References
1. Zolk O, von dem Knesebeck A, Graf N, et al. Cardiovascular Health
Status And Genetic Risk In Survivors of Childhood Neuroblastoma and
Nephroblastoma Treated With Doxorubicin: Protocol of the Pharmacogenetic
Part of the LESS-Anthra Cross-Sectional Cohort Study. JMIR Res
Protoc . 2022;11(2). doi:10.2196/27898
2. Magdy T, Burridge PW. Use of hiPSC to explicate genomic
predisposition to anthracycline-induced cardiotoxicity.Pharmacogenomics . 2021;22(1):41-54. doi:10.2217/pgs-2020-0104
3. Chang VY, Wang JJJ, Keeling NJ, et al. Pharmacogenetic testing to
guide therapeutic decision-making and improve outcomes for children
undergoing anthracycline-based chemotherapy. Br J Clin Pharmacol .
2016;11(1):1-12. doi:10.1111/bcpt.13593
4. Qiu S, Zhou T, Qiu B, et al. Risk Factors for Anthracycline-Induced
Cardiotoxicity. Front Cardiovasc Med . 2021;8(September):1-12.
doi:10.3389/fcvm.2021.736854
5. Tonk ECM, Gurwitz D, Maitland-Van Der Zee AH, Janssens ACJW.
Assessment of pharmacogenetic tests: Presenting measures of clinical
validity and potential population impact in association studies.Pharmacogenomics J . 2017;17(4):386-392. doi:10.1038/tpj.2016.34
6. Bini I, Asaftei SD, Riggi C, et al. Anthracycline-induced
cardiotoxicity in patients with paediatric bone sarcoma and soft tissue
sarcoma. Cardiol Young . 2017;27(9):1815-1822.
doi:10.1017/S1047951117001536
7. Ohtani K, Fujino T, Ide T, et al. Recovery from left ventricular
dysfunction was associated with the early introduction of heart failure
medical treatment in cancer patients with anthracycline-induced
cardiotoxicity. Clin Res Cardiol . 2019;108(6):600-611.
doi:10.1007/s00392-018-1386-0
8. Sallustio BC, Boddy A V. Is there scope for better individualisation
of anthracycline cancer chemotherapy? Br J Clin Pharmacol .
2021;87(2):295-305. doi:10.1111/bcp.14628
9. Aminkeng F, Ross CJD, Rassekh SR, et al. Recommendations for genetic
testing to reduce the incidence of anthracycline-induced cardiotoxicity.Br J Clin Pharmacol . Published online 2016:683-695.
doi:10.1111/bcp.13008
10. Park B, Sim SH, Lee KS, Kim HJ, Park IH. Genome-wide association
study of genetic variants related to anthracycline-induced
cardiotoxicity in early breast cancer. Cancer Sci .
2020;111(7):2579-2587. doi:10.1111/cas.14446
11. Schneider BP, Shen F, Gardner L, et al. Genome-wide association
study for anthracycline-induced congestive heart failure. Clin
Cancer Res . 2017;23(1):43-51. doi:10.1158/1078-0432.CCR-16-0908
12. Christidi E, Huang H, Shafaattalab S, et al. Variation in RARG
increases susceptibility to doxorubicin-induced cardiotoxicity in
patient specific induced pluripotent stem cell-derived cardiomyocytes.Sci Rep . 2020;10(1):1-13. doi:10.1038/s41598-020-65979-x
13. Dent SF, Botros J, Rushton M, et al. Anthracycline-induced
cardiotoxicity in patients with early-stage breast cancer: the Canadian
Cancer Trials Group (CCTG) MA.21 experience. Breast Cancer Res
Treat . 2020;184(3):733-741. doi:10.1007/s10549-020-05887-w
14. Aminkeng F, Bhavsar AP, Visscher H, et al. Anthracycline-Induced
Cardiotoxicity in Childhood Cancer. Nat Genet .
2015;47(9):1079-1084. doi:10.1038/ng.3374.A
15. Aminkeng F, Ross CJD, Rassekh SR, et al. Pharmacogenomic screening
for anthracycline-induced cardiotoxicity in childhood cancer. Br J
Clin Pharmacol . 2017;83(5):1143-1145. doi:10.1111/bcp.13218
16. Sági JC, Egyed B, Kelemen A, et al. Possible roles of genetic
variations in chemotherapy related cardiotoxicity in pediatric acute
lymphoblastic leukemia and osteosarcoma. BMC Cancer .
2018;18(1):1-14. doi:10.1186/s12885-018-4629-6
17. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic Variants
Associated With Cancer Therapy-Induced Cardiomyopathy.Circulation . 2019;140(1):31-41.
doi:10.1161/CIRCULATIONAHA.118.037934
18. Loucks CM, Yan K, Tanoshima R, Ross CJD, Rassekh SR, Carleton BC.
Pharmacogenetic testing to guide therapeutic decision-making and improve
outcomes for children undergoing anthracycline-based chemotherapy.Basic Clin Pharmacol Toxicol . 2022;130(S1):95-99.
doi:10.1111/bcpt.13593
19. Visscher H, Ross CJD, Rassekh SR, et al. Pharmacogenomic prediction
of anthracycline-induced cardiotoxicity in children. J Clin
Oncol . 2012;30(13):1422-1428. doi:10.1200/JCO.2010.34.3467
20. Pérez-Blanco JS, Santos-Buelga D, Fernández de Gatta M del M,
Hernández-Rivas JM, Martín A, García MJ. Population pharmacokinetics of
doxorubicin and doxorubicinol in patients diagnosed with non-Hodgkin’s
lymphoma. Br J Clin Pharmacol . 2016;82(6):1517-1527.
doi:10.1111/bcp.13070
21. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of
anthracycline cardiotoxicity and improvement with heart failure therapy.Circulation . 2015;131(22):1981-1988.
doi:10.1161/CIRCULATIONAHA.114.013777
22. Getz KD, Sung L, Ky B, et al. Occurrence of treatment-related
cardiotoxicity and its impact on outcomes among children treated in the
AAML0531 clinical trial: A report from the Children’s Oncology Group.J Clin Oncol . 2019;37(1):12-21. doi:10.1200/JCO.18.00313
23. Agunbiade TA, Zaghlol RY, Barac A. Heart Failure in Relation to
Tumor-Targeted Therapies and Immunotherapies. Methodist Debakey
Cardiovasc J . 2019;15(4):250-257. doi:10.14797/mdcj-15-4-250
24. Tan VZZ, Chan NM, Ang WL, Mya SN, Chan MY, Chen CK. Cardiotoxicity
After Anthracycline Chemotherapy for Childhood Cancer in a Multiethnic
Asian Population. Front Pediatr . 2021;9(February):1-9.
doi:10.3389/fped.2021.639603
25. Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Heart Failure
with Targeted Cancer Therapies: Mechanisms and Cardioprotection.Circ Res . 2021;128(10):1576-1593.
doi:10.1161/CIRCRESAHA.121.318223
26. Sandamali JAN, Hewawasam RP, Fernando MACSS, et al.
Anthracycline-Induced Cardiotoxicity in Breast Cancer Patients from
Southern Sri Lanka: An Echocardiographic Analysis. Biomed Res
Int . 2020;2020. doi:10.1155/2020/1847159
27. Bonifaz-Peña V, Contreras A V., Struchiner CJ, et al. Exploring the
distribution of genetic markers of pharmacogenomics relevance in
Brazilian and Mexican populations. PLoS One . 2014;9(11):1-22.
doi:10.1371/journal.pone.0112640
28. Lotrionte M, Biondi-Zoccai G, Abbate A, et al. Review and
meta-analysis of incidence and clinical predictors of anthracycline
cardiotoxicity. Am J Cardiol . 2013;112(12):1980-1984.
doi:10.1016/j.amjcard.2013.08.026
29. Leong SL, Chaiyakunapruk N, Lee SWH. Candidate gene association
studies of anthracycline-induced cardiotoxicity: A systematic review and
meta-Analysis. Sci Rep . 2017;7(1):1-13.
doi:10.1038/s41598-017-00075-1
30. Linschoten M, Teske AJ, Cramer MJ, Van Der Wall E, Asselbergs FW.
Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic
Variants Modulating Individual Risk. Circ Genomic Precis Med .
2018;11(1):E001753. doi:10.1161/CIRCGEN.117.001753
31. Chang VY, Wang JJ. Pharmacogenetics of Chemotherapy-Induced
Cardiotoxicity. Curr Oncol Rep . 2018;20(7).
doi:10.1007/s11912-018-0696-8
32. Kaboré EG, Guenancia C, Vaz-Luis I, et al. Association of body mass
index and cardiotoxicity related to anthracyclines and trastuzumab in
early breast cancer: French CANTO cohort study. PLoS Med .
2019;16(12):1-12. doi:10.1371/journal.pmed.1002989
33. Roncato R, Cecchini E, Dalle Fratte C, et al. Cancer
Pharmacogenetics: perspective on newly discovered and implemented
predictive biomarkers. Pharmadvances . 2021;3(2):357.
doi:10.36118/pharmadvances.2021.03
34. Kim YA, Cho H, Lee N, et al. Doxorubicin-induced heart failure in
cancer patients: A cohort study based on the Korean National Health
Insurance Database. Cancer Med . 2018;7(12):6084-6092.
doi:10.1002/cam4.1886
35. Mbavha BT, Kanji CR, Stadler N, et al. Population genetic
polymorphisms of pharmacogenes in Zimbabwe, a potential guide for the
safe and efficacious use of medicines in people of African ancestry.Pharmacogenet Genomics . 2022;32(5):173-182.
doi:10.1097/FPC.0000000000000467
36. Yoon GJ, Telli ML, Kao DP, Matsuda KY, Carlson RW, Witteles RM. Left
Ventricular Dysfunction in Patients Receiving Cardiotoxic Cancer
Therapies. J Am Coll Cardiol . 2010;56(20):1644-1650.
doi:10.1016/j.jacc.2010.07.023
37. Nagy M, Attya M, Patrinos GP. Unraveling heterogeneity of the
clinical pharmacogenomic guidelines in oncology practice among major
regulatory bodies. Pharmacogenomics . 2020;21(17):1247-1264.
doi:10.2217/pgs-2020-0056
38. Vargas-Neri JL, Carleton B, Ross CJ, Medeiros M, Castañeda-Hernández
G, Clark P. Pharmacogenomic study of anthracycline-induced
cardiotoxicity in Mexican pediatric patients. Pharmacogenomics .
2022;23(5):291-301. doi:10.2217/pgs-2021-0144
39. Scott E, Hasbullah JS, Ross CJD, Carleton BC. Reducing
anthracycline-induced cardiotoxicity through pharmacogenetics.Pharmacogenomics . 2018;19(15):1147-1150.
doi:10.2217/pgs-2018-0124
40. Magdy T, Jouni M, Kuo HH, et al. Identification of Drug Transporter
Genomic Variants and Inhibitors That Protect Against Doxorubicin-Induced
Cardiotoxicity. Circulation . 2022;145(4):279-294.
doi:10.1161/CIRCULATIONAHA.121.055801
41. Rosenberg H. Cardiac function in 5-year survivors of childhood
cancer. Arch Intern Med . 2011;171(3):264.
doi:10.1001/archinternmed.2010.533
42. Dionne F, Aminkeng F, Bhavsar AP, et al. An initial health economic
evaluation of pharmacogenomic testing in patients treated for childhood
cancer with anthracyclines. Pediatr Blood Cancer . 2018;65(3):1-8.
doi:10.1002/pbc.26887