REFERENCES
[1] Bolotin A, Quinquis B, Sorokin
A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats
(CRISPRs) have spacers of extrachromosomal origin. Microbiology
(Reading). 2005;151:2551-2561.
[2] Mojica FJ, Diez-Villasenor C,
Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced
prokaryotic repeats derive from foreign genetic elements. Journal of
molecular evolution. 2005;60:174-182.
[3] Makarova KS, Grishin NV,
Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based
immune system in prokaryotes: computational analysis of the predicted
enzymatic machinery, functional analogies with eukaryotic RNAi, and
hypothetical mechanisms of action. Biology direct. 2006;1:7.
[4] Louwen R, Staals RH, Endtz HP,
van Baarlen P, van der Oost J. The role of CRISPR-Cas systems in
virulence of pathogenic bacteria. Microbiol Mol Biol Rev. 2014;78:74-88.
[5] Faure G, Makarova KS, Koonin
EV. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond
Adaptive Immunity. J Mol Biol. 2019;431:3-20.
[6] Makarova KS, Wolf YI, Iranzo
J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary
classification of CRISPR-Cas systems: a burst of class 2 and derived
variants. Nat Rev Microbiol. 2020;18:67-83.
[7] Koonin EV, Makarova KS. Mobile
Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There
and Back. Genome Biol Evol. 2017;9:2812-2825.
[8] Shariat N, Dudley EG. CRISPRs:
molecular signatures used for pathogen subtyping. Appl Environ
Microbiol. 2014;80:430-439.
[9] Medina-Aparicio L, Davila S,
Rebollar-Flores JE, Calva E, Hernandez-Lucas I. The CRISPR-Cas system in
Enterobacteriaceae. Pathogens and disease. 2018;76:1-15.
[10] Xue C, Sashital DG.
Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae.
EcoSal Plus. 2019;8:1-38.
[11] Adeolu M, Alnajar S, Naushad
S, R SG. Genome-based phylogeny and taxonomy of the ’Enterobacteriales’:
proposal for Enterobacterales ord. nov. divided into the families
Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov.,
Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov.,
and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575-5599.
[12] Diez-Villasenor C, Almendros
C, Garcia-Martinez J, Mojica FJ. Diversity of CRISPR loci in Escherichia
coli. Microbiology. 2010;156:1351-1361.
[13] Shariat N, Timme RE,
Pettengill JB, Barrangou R, Dudley EG. Characterization and evolution of
Salmonella CRISPR-Cas systems. Microbiology (Reading). 2015;161:374-386.
[14] Shen J, Lv L, Wang X, Xiu Z,
Chen G. Comparative analysis of CRISPR-Cas systems in Klebsiella
genomes. J Basic Microbiol. 2017;57:325-336.
[15] Wang P, Zhang B, Duan G,
Wang Y, Hong L, Wang L, et al. Bioinformatics analyses of Shigella
CRISPR structure and spacer classification. World J Microbiol
Biotechnol. 2016;32:38.
[16] Gupta V, Sharma S, Pal K,
Goyal P, Agarwal D, Chander J. Serratia no longer an opportunistic
uncommon pathogen - case series & review of literature. Infectious
disorders drug targets. 2021;21:e300821191666
[17] Cristina ML, Sartini M,
Spagnolo AM. Serratia marcescens Infections in Neonatal Intensive Care
Units (NICUs). Int J Environ Res Public Health. 2019;16:1-10.
[18] Lo WS, Huang YY, Kuo CH.
Winding paths to simplicity: genome evolution in facultative insect
symbionts. FEMS Microbiol Rev. 2016;40:855-874.
[19] Chen S, Blom J, Walker ED.
Genomic, Physiologic, and Symbiotic Characterization of Serratia
marcescens Strains Isolated from the Mosquito Anopheles stephensi. Front
Microbiol. 2017;8:1483.
[20] Ferreira RL, Rezende GS,
Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, et al.
Characterization of KPC-Producing Serratia marcescens in an Intensive
Care Unit of a Brazilian Tertiary Hospital. Front Microbiol.
2020;11:956.
[21] Abreo E, Altier N. Pangenome
of Serratia marcescens strains from nosocomial and environmental origins
reveals different populations and the links between them. Scientific
reports. 2019;9:46.
[22] Petersen LM, Tisa LS. Friend
or foe? A review of the mechanisms that drive Serratia towards diverse
lifestyles. Can J Microbiol. 2013;59:627-640.
[23] Vicente CS, Nascimento FX,
Barbosa P, Ke HM, Tsai IJ, Hirao T, et al. Evidence for an Opportunistic
and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated
Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus
pinaster. Microb Ecol. 2016;72:669-681.
[24] Srinivasan VB, Rajamohan G.
Genome analysis of urease positive Serratia marcescens, co-producing
SRT-2 and AAC(6’)-Ic with multidrug efflux pumps for antimicrobial
resistance. Genomics. 2019;111:653-660.
[25] Scrascia M, D’Addabbo P,
Roberto R, Porcelli F, Oliva M, Calia C, et al. Characterization of
CRISPR-Cas Systems in Serratia marcescens Isolated from Rhynchophorus
ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Microorganisms.
2019;7:1-9.
[26] Dong H, Cui Y, Zhang D.
CRISPR/Cas Technologies and Their Applications in Escherichia coli.
Frontiers in bioengineering and biotechnology. 2021;9:762676.
[27] Nidhi S, Anand U, Oleksak P,
Tripathi P, Lal JA, Thomas G, et al. Novel CRISPR-Cas Systems: An
Updated Review of the Current Achievements, Applications, and Future
Research Perspectives. International journal of molecular sciences.
2021;22:1-42.
[28] Pourcel C, Touchon M,
Villeriot N, Vernadet JP, Couvin D, Toffano-Nioche C, et al. CRISPRCasdb
a successor of CRISPRdb containing CRISPR arrays and cas genes from
complete genome sequences, and tools to download and query lists of
repeats and spacers. Nucleic Acids Res. 2020;48:D535-D544.
[29] Couvin D, Bernheim A,
Toffano-Nioche C, Touchon M, Michalik J, Neron B, et al.
CRISPRCasFinder, an update of CRISRFinder, includes a portable version,
enhanced performance and integrates search for Cas proteins. Nucleic
Acids Res. 2018;46:W246-W251.
[30] Sandner-Miranda L, Vinuesa
P, Cravioto A, Morales-Espinosa R. The Genomic Basis of Intrinsic and
Acquired Antibiotic Resistance in the Genus Serratia. Front Microbiol.
2018;9:828.
[31] Scrascia M, Pazzani C,
Valentini F, Oliva M, Russo V, D’Addabbo P, et al. Identification of
pigmented Serratia marcescens symbiotically associated with
Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae).
MicrobiologyOpen. 2016;5:883-890.
[32] Dalbon VA, Acevedo JPM,
Ribeiro Junior KAL, Ribeiro TFL, da Silva JM, Fonseca HG, et al.
Perspectives for Synergic Blends of Attractive Sources in South American
Palm Weevil Mass Trapping: Waiting for the Red Palm Weevil Brazil
Invasion. Insects. 2021;12:1-16.
[33] Zhang Q, Ye Y. Not all
predicted CRISPR-Cas systems are equal: isolated cas genes and classes
of CRISPR like elements. BMC Bioinformatics. 2017;18:92.
[34] Biswas A, Staals RH, Morales
SE, Fineran PC, Brown CM. CRISPRDetect: A flexible algorithm to define
CRISPR arrays. BMC Genomics. 2016;17:356.
[35] Seemann T. Prokka: rapid
prokaryotic genome annotation. Bioinformatics. 2014;30:2068-2069.
[36] Darling AE, Mau B, Perna NT.
progressiveMauve: multiple genome alignment with gene gain, loss and
rearrangement. PLoS One. 2010;5:e11147.
[37] Edgar RC. MUSCLE: a multiple
sequence alignment method with reduced time and space complexity. BMC
Bioinformatics. 2004;5:113.
[38] Edgar RC. MUSCLE: multiple
sequence alignment with high accuracy and high throughput. Nucleic Acids
Res. 2004;32:1792-1797.
[39] Waterhouse AM, Procter JB,
Martin DM, Clamp M, Barton GJ. Jalview Version 2–a multiple sequence
alignment editor and analysis workbench. Bioinformatics.
2009;25:1189-1191.
[40] Makarova KS, Anantharaman V,
Grishin NV, Koonin EV, Aravind L. CARF and WYL domains: ligand-binding
regulators of prokaryotic defense systems. Frontiers in genetics.
2014;5:102.
[41] Makarova KS, Gao L, Zhang F,
Koonin EV. Unexpected connections between type VI-B CRISPR-Cas systems,
bacterial natural competence, ubiquitin signaling network and DNA
modification through a distinct family of membrane proteins. FEMS
Microbiol Lett. 2019;366:fnz088.
[42] McDonald ND, Regmi A,
Morreale DP, Borowski JD, Boyd EF. CRISPR-Cas systems are present
predominantly on mobile genetic elements in Vibrio species. BMC
Genomics. 2019;20:105.
[43] Butiuc-Keul A, Farkas A,
Carpa R, Iordache D. CRISPR-Cas System: The Powerful Modulator of
Accessory Genomes in Prokaryotes. Microbial physiology. 2022;32:2-17.
[44] Westra ER, Pul U, Heidrich
N, Jore MM, Lundgren M, Stratmann T, et al. H-NS-mediated repression of
CRISPR-based immunity in Escherichia coli K12 can be relieved by the
transcription activator LeuO. Mol Microbiol. 2010;77:1380-1393.
[45] Pul U, Wurm R, Arslan Z,
Geissen R, Hofmann N, Wagner R. Identification and characterization of
E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol.
2010;75:1495-1512.
[46] Arroyo-Olarte RD, Bravo
Rodriguez R, Morales-Rios E. Genome Editing in Bacteria: CRISPR-Cas and
Beyond. Microorganisms. 2021;9:1-25.
[47] Strecker J, Ladha A, Gardner
Z, Schmid-Burgk JL, Makarova KS, Koonin EV, et al. RNA-guided DNA
insertion with CRISPR-associated transposases. Science. 2019;365:48-53.
[48] Klompe SE, Vo PLH,
Halpin-Healy TS, Sternberg SH. Transposon-encoded CRISPR-Cas systems
direct RNA-guided DNA integration. Nature. 2019;571:219-225.