References
1 Jiao, X., Gu, Y., Zhou, P., Yu, H. & Ye, L. (2022). Recent advances
in construction and regulation of yeast cell factories. World J
Microbiol Biotechnol , 38, 57.
2 Zhou, Y. J., Kerkhoven, E. J. & Nielsen, J. (2018). Barriers and
opportunities in bio-based production of hydrocarbons. Nature
Energy , 3, 925-935.
3 Carsanba, E., Pintado, M. & Oliveira, C. (2021). Fermentation
Strategies for Production of Pharmaceutical Terpenoids in Engineered
Yeast. Pharmaceuticals (Basel) , 14.
4 Yin, X. et al. (2015). Metabolic engineering in the
biotechnological production of organic acids in the tricarboxylic acid
cycle of microorganisms: Advances and prospects. Biotechnol Adv ,
33, 830-841.
5 Krishnan, A., McNeil, B. A. & Stuart, D. T. (2020). Biosynthesis of
Fatty Alcohols in Engineered Microbial Cell Factories: Advances and
Limitations. Front Bioeng Biotechnol , 8, 610936.
6 Zhang, Y., Nielsen, J. & Liu, Z. (2018). Metabolic engineering of
Saccharomyces cerevisiae for production of fatty acid-derived
hydrocarbons. Biotechnol Bioeng , 115, 2139-2147.
7 Chen, R., Yang, S., Zhang, L. & Zhou, Y. J. (2020). Advanced
Strategies for Production of Natural Products in Yeast. iScience ,
23, 100879.
8 Srinivasan, P. & Smolke, C. D. (2021). Engineering cellular
metabolite transport for biosynthesis of computationally predicted
tropane alkaloid derivatives in yeast. Proc Natl Acad Sci U S A ,
118.
9 Luo, X. et al. (2019). Complete biosynthesis of cannabinoids
and their unnatural analogues in yeast. Nature , 567, 123-126.
10 Srinivasan, P. & Smolke, C. D. (2019). Engineering a microbial
biosynthesis platform for de novo production of tropane alkaloids.Nat Commun , 10, 3634.
11 Ro, D. K. et al. (2006). Production of the antimalarial drug
precursor artemisinic acid in engineered yeast. Nature , 440,
940-943.
12 Wang, J. et al. (2021). Overproduction of alpha-Farnesene inSaccharomyces cerevisiae by Farnesene Synthase Screening and
Metabolic Engineering. J. Agric. Food Chem. , 69, 3103-3113.
13 Leavell, M. D., McPhee, D. J. & Paddon, C. J. (2016). Developing
fermentative terpenoid production for commercial usage. Curr Opin
Biotechnol , 37, 114-119.
14 Mulleder, M., Campbell, K., Matsarskaia, O., Eckerstorfer, F. &
Ralser, M. (2016). Saccharomyces cerevisiae single-copy plasmids
for auxotrophy compensation, multiple marker selection, and for
designing metabolically cooperating communities. F1000Res , 5,
2351.
15 Gupta, A., Hicks, M. A., Manchester, S. P. & Prather, K. L. (2016).
Porting the synthetic D-glucaric acid pathway from Escherichia coli toSaccharomyces cerevisiae . Biotechnol J , 11, 1201-1208.
16 Yang, S., Cao, X., Yu, W., Li, S. & Zhou, Y. J. (2020). Efficient
targeted mutation of genomic essential genes in yeastSaccharomyces cerevisiae . Appl Microbiol Biotechnol , 104,
3037-3047.
17 Ljungdahl, P. O. & Daignan-Fornier, B. (2012). Regulation of amino
acid, nucleotide, and phosphate metabolism in Saccharomyces
cerevisiae . Genetics , 190, 885-929.
18 Guo, W. et al. (2022). URA3 affects artemisinic acid
production by an engineered Saccharomyces cerevisiae in
pilot-scale fermentation. Sheng Wu Gong Cheng Xue Bao , 38,
737-748.
19 Zhou, Y. J. et al. (2016). Production of fatty acid-derived
oleochemicals and biofuels by synthetic yeast cell factories. Nat
Commun , 7, 11709.
20 Verduyn, C., Postma, E., Scheffers, W. A. & Dijken, J. P. V. (1992).
Effect of benzoic acid on metabolic fluxes in yeasts: a
continuous-culture study on the regulation of respiration and alcoholic
fermentation. Yeast , 8, 501-517.
21 Arjun, S. & Fred, S. (1975). Genetic and physiological
characterization of met15 mutants of Saccharomyces
cerevisiae : a selective system for forward and reverse mutations.Genetics , 81.
22 Ishii, R. et al. (2022). Substrate-induced differential
degradation and partitioning of the two tryptophan permeases Tat1 and
Tat2 into eisosomes in Saccharomyces cerevisiae . Biochim
Biophys Acta Biomembr , 1864, 183858.
23 Lenihan, J. R., Hiroko, T., Don, D., S., R. N. & Rika, R. (2008).
Developing an industrial artemisinic acid fermentation process to
support the cost-effective production of antimalarial artemisinin-based
combination therapies. Biotechnol. Prog. , 24, 1026-1032.
24 Alma, G. & Kgstutis, S. (1994). Control of the expression of theADE2 gene of the yeast Saccharomyces cerevisiae .Curr Genet , 25, 475-479.
25 Simone, U. & V., B. C. (1996). The red/white colony color assay in
the yeast Saccharomyces cerevisiae : epistatic growth advantage of
white ade8-18 , ade2 cells over red ade2 cells.Curr Genet. , 30, 485-492.
26 Blazeck, J., Liu, L., Knight, R. & Alper, H. S. (2013). Heterologous
production of pentane in the oleaginous yeast Yarrowia lipolytica.J Biotechnol , 165, 184-194.
27 Rodriguez-Frometa, R. A., Gutierrez, A., Torres-Martinez, S. &
Garre, V. (2013). Malic enzyme activity is not the only bottleneck for
lipid accumulation in the oleaginous fungus Mucor circinelloides.Appl Microbiol Biotechnol , 97, 3063-3072.
28 Zhang, Y., Adams, I. P. & Ratledge, C. (2007). Malic enzyme: the
controlling activity for lipid production? Overexpression of malic
enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid
accumulation. Microbiology (Reading) , 153, 2013-2025.
29 Zhu, C. et al. (2014). Planar Mobius aromatic pentalenes
incorporating 16 and 18 valence electron osmiums. Nat Commun , 5,
3265.
30 Babaei, M. et al. (2021). Expansion of EasyClone-MarkerFree
toolkit for Saccharomyces cerevisiae genome with new integration
sites. FEMS Yeast Res , 21.