References
1. Zolk O, von dem Knesebeck A, Graf N, et al. Cardiovascular Health Status And Genetic Risk In Survivors of Childhood Neuroblastoma and Nephroblastoma Treated With Doxorubicin: Protocol of the Pharmacogenetic Part of the LESS-Anthra Cross-Sectional Cohort Study. JMIR Res Protoc . 2022;11(2). doi:10.2196/27898
2. Magdy T, Burridge PW. Use of hiPSC to explicate genomic predisposition to anthracycline-induced cardiotoxicity.Pharmacogenomics . 2021;22(1):41-54. doi:10.2217/pgs-2020-0104
3. Chang VY, Wang JJJ, Keeling NJ, et al. Pharmacogenetic testing to guide therapeutic decision-making and improve outcomes for children undergoing anthracycline-based chemotherapy. Br J Clin Pharmacol . 2016;11(1):1-12. doi:10.1111/bcpt.13593
4. Qiu S, Zhou T, Qiu B, et al. Risk Factors for Anthracycline-Induced Cardiotoxicity. Front Cardiovasc Med . 2021;8(September):1-12. doi:10.3389/fcvm.2021.736854
5. Tonk ECM, Gurwitz D, Maitland-Van Der Zee AH, Janssens ACJW. Assessment of pharmacogenetic tests: Presenting measures of clinical validity and potential population impact in association studies.Pharmacogenomics J . 2017;17(4):386-392. doi:10.1038/tpj.2016.34
6. Bini I, Asaftei SD, Riggi C, et al. Anthracycline-induced cardiotoxicity in patients with paediatric bone sarcoma and soft tissue sarcoma. Cardiol Young . 2017;27(9):1815-1822. doi:10.1017/S1047951117001536
7. Ohtani K, Fujino T, Ide T, et al. Recovery from left ventricular dysfunction was associated with the early introduction of heart failure medical treatment in cancer patients with anthracycline-induced cardiotoxicity. Clin Res Cardiol . 2019;108(6):600-611. doi:10.1007/s00392-018-1386-0
8. Sallustio BC, Boddy A V. Is there scope for better individualisation of anthracycline cancer chemotherapy? Br J Clin Pharmacol . 2021;87(2):295-305. doi:10.1111/bcp.14628
9. Aminkeng F, Ross CJD, Rassekh SR, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity.Br J Clin Pharmacol . Published online 2016:683-695. doi:10.1111/bcp.13008
10. Park B, Sim SH, Lee KS, Kim HJ, Park IH. Genome-wide association study of genetic variants related to anthracycline-induced cardiotoxicity in early breast cancer. Cancer Sci . 2020;111(7):2579-2587. doi:10.1111/cas.14446
11. Schneider BP, Shen F, Gardner L, et al. Genome-wide association study for anthracycline-induced congestive heart failure. Clin Cancer Res . 2017;23(1):43-51. doi:10.1158/1078-0432.CCR-16-0908
12. Christidi E, Huang H, Shafaattalab S, et al. Variation in RARG increases susceptibility to doxorubicin-induced cardiotoxicity in patient specific induced pluripotent stem cell-derived cardiomyocytes.Sci Rep . 2020;10(1):1-13. doi:10.1038/s41598-020-65979-x
13. Dent SF, Botros J, Rushton M, et al. Anthracycline-induced cardiotoxicity in patients with early-stage breast cancer: the Canadian Cancer Trials Group (CCTG) MA.21 experience. Breast Cancer Res Treat . 2020;184(3):733-741. doi:10.1007/s10549-020-05887-w
14. Aminkeng F, Bhavsar AP, Visscher H, et al. Anthracycline-Induced Cardiotoxicity in Childhood Cancer. Nat Genet . 2015;47(9):1079-1084. doi:10.1038/ng.3374.A
15. Aminkeng F, Ross CJD, Rassekh SR, et al. Pharmacogenomic screening for anthracycline-induced cardiotoxicity in childhood cancer. Br J Clin Pharmacol . 2017;83(5):1143-1145. doi:10.1111/bcp.13218
16. Sági JC, Egyed B, Kelemen A, et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer . 2018;18(1):1-14. doi:10.1186/s12885-018-4629-6
17. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic Variants Associated With Cancer Therapy-Induced Cardiomyopathy.Circulation . 2019;140(1):31-41. doi:10.1161/CIRCULATIONAHA.118.037934
18. Loucks CM, Yan K, Tanoshima R, Ross CJD, Rassekh SR, Carleton BC. Pharmacogenetic testing to guide therapeutic decision-making and improve outcomes for children undergoing anthracycline-based chemotherapy.Basic Clin Pharmacol Toxicol . 2022;130(S1):95-99. doi:10.1111/bcpt.13593
19. Visscher H, Ross CJD, Rassekh SR, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol . 2012;30(13):1422-1428. doi:10.1200/JCO.2010.34.3467
20. Pérez-Blanco JS, Santos-Buelga D, Fernández de Gatta M del M, Hernández-Rivas JM, Martín A, García MJ. Population pharmacokinetics of doxorubicin and doxorubicinol in patients diagnosed with non-Hodgkin’s lymphoma. Br J Clin Pharmacol . 2016;82(6):1517-1527. doi:10.1111/bcp.13070
21. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy.Circulation . 2015;131(22):1981-1988. doi:10.1161/CIRCULATIONAHA.114.013777
22. Getz KD, Sung L, Ky B, et al. Occurrence of treatment-related cardiotoxicity and its impact on outcomes among children treated in the AAML0531 clinical trial: A report from the Children’s Oncology Group.J Clin Oncol . 2019;37(1):12-21. doi:10.1200/JCO.18.00313
23. Agunbiade TA, Zaghlol RY, Barac A. Heart Failure in Relation to Tumor-Targeted Therapies and Immunotherapies. Methodist Debakey Cardiovasc J . 2019;15(4):250-257. doi:10.14797/mdcj-15-4-250
24. Tan VZZ, Chan NM, Ang WL, Mya SN, Chan MY, Chen CK. Cardiotoxicity After Anthracycline Chemotherapy for Childhood Cancer in a Multiethnic Asian Population. Front Pediatr . 2021;9(February):1-9. doi:10.3389/fped.2021.639603
25. Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Heart Failure with Targeted Cancer Therapies: Mechanisms and Cardioprotection.Circ Res . 2021;128(10):1576-1593. doi:10.1161/CIRCRESAHA.121.318223
26. Sandamali JAN, Hewawasam RP, Fernando MACSS, et al. Anthracycline-Induced Cardiotoxicity in Breast Cancer Patients from Southern Sri Lanka: An Echocardiographic Analysis. Biomed Res Int . 2020;2020. doi:10.1155/2020/1847159
27. Bonifaz-Peña V, Contreras A V., Struchiner CJ, et al. Exploring the distribution of genetic markers of pharmacogenomics relevance in Brazilian and Mexican populations. PLoS One . 2014;9(11):1-22. doi:10.1371/journal.pone.0112640
28. Lotrionte M, Biondi-Zoccai G, Abbate A, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol . 2013;112(12):1980-1984. doi:10.1016/j.amjcard.2013.08.026
29. Leong SL, Chaiyakunapruk N, Lee SWH. Candidate gene association studies of anthracycline-induced cardiotoxicity: A systematic review and meta-Analysis. Sci Rep . 2017;7(1):1-13. doi:10.1038/s41598-017-00075-1
30. Linschoten M, Teske AJ, Cramer MJ, Van Der Wall E, Asselbergs FW. Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circ Genomic Precis Med . 2018;11(1):E001753. doi:10.1161/CIRCGEN.117.001753
31. Chang VY, Wang JJ. Pharmacogenetics of Chemotherapy-Induced Cardiotoxicity. Curr Oncol Rep . 2018;20(7). doi:10.1007/s11912-018-0696-8
32. Kaboré EG, Guenancia C, Vaz-Luis I, et al. Association of body mass index and cardiotoxicity related to anthracyclines and trastuzumab in early breast cancer: French CANTO cohort study. PLoS Med . 2019;16(12):1-12. doi:10.1371/journal.pmed.1002989
33. Roncato R, Cecchini E, Dalle Fratte C, et al. Cancer Pharmacogenetics: perspective on newly discovered and implemented predictive biomarkers. Pharmadvances . 2021;3(2):357. doi:10.36118/pharmadvances.2021.03
34. Kim YA, Cho H, Lee N, et al. Doxorubicin-induced heart failure in cancer patients: A cohort study based on the Korean National Health Insurance Database. Cancer Med . 2018;7(12):6084-6092. doi:10.1002/cam4.1886
35. Mbavha BT, Kanji CR, Stadler N, et al. Population genetic polymorphisms of pharmacogenes in Zimbabwe, a potential guide for the safe and efficacious use of medicines in people of African ancestry.Pharmacogenet Genomics . 2022;32(5):173-182. doi:10.1097/FPC.0000000000000467
36. Yoon GJ, Telli ML, Kao DP, Matsuda KY, Carlson RW, Witteles RM. Left Ventricular Dysfunction in Patients Receiving Cardiotoxic Cancer Therapies. J Am Coll Cardiol . 2010;56(20):1644-1650. doi:10.1016/j.jacc.2010.07.023
37. Nagy M, Attya M, Patrinos GP. Unraveling heterogeneity of the clinical pharmacogenomic guidelines in oncology practice among major regulatory bodies. Pharmacogenomics . 2020;21(17):1247-1264. doi:10.2217/pgs-2020-0056
38. Vargas-Neri JL, Carleton B, Ross CJ, Medeiros M, Castañeda-Hernández G, Clark P. Pharmacogenomic study of anthracycline-induced cardiotoxicity in Mexican pediatric patients. Pharmacogenomics . 2022;23(5):291-301. doi:10.2217/pgs-2021-0144
39. Scott E, Hasbullah JS, Ross CJD, Carleton BC. Reducing anthracycline-induced cardiotoxicity through pharmacogenetics.Pharmacogenomics . 2018;19(15):1147-1150. doi:10.2217/pgs-2018-0124
40. Magdy T, Jouni M, Kuo HH, et al. Identification of Drug Transporter Genomic Variants and Inhibitors That Protect Against Doxorubicin-Induced Cardiotoxicity. Circulation . 2022;145(4):279-294. doi:10.1161/CIRCULATIONAHA.121.055801
41. Rosenberg H. Cardiac function in 5-year survivors of childhood cancer. Arch Intern Med . 2011;171(3):264. doi:10.1001/archinternmed.2010.533
42. Dionne F, Aminkeng F, Bhavsar AP, et al. An initial health economic evaluation of pharmacogenomic testing in patients treated for childhood cancer with anthracyclines. Pediatr Blood Cancer . 2018;65(3):1-8. doi:10.1002/pbc.26887