜉𝑘 − 𝑠−,
𝑥0 ∈ 𝑋.

Even though the stabilization mechanism SM2 is working, the perturbed feeling trajectory may enter the zone of risk of rupture
at a certain moment 𝑘 (that is, below the level of LaR 𝑥𝑚𝑖𝑛(𝑘) ) with some probability, and then remain within the risk zone for
some time. This is a critical period that can be painful or even impossible to get through and can make the relationship break up
eventually. Thus the probability that a perturbed trajectory controlled by SM2 spends a certain period below the dynamic LaR
curve -see Figure 6- serves as a measure of the risk to the survival of the relationship. This probability can be estimated from
an ensemble of realizations of the process governed by SM2.
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Figure 7 Left: Feedback response to a one-period shock of size 𝑠−- proportional to 𝜎 five years after the wedding (𝑘 = 60) for a
heterogamous couple with 𝑎1 = 1, 𝑎2 = 1.75, and for 𝜎 = 0.5, 1.25, 1.75. Feeling trajectories are obtained using the numerical
scheme SM2. Right: Empirical distribution for the feeling values obtained from an sample of 1000 trajectories before and after
the shock for the different values of 𝜎. LaR values correspond to the unperturbed process as shown in Figure 5.

To illustrate the probability estimate described above, consider the case that 𝑠− consists of a large one-period shock (of size
𝜎) taking place at time 𝑘 = 60 (five years after the wedding). In Figure 7 (left) we show the percentile trajectories of the
stochastic process steered by the stabilization mechanism SM2 for a particular heterogamous couple and for different values of
𝜎. They coincide with the corresponding trajectories of Figure 6 before the shock at 𝑘 = 60 for every 𝜎 value. Computing a
large ensemble of trajectories, we produce an estimate of the distribution of the feeling values for the perturbed process over
a whole year (𝑘 = 60, ..., 72) after the shock at 𝑘 = 60. In Figure 7 (right) we show the empirical distributions of the feeling
variable before the shock and over one year after the shock. Using the the LaR level at 𝑘 = 60 as the benchmark, the probability
of breakup over a year after the shock can be estimated from the empirical distribution after the shock (in pink) for different
values of 𝜎. As shown in Figure 7 (right), given that the shock at 𝑘 = 60 has the size of the uncertainty 𝜎, the probability of
breakup over the year after the event increases as 𝜎 increases.

We also analyze how the probability of breakup after a shock varies with respect to the size of the shock and the uncertainty of
the feeling dynamics. For the same type of heterogamous couple considered above, Table 2 shows the probabilities of breakup
for different values of 𝜎 and different sizes of a one-period shock occurring five years after the wedding. Our estimates show
that, for any level 𝜎, the probability of breakup increases as the size of the shock increases. Also, a higher level of uncertainty
entails a lower LaR level and, in addition, it makes more likely that the level of feeling remains in the secure zone (i.e. over 𝑥𝑚𝑖𝑛)
for the relationship.
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Table 2 Probability of breakup of a heterogamous relationship with 𝑎1 = 1, 𝑎2 = 1.75 for different uncertainty levels 𝜎 and
different shocks 𝑠−, five years after the wedding (𝑘 = 60). The simulation is obtained using the scheme SM2.

𝜎 𝑥𝑚𝑖𝑛 𝑠− ℙ
(

𝑏𝑟𝑒𝑎𝑘|𝑠−, 𝜎
)

0.5 1.51

-0.1 0.1488
-0.5 0.4304
-1.25 0.8636
-1.75 0.9593

1.25 1.02

-0.1 0.1334
-0.5 0.3080
-1.25 0.6195
-1.75 0.7505

1.75 0.77

-0.1 0.1339
-0.5 0.3135
-1.25 0.6114
-1.75 0.7266

5 CONCLUSIONS

In this article we have introduced an algorithm to find feedback Nash equilibria for a class of stochastic differential games. The
algorithm builds on a combination of two fixed point iterations, a first one to find the Nash equilibrium by fixing the value of the
game, and a second iteration to find the value of the game given a Nash equilibrium. The algorithm can be applied to a general
class of 𝑁-player infinite horizon stochastic games. We have also considered a substantial issue in the applied sciences, namely
the design of a long-term rewarding romantic relationship. We formulate this problem as a two-person optimal control problem
to steer the feeling of the relationship in a stochastic environment. The algorithm allows us to find approximate solutions of a
computational version of the control problem for different stochastic dynamics. In particular, we have focused on estimating
the risk of breakup of a long-term relationship at a certain time after the initial commitment. Using divorce data in the US, the
proposed algorithm gives an estimate of the feeling level below which the relationship can probably break up -called Love at
Risk here-. Also, the computational model allows us to estimate the probability of breaking up in the face of an external shock.
The analysis can be applied to different types of couples and different levels of stochasticity in the feeling dynamics.
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