REFERENCES:
1. Ait-Haddou, R. & Herzog, W. Brownian ratchet models of molecular motors. Cell Biochem. Biophys. 38 , 191–213 (2003).
2. Vale, R. D. & Oosawa, F. Protein motors and Maxwell’s demons: Does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26 , 97–134 (1990).
3. Noise-induced schooling of fish | Nature Physics. https://www.nature.com/articles/s41567-020-0787-y.
4. Carloni, A., Poletti, V., Fermo, L., Bellomo, N. & Chilosi, M. Heterogeneous distribution of mechanical stress in human lung: A mathematical approach to evaluate abnormal remodeling in IPF. J. Theor. Biol. 332 , 136–140 (2013).
5. Vishwakarma, M. & Di Russo, J. Why does epithelia display heterogeneity? Bridging physical and biological concepts. Biophys. Rev. 11 , 683–687 (2019).
6. Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12 , 119–125 (2011).
7. Müller-Sieburg, C. E., Cho, R. H., Thoman, M., Adkins, B. & Sieburg, H. B. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100 , 1302–1309 (2002).
8. Reiner, S. L. & Adams, W. C. Lymphocyte fate specification as a deterministic but highly plastic process. Nat. Rev. Immunol.14 , 699–704 (2014).
9. Losick, R. & Desplan, C. Stochasticity and Cell Fate. Science320 , 65–68 (2008).
10. Thattai, M. & van Oudenaarden, A. Stochastic Gene Expression in Fluctuating Environments. Genetics 167 , 523–530 (2004).
11. Kamimoto, K. et al. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 5 , e15034 (2016).
12. Harper, C. V. et al. Dynamic Analysis of Stochastic Transcription Cycles. PLoS Biol. 9 , e1000607 (2011).
13. Bajikar, S. S., Fuchs, C., Roller, A., Theis, F. J. & Janes, K. A. Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proc. Natl. Acad. Sci. 111 , (2014).
14. Yuan, L. et al. A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nat. Commun.7 , 10160 (2016).
15. Huang, S. Non-genetic heterogeneity of cells in development: more than just noise. Development 136 , 3853–3862 (2009).
16. Lan, T. et al. Decomposition of cell activities revealing the role of the cell cycle in driving biofunctional heterogeneity.Sci. Rep. 11 , 23431 (2021).
17. Darzynkiewicz, Z., Crissman, H., Traganos, F. & Steinkamp, J. Cell heterogeneity during the cell cycle. J. Cell. Physiol.113 , 465–474 (1982).
18. Evers, T. M. J. et al. Deciphering Metabolic Heterogeneity by Single-Cell Analysis. Anal. Chem. 91 , 13314–13323 (2019).
19. Hensley, C. T. et al. Metabolic Heterogeneity in Human Lung Tumors. Cell 164 , 681–694 (2016).
20. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods13 , 229–232 (2016).
21. Carter, B. & Zhao, K. The epigenetic basis of cellular heterogeneity. Nat. Rev. Genet. 22 , 235–250 (2021).
22. Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43 , 95–100 (2011).
23. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun.8 , 14049 (2017).
24. Hughes, A. J. et al. Single-cell western blotting. Nat. Methods 11 , 749–755 (2014).
25. Li, M., Liu, H., Zhuang, S. & Goda, K. Droplet flow cytometry for single-cell analysis. RSC Adv. 11 , 20944–20960 (2021).
26. Hasenauer, J. et al. Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinformatics 12 , 125 (2011).
27. Mattiazzi Usaj, M., Yeung, C. H. L., Friesen, H., Boone, C. & Andrews, B. J. Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations. Cell Syst. 12 , 608–621 (2021).
28. Hilsenbeck, O. et al. Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat. Biotechnol. 34 , 703–706 (2016).
29. Diercks, A., Kostner, H. & Ozinsky, A. Resolving Cell Population Heterogeneity: Real-Time PCR for Simultaneous Multiplexed Gene Detection in Multiple Single-Cell Samples. PLoS ONE 4 , e6326 (2009).
30. Kobel, S. A. et al. Automated analysis of single stem cells in microfluidic traps. Lab. Chip 12 , 2843 (2012).
31. Labriola, N. R. & Darling, E. M. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. J. Biomech. 48 , 1058–1066 (2015).
32. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510 , 363–369 (2014).
33. Kepler, T. B. & Elston, T. C. Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations.Biophys. J. 81 , 3116–3136 (2001).
34. Pedraza, J. M. & Paulsson, J. Effects of Molecular Memory and Bursting on Fluctuations in Gene Expression. Science319 , 339–343 (2008).
35. White, M. R. et al. Real-time analysis of the transcriptional regulation of HIV and hCMV promoters in single mammalian cells. J. Cell Sci. 108 , 441–455 (1995).
36. Ross, I. L., Browne, C. M. & Hume, D. A. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently.Immunol. Cell Biol. 72 , 177–185 (1994).
37. Newlands, S. et al. Transcription occurs in pulses in muscle fibers. Genes Dev. 12 , 2748–2758 (1998).
38. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10 , 469–475 (2011).
39. Ramirez-San Juan, G. R. et al. Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays.Nat. Phys. 16 , 958–964 (2020).
40. Di Russo, J. et al. Vascular laminins in physiology and pathology. Matrix Biol. 57–58 , 140–148 (2017).
41. Enge, M. et al. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell 171 , 321-330.e14 (2017).
42. Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science355 , 1433–1436 (2017).
43. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441 , 1011–1014 (2006).
44. Vishwakarma, M. et al. Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives. Nat. Commun. 9 , 3469 (2018).
45. Vishwakarma, M., Thurakkal, B., Spatz, J. P. & Das, T. Dynamic heterogeneity influences the leader–follower dynamics during epithelial wound closure. Philos. Trans. R. Soc. B Biol. Sci. 375 , 20190391 (2020).
46. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561 , 401–405 (2018).
47. Lenne, P.-F. & Trivedi, V. Tissue ‘melting’ sculpts embryo.Nature 561 , 315–316 (2018).
48. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14 , 1040–1048 (2015).
49. Carloni, A., Poletti, V., Fermo, L., Bellomo, N. & Chilosi, M. Heterogeneous distribution of mechanical stress in human lung: A mathematical approach to evaluate abnormal remodeling in IPF. J. Theor. Biol. 332 , 136–140 (2013).
50. Kim, J. H. et al. Unjamming and collective migration in MCF10A breast cancer cell lines. Biochem. Biophys. Res. Commun.521 , 706–715 (2020).
51. Palamidessi, A. et al. Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat. Mater. 18 , 1252–1263 (2019).
52. Vishwakarma, M. & Piddini, E. Outcompeting cancer. Nat. Rev. Cancer 20 , 187–198 (2020).
53. Eichenlaub, T., Cohen, S. M. & Herranz, H. Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial Tumor Formation. Curr. Biol. CB 26 , 419–427 (2016).
54. Baker, N. E. & Li, W. Cell competition and its possible relation to cancer. Cancer Res. 68 , 5505–5507 (2008).
55. Suijkerbuijk, S. J. E., Kolahgar, G., Kucinski, I. & Piddini, E. Cell Competition Drives the Growth of Intestinal Adenomas in Drosophila.Curr. Biol. CB 26 , 428–438 (2016).
56. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117 , 117–129 (2004).
57. Paglia, S., Sollazzo, M., Di Giacomo, S., Strocchi, S. & Grifoni, D. Exploring MYC relevance to cancer biology from the perspective of cell competition. Semin. Cancer Biol. 63 , 49–59 (2020).
58. Menéndez, J., Pérez-Garijo, A., Calleja, M. & Morata, G. A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc. Natl. Acad. Sci.107 , 14651–14656 (2010).
59. Di Gregorio, A., Bowling, S. & Rodriguez, T. A. Cell Competition and Its Role in the Regulation of Cell Fitness from Development to Cancer. Dev. Cell 38 , 621–634 (2016).
60. Martins, V. C. et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature 509 , 465–470 (2014).
61. Vidal, M. et al. A Role for the Epithelial Microenvironment at Tumor Boundaries. Am. J. Pathol. 176 , 3007–3014 (2010).
62. Ohsawa, S. et al. Elimination of Oncogenic Neighbors by JNK-Mediated Engulfment in Drosophila. Dev. Cell 20 , 315–328 (2011).
63. Igaki, T., Pastor-Pareja, J. C., Aonuma, H., Miura, M. & Xu, T. Intrinsic Tumor Suppression and Epithelial Maintenance by Endocytic Activation of Eiger/TNF Signaling in Drosophila. Dev. Cell16 , 458–465 (2009).
64. Chen, C.-L., Schroeder, M. C., Kango-Singh, M., Tao, C. & Halder, G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc. Natl. Acad. Sci. 109 , 484–489 (2012).
65. Leung, C. T. & Brugge, J. S. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments.Nature 482 , 410–413 (2012).
66. van Neerven, S. M. et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature594 , 436–441 (2021).
67. Flanagan, D. J. et al. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 594 , 430–435 (2021).
68. Rodrigues, A. B. et al. Activated STAT regulates growth and induces competitive interactions independently of Myc, Yorkie, Wingless and ribosome biogenesis. Dev. Camb. Engl. 139 , 4051–4061 (2012).
69. Patel, M. S., Shah, H. S. & Shrivastava, N. c-Myc-Dependent Cell Competition in Human Cancer Cells: I n V ITRO H UMAN C ELL C OMPETITION M ODEL.J. Cell. Biochem. 118 , 1782–1791 (2017).
70. Alcolea, M. P. & Jones, P. H. Cell competition: winning out by losing notch. Cell Cycle Georget. Tex 14 , 9–17 (2015).
71. Levayer, R., Hauert, B. & Moreno, E. Cell mixing induced by myc is required for competitive tissue invasion and destruction. Nature524 , 476–480 (2015).
72. Liu, Z. et al. Differential YAP expression in glioma cells induces cell competition and promotes tumorigenesis. J. Cell Sci.jcs.225714 (2019) doi:10.1242/jcs.225714.
73. Ziosi, M. et al. dMyc Functions Downstream of Yorkie to Promote the Supercompetitive Behavior of Hippo Pathway Mutant Cells.PLoS Genet. 6 , e1001140 (2010).
74. Grifoni, D. & Bellosta, P. Drosophila Myc: A master regulator of cellular performance. Biochim. Biophys. Acta 1849 , 570–581 (2015).
75. Brumby, A. M. & Richardson, H. E. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila.EMBO J. 22 , 5769–5779 (2003).
76. Vincent, J.-P., Kolahgar, G., Gagliardi, M. & Piddini, E. Steep differences in wingless signaling trigger Myc-independent competitive cell interactions. Dev. Cell 21 , 366–374 (2011).
77. Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594 , 442–447 (2021).
78. Yamamoto, S. et al. A role of the sphingosine-1-phosphate (S1P)–S1P receptor 2 pathway in epithelial defense against cancer (EDAC). Mol. Biol. Cell 27 , 491–499 (2016).
79. Yako, Y. et al. ADAM-like Decysin-1 (ADAMDEC1) is a positive regulator of Epithelial Defense Against Cancer (EDAC) that promotes apical extrusion of RasV12-transformed cells. Sci. Rep.8 , 9639 (2018).
80. Ryoo, H. D., Gorenc, T. & Steller, H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev. Cell 7 , 491–501 (2004).
81. Kon, S. et al. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Nat. Cell Biol. 19 , 530–541 (2017).
82. Ohoka, A. et al. EPLIN is a crucial regulator for extrusion of RasV12-transformed cells. J. Cell Sci. jcs.163113 (2015) doi:10.1242/jcs.163113.
83. Kajita, M. et al. Filamin acts as a key regulator in epithelial defence against transformed cells. Nat. Commun.5 , 4428 (2014).
84. Pothapragada, S. P., Gupta, P., Mukherjee, S. & Das, T. Matrix mechanics regulates epithelial defence against cancer by tuning dynamic localization of filamin. Nat. Commun. 13 , 218 (2022).
85. Cordero, J. B., Stefanatos, R. K., Myant, K., Vidal, M. & Sansom, O. J. Non-autonomous crosstalk between the Jak/Stat and Egfr pathways mediates Apc1-driven intestinal stem cell hyperplasia in the Drosophila adult midgut. Dev. Camb. Engl. 139 , 4524–4535 (2012).
86. Sasaki, A. et al. Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues. Cell Rep. 23 , 974–982 (2018).
87. Pérez, E., Lindblad, J. L. & Bergmann, A. Tumor-promoting function of apoptotic caspases by an amplification loop involving ROS, macrophages and JNK in Drosophila. eLife 6 , e26747 (2017).
88. Slaughter, D. P., Southwick, H. W. & Smejkal, W. “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer 6 , 963–968 (1953).
89. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598 , 510–514 (2021).
90. Schoultz, E. et al. Tissue architecture delineates field cancerization in BRAFV600E-induced tumor development. Dis. Model. Mech. 15 , dmm048887 (2022).
91. Messal, H. A. et al. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis.Nature 566 , 126–130 (2019).
92. Fiore, V. F. et al. Publisher Correction: Mechanics of a multilayer epithelium instruct tumour architecture and function.Nature 586 , E9–E9 (2020).
93. Fiore, V. F. et al. Mechanics of a multilayer epithelium instruct tumour architecture and function. Nature 585 , 433–439 (2020).
94. Emmert-Streib, F., Dehmer, M. & Haibe-Kains, B. Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Front. Cell Dev. Biol. 2 , (2014).
95. Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. E. Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network.Phys. Rev. Lett. 94 , 128701 (2005).
96. Mojtahedi, M. et al. Cell Fate Decision as High-Dimensional Critical State Transition. PLOS Biol. 14 , e2000640 (2016).
97. Zhou, J. X., Brusch, L. & Huang, S. Predicting Pancreas Cell Fate Decisions and Reprogramming with a Hierarchical Multi-Attractor Model.PLoS ONE 6 , e14752 (2011).
98. Ahmed, E. Fractals and chaos in cancer models. Int. J. Theor. Phys. 32 , 353–355 (1993).
99. Coffey, D. S. Self-organization, complexity and chaos: The new biology for medicine. Nat. Med. 4 , 882–885 (1998).
100. Liu, L. et al. Identification of Early Warning Signals at the Critical Transition Point of Colorectal Cancer Based on Dynamic Network Analysis. Front. Bioeng. Biotechnol. 8 , 530 (2020).
101. Chen, P., Liu, R., Chen, L. & Aihara, K. Identifying critical differentiation state of MCF-7 cells for breast cancer by dynamical network biomarkers. Front. Genet. 6 , (2015).
102. Metze, K., Adam, R. & Florindo, J. B. The fractal dimension of chromatin - a potential molecular marker for carcinogenesis, tumor progression and prognosis. Expert Rev. Mol. Diagn. 19 , 299–312 (2019).
103. Ieva, A. D. Fractal analysis of microvascular networks in malignant brain tumors. Clin. Neuropathol. 31 , 342–351 (2012).
104. Henke, E., Nandigama, R. & Ergün, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front. Mol. Biosci. 6 , 160 (2020).
105. Sawyers, C. Targeted cancer therapy. Nature 432 , 294–297 (2004).