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Abstract

Flexural or membrane-coupled or capillary gravity wave scattering by a sub-
merged or a piercing vertical porous barrier is analytically studied based on a
connection that involves the solution potentials and few auxiliary potentials.
The problems for the auxiliary potentials are relatively easy to handle for
their solutions. The original problem is decomposed into two scattering or
radiation problems of this type. The solution wave potential is determined in
terms of those resolved wave potentials. Numerical results for the explicitly
obtained scattering quantities are also presented.
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1. Introduction

The study of free surface gravity waves and their interaction with struc-
tures like ice-sheets, membranes and elastic plates plays a significant role in
the design and the development of floating breakwaters and very large float-
ing structures (VLFS) that are needed to protect offshore structures or to
utilize the ocean space for humanitarian activities and military operations.
It is known that membrane breakwaters have economic and environmental
advantages over the elastic ones in coastal zones. On the other hand, VLFS
have a major role in the offshore regions. One of the issues in the construction

∗Corresponding author
Email address: ashokkumaraswin@gmail.com ( R. Ashok )

Preprint submitted to Mathematical Methods in the Applied Sciences June 18, 2022



of VLFS is curbing the undesirable plate deflections. By placing submerged
structures at one end of or beneath the VLFS, these deflections are controlled
[16-19]. In this context, it was also desirable to study the problem of flexural
gravity wave interaction with a submerged ridge in polar oceans [12].

It is not uncommon to find many interesting studies on wave interac-
tions with an ice-cover [4, 8]. Also, flexural gravity wave interactions with
submerged bodies are semi-analytically studied by Das and Mandal [2, 3].
In particular, flexural wave interaction with an inclined submerged vertical
solid barrier is studied by Maiti and Mandal [9] with the use of hyper singular
integral equations. However, a very few analytical studies are available in
the literature to deal with the boundary value problems associated with such
problems. An explicit method of solution has been devised by Manam [10]
and Manam and Kaligatla [12] to tackle the membrane-coupled or flexural
gravity wave scattering by thin vertical solid barriers. Their solution method
has special importance that is exhibited in capturing enhanced reflection at
certain wave frequencies due to the presence of the floating structure and
the partial vertical barrier. Using generalized expansion formula and associ-
ated orthogonal mode-coupling relation, Karmakar et al. [5] have analyzed
the flexural gravity wave scattering problem involving multiple articulated
floating elastic plates. Mondal and Sahoo [14, 15] have investigated flexural
gravity wave interaction problem involving solid barriers in a two-layer or a
three-layer fluid with finite and infinite water depths. Behera et al. [1] have
studied oblique flexural gravity wave scattering by a finite submerged porous
plate.

Free surface wave interactions with porous structures is an important
study to understand the role of permeability in wave attenuation. Partial
porous structures such as bottom-standing or surface piercing ones are usu-
ally considered in coastal applications for various reasons that pertain to
navigation or the bottom condition. Not a single analytical solution proce-
dure is available in the literature to tackle the scattering problem involving
any partial porous structure until recently when Manam and Sivanesan [13]
completely resolved the problem involving thin vertical porous barriers for
normal wave incidence in deep water. The method of solution is based on the
decomposition of the original problem into two explicitly solvable scattering
or radiation problems involving a vertical solid barrier of same configuration.

In the present paper, the decomposition method of Manam and Sivanesan
[13] is exploited to tackle the structure-coupled gravity wave scattering by
a submerged or a surface piercing vertical porous barrier. The decomposed
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problems in the present paper are solved explicitly by the aid of a weakly
singular integral equation. It is useful to study the present class of problems
in the development of VLFS or floating breakwaters with an aim to control
undesirable plate deflections and in coastal engineering applications. The
floating elastic structure is considered with or without compression. Also,
this study can be a model for the scattering of flexural gravity waves by a thin
submarine porous ridge in polar oceans. In Sections 2 and 3, the mathemati-
cal problem and its decomposition with the help of integral relations between
the wave potentials associated with the original and the decomposed prob-
lems involving either the submerged or the surface piercing barrier. More-
over, explicit solutions of the decomposed problems are obtained in Sections
2 and 3 for flexural or ice-coupled as well as capillary or membrane-coupled
gravity wave problems involving the barriers. Numerical results that describe
the effect of the porous barrier on these structure-coupled gravity waves are
presented along with conclusions in Sections 4 and 5.

2. Mathematical problem and its solution approach for submerged
porous barrier case

A two-dimensional irrotational wave motion is considered in an inviscid
incompressible fluid of infinite depth. Cartesian coordinates (x, y) are cho-
sen with y = 0 being mean free surface and y pointing vertically downwards.
A uniformly extended submerged thin vertical porous barrier is positioned
at x = 0, y ∈ B = (a,∞), where B denotes the barrier position. The
linearized wave motion can be represented by a time-harmonic velocity po-

tential Φj(x, y, t) = Re
{
φ̂j(x, y)e(−1)jiωt

}
, j = 1, 2, where Φj(x, y, t) with

j = 1 and j = 2 represent the velocity potential associated with the incoming
wave traveling from x = +∞ and x = −∞ respectively and ω is the incident
wave frequency. Then, the velocity potential φ̂j(x, y), j = 1, 2 satisfies

∂2φ̂j
∂x2

+
∂2φ̂j
∂y2

= 0, −∞ < x <∞, y > 0. (1)

The boundary condition at undisturbed plate or ice-covered surface is given
by

D
∂5φ̂j
∂y5

+M
∂3φ̂j
∂y3

+
∂φ̂j
∂y

+Kφ̂j = 0, on y = 0 j = 1, 2, (2)
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where D = EI/(ρg − ρidω
2), M = τ/(ρg − ρidω

2) and K = ρω2/(ρg −
ρidω

2). EI = Ed3/12(1− ν2)-denotes flexural rigidity of the plate/ice-sheet,
E-Young modulus, ν-Poisson ratio, ρ−density of water, ρi−mass density of
the ice-sheet, d-thickness of the plate/ice-sheet, the flexible plate is under
compression if τ < 0 and tension if τ > 0 (see Manam and Kaligatla [12]).
When the surface is covered with a membrane of thickness m, the boundary
condition (2) becomes third order condition with D = 0, M = τ/(ρg−mω2)
and K = ρω2/(ρg − mω2), where τ is the membrane tension. When the
free surface is considered with surface tension τ , the boundary condition (2)
becomes with D = 0,M = τ/ρg and K = ω2/g (see Manam [10]).
The condition on the submerged vertical porous barrier is obtained as

∂φ̂j
∂x

(0±, y) = (−1)jiλΓ[φ̂j(0
+, y)− φ̂j(0−, y)], y ∈ (a,∞), j = 1, 2, (3)

where Γ is the non-dimensional complex porous effect parameter such that
Γ = γ(s1 + is2)/[λd(s2

1 + s2
2)] in which γ is porosity constant, d is plate

thickness, s1 is resistance force coefficient, s2 is inertial force coefficient,and
λ is incident wave number (see Yu and Chwang [20]).
Since the fluid flow is continuous across the gap x = 0, y ∈ G = (0, a), where
G denotes gap position, the potential φ̂j, j = 1, 2 must satisfy

φ̂j(0
−, y) = φ̂j(0

+, y), y ∈ (0, a). (4)

Absence of the fluid motion at large depth suggest that

|∇φ̂j| → 0, as y →∞, j = 1, 2. (5)

The radiating conditions are specified as

φ̂j(x, y) ∼
{
φ0(−x, y) +Rp φ

0(x, y), (−1)j+1x→∞,
Tp φ

0(−x, y), (−1)j+1x→ −∞, (6)

where φ0(x, y) = eiλx−λy represents an incident wave with λ being the positive
real root of the dispersion equation Dx5 +Mx3 + x−K = 0 and Rp, Tp are
reflection, transmission amplitudes of an incident wave respectively.
The potential function φ̂j j = 1, 2 has the edge behavior

|∇φ̂j| ∼ r−1/2, as r → 0. (7)
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where r is the local radius from the edge point x = 0, y = a (see Karp and
Karal [6]).
Since the horizontal velocity of the fluid is continuous across x = 0, one could
reduce the upper-half plane problem for the potentials φ̂j(x, y), j = 1, 2 into
a quarter-plane problem. This is done by writing

φ̂j(x, y) =

{
φ0(−x, y) + φ0(x, y) + φpj(x, y), (−1)jx < 0,

−φpj(−x, y), (−1)jx > 0, for j = 1, 2.

The new functions φp1(x, y) and φp2(x, y) are defined in the domain x > 0 and
x < 0 respectively.
Therefore, if the functions φpj(x, y), j = 1, 2 is found then by using the
above relation, it can be obtained the potential functions of original problem
φ̂j(x, y), j = 1, 2. Now, the new potential functions φpj(x, y), j = 1, 2 satisfy
(1), (2), (5) and the boundary conditions

∂φpj
∂x

(0, y) + 2iΓλ
(
φpj(0, y) + φ0(0, y)

)
= 0, for y ∈ (a,∞), j = 1, 2,

φpj(0, y) + φ0(0, y) = 0, y ∈ (0, a), j = 1, 2 (8)

and

φpj(x, y)→ (Rp − 1)φ0(x, y) as (−1)jx→ −∞, j = 1, 2

with Tp = 1−Rp.

The porous barrier edge condition (7) satisfied by φ̂j(x, y), j = 1, 2 suggests
that

|∇φpj | ∼ r−1/2, as r → 0, j = 1, 2. (9)

When the porous barrier becomes a solid barrier, that is Γ = 0, the
quarter-plane porous wave potentials φpj(x, y), j = 1, 2 reduce to solution po-
tentials for wave scattering by the submerged solid barrier. These potentials
are solid wave potentials and are denoted by φj(x, y), j = 1, 2. They satisfy
(1)-(2), (8)-(9) and the Neumann boundary condition

∂φj
∂x

(0, y) = 0, for y ∈ (a,∞), j = 1, 2.

Also, radiation conditions are modified in this case as

φj(x, y)→ (R− 1)φ0(x, y) as (−1)jx→ −∞, j = 1, 2,

where R is the reflection amplitude of an incident wave due to the solid
barrier.
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2.1. connection between the porous and the solid wave potentials

The connection takes the same form as the one in Manam and Sivanesan
[13] that has been established for free surface gravity waves. It is an integral
relation among the functions φpj , φj, j = 1, 2 and the auxiliary wave potential
functions ψj, j = 1, 2 as given by

φpj(x, y) + iλΓ

∫ x

0

[
{φ0(t, y) + φ0(−t, y)}+

2∑
m=1

φpm((−1)j+mt, y)
]
dt

= φj(x, y) + ψj(x, y), (−1)j+1x > 0, j = 1, 2. (10)

Each term in the above connection is shown to satisfy Laplace equation. Also,
it helps to decompose the original problem for φpj(x, y) into two problems for
the functions φj and ψj. The reader is referred to Manam and Sivanesan
[13] for more details. Then, the problem for φj, j = 1, 2 is merely scattering
of structure-coupled waves by the submerged vertical solid barrier while the
problem for the auxiliary potentials ψj, j = 1, 2 satisfy (1)-(2), (5) along with
the conditions

ψj(0, y) = 0, y ∈ (0, a), (11)

ψjx(0, y) = 0, y ∈ (a,∞) (12)

and

ψj(x, y) ∼ Rj
1 φ

0(x, y) +Rj
2 φ

0(−x, y), (−1)j+1x→∞,

where Rj
k, k = 1, 2 are unknown constants.

Adding the relations in (10) after rewriting them in the same domain x > 0
and then make use of the addition in (10) produce the porous wave potentials
φj(x, y), j = 1, 2 in an explicit form as given by

φpj(x, y) = [φj(x, y) + ψj(x, y)]− Γ[φ0(x, y)− φ0(−x, y)]−

iKΓ
2∑
l=1

∫ x

0

[
φl((−1)j+lt, y) + ψl((−1)j+lt, y)

]
dt, (−1)j+1x > 0, j = 1, 2. (13)

Now, it is only remained to explicitly solve the decomposed boundary
value problems for φj and ψj, j = 1, 2. Their details are given in the next
section.

6



2.2. Determination of the decomposed wave potentials

2.2.1. flexural or ice-coupled gravity wave scattering

We consider a problem for the function χ(x, y), x > 0, y > 0 that satisfies
(1)-(2), (5), (11), (12) and the radiating condition

χ(x, y) ∼ η1 φ
0(x, y) + η2 φ

0(−x, y), as x→∞. (14)

The general solution χ(x, y) that satisfies (1)-(2), (5) and (14) can be written
as (see Manam and Kaligatla [12])

χ(x, y) = η1e
iλx−λy + η2e

−iλx−λy + A1e
iλ1x−λ1y + A2e

−iλ̄1x−λ̄1y

+

∫ ∞
0

A(ξ) L(ξ, y) e−ξx dξ, x > 0, y > 0,

where η1, η2, A1, A2, A(ξ) are unknowns, L(ξ, y) = ξ(1−Mξ2 +Dξ4) cos ξy−
K sin ξy and the roots of the polynomial equation Dx5 + Qx3 + x −K = 0
are λ, λj, λ̄j, j = 1, 2. It is not difficult to see that λ > 0,Re(λ1) > 0 and
Re(λ2) < 0.
Application of the boundary conditions (11) and (12) produces a pair of
integral equations

L

∫ ∞
0

A(ξ) sin ξy dξ = −(η1 + η2) e−λy − A1e
−λ1y − A2e

−λ̄1y, y ∈ (0, a)

and

L

∫ ∞
0

ξA(ξ) sin ξy dξ = (η1 − η2)iλe−λy + iλ1A1e
−λ1y − iλ̄1A2e

−λ̄1y, y ∈ (a,∞),

where L = (D ∂5

∂y5
+M ∂3

∂y3
+ ∂

∂y
−K).

These are integrated to find that∫ ∞
0

A(ξ) sin ξy dξ = C1 e
λy + C2 e

λ1y + C3 e
λ̄1y + C4 e

λ2y + C5 e
λ̄2y

+
(η1 + η2)

S(λ)
e−λy +

A1

S(λ1)
e−λ1y +

A2

S(λ̄1)
e−λ̄1y ≡ f(y), y ∈ (0, a) (15)

and ∫ ∞
0

ξA(ξ) sin ξy dξ = D1 e
λ2y +D2 e

λ̄2y +D3 e
λ1y +D4 e

λ̄1y +D5 e
λy

− iλ

S(λ)
(η1 − η2)e−λy − iλ1

S(λ1)
A1e

−λ1y +
iλ̄1

S(λ̄1)
A2e

−λ̄1y ≡ h(y), y ∈ (a,∞),(16)
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where Cj, Dj, j = 1, 2, 3, 4, 5 are arbitrary constants and S(X) = X(1 +
MX2 +DX4) +K.
Since the Fourier integral (15) tends to 0 as y → 0 and it is differentiable at
least four more times, it may be obtained from (15) that

C1 +C2 +C3 +C4 +C5 +
1

S(λ)
η1 +

1

S(λ)
η2 +

1

S(λ1)
A1 +

1

S(λ̄1)
A2 = 0, (17)

λ2C1+λ2
1C2+λ̄2

1C3+λ2
2C4+λ̄2

2C5+
λ2

S(λ)
η1+

λ2

S(λ)
η2+

λ2
1

S(λ1)
A1+

λ̄2
1

S(λ̄1)
A2 = 0,

(18)

λ4C1+λ4
1C2+λ̄4

1C3+λ4
2C4+λ̄4

2C5+
λ4

S(λ)
η1+

λ4

S(λ)
η2+

λ4
1

S(λ1)
A1+

λ̄4
1

S(λ̄1)
A2 = 0.

(19)
Also, since h(y)→ 0 as y →∞, the constants D3 = D4 = 0.
By the inversion of the Fourier sine transform (16), it may be obtained that

A(ξ) =
2

πξ

∫ ∞
0

P (y) sin ξy dy, (20)

where

P (y) =

{
g1(y), for y ∈ (0, a)
h(y), for y ∈ (a,∞)

with

g1(y) =

∫ ∞
0

ξA(ξ) sin ξy dξ, y ∈ (0, a).

Now, substituting A(ξ) in the integral relation (15), one may obtain the
weakly singular integral equation

1

π

∫ ∞
a

g1(u) log
∣∣∣u+ x

u− x

∣∣∣du = f1(x), x ∈ (a,∞), (21)

where

f1(x) = f(x)− 1

π

∫ ∞
a

h(t) log
∣∣∣x+ t

x− t

∣∣∣dt.
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Due to the fact that the pair of integral relations (15) and (16) are differen-
tiable at least for four times, one can obtain a pair of weakly singular integral
equations by applying the above procedure again and it may be obtained as

1

π

∫ ∞
a

gj(u) log
∣∣∣u+ x

u− x

∣∣∣du = fj(x), x ∈ (a,∞), (22)

where

gj(y) =
d2(j−1)g1

dy2(j−1)
, fj(x) =

d2(j−1)f

dx2(j−1)
− 1

π

∫ ∞
a

d2(j−1)h

dt2(j−1)
log
∣∣∣x+ t

x− t

∣∣∣dt, j = 2, 3.

By applying the above process, A(ξ) in (20) can be written as two more
different integral forms. Then equate these A(ξ) recursively, one may obtain
the following conditions

h(a) = 0, h′′(a) = 0, g′1(a) = h′(a) and g′′′1 (a) = h′′′(a).

The first two of the above conditions become

eλ2aD1 + eλ̄2aD2 −
iλ

S(λ)
e−λaη1 +

iλ

S(λ)
e−λaη2 −

iλ1

S(λ1)
e−λ1aA1

+
iλ̄1

S(λ̄1)
e−λ̄1aA2 = 0 (23)

and

λ2
2e
λ2aD1 + λ̄2

2e
λ̄2aD2 −

iλ3

S(λ)
e−λaη1 +

iλ3

S(λ)
e−λaη2 −

iλ3
1

S(λ1)
e−λ1aA1

+
iλ̄3

1

S(λ̄1)
e−λ̄1aA2 = 0. (24)

The solution to the integral equations (21) and (22) subject to the bounded
behavior of the functions gj(u), j = 1, 2, 3 at u = a is obtained as (see Manam
and Kaligatla [12])

gj(u) =
2

π
u
√
a2 − u2

∫ a

0

f ′j(t)√
a2 − t2(u2 − t2)

dt, u ∈ (0, a)

provided that ∫ a

0

f ′j(t)√
a2 − t2

dt = 0, j = 1, 2, 3. (25)
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The conditions (25) are expressed as

λJ1(λ)C1 + λ1J1(λ1)C2 + λ̄1J1(λ̄1)C3 + λ2J1(λ2)C4 + λ̄2J1(λ̄2)C5

−J3(λ2)D1 − J3(λ̄2)D2 −
[ λ̄1

S(λ̄1)
J1(−λ̄1) +

iλ̄1

S(λ̄1)
J3(−λ̄1)

]
A2

−α(λ1)A1 − α(λ)η1 −
[ iλ

S(λ)
J3(−λ) +

λ

S(λ)
J1(−λ)

]
η2 = 0, (26)

λ3J1(λ)C1 + λ3
1J1(λ1)C2 + λ̄3

1J1(λ̄1)C3 + λ3
2J1(λ2)C4 + λ̄3

2J1(λ̄2)C5

−λ2
2J3(λ2)D1 − λ̄2

2J3(λ̄2)D2 −
[ λ̄3

1

S(λ̄1)
J1(−λ̄1) +

iλ̄3
1

S(λ̄1)
J3(−λ̄1)

]
A2

−β(λ1)A1 − β(λ)η1 −
[ iλ3

S(λ)
J3(−λ) +

λ3

S(λ)
J1(−λ)

]
η2 = 0 (27)

and

λ5J1(λ)C1 + λ1λ̄
5
2J1(λ1)C2 + λ̄5

1J1(λ̄1)C3 + λ5
2J1(λ2)C4 + λ̄5

2J1(λ̄2)C5

−λ4
2J3(λ2)D1 − λ̄4

2J3(λ̄2)D2 −
[ λ̄5

1

S(λ̄1)
J1(−λ̄1) +

iλ̄5
1

S(λ̄1)
J3(−λ̄1)

]
A2

−γ(λ1)A1 − γ(λ)η1 −
[ iλ5

S(λ)
J3(−λ) +

λ5

S(λ)
J1(−λ)

]
η2 = 0, (28)

where α(X) = X
S(X)

J1(−X)− iX
S(X)

J3(−X), β(X) = X3

S(X)
J1(−X)− iX3

S(X)
J3(−X)

and γ(X) = X5

S(X)
J1(−X)− iX5

S(X)
J3(−X) with J1, J3 as in the Appendix.

Finally, the conditions g′1(a) = h′(a) and g′′′1 (a) = h′′′(a) may be modified as
(see Manam and Kaligatla [12])

− ag′1(a) =

∫ a

0

t2f ′′′(t)√
a2 − t2

dt−
∫ ∞
a

t2h′′(t)√
t2 − a2

dt+

∫ ∞
a

th′′(t)dt

and

− ag′′′1 (a) =

∫ a

0

t2f ′′′′′(t)√
a2 − t2

dt−
∫ ∞
a

t2h′′′′(t)√
t2 − a2

dt+

∫ ∞
a

th′′′′(t)dt.

These are further expressed as linear equations

λ3J2(λ)C1 + λ3
1J2(λ1)C2 + λ̄3

1J2(λ̄1)C3 + λ3
2J2(λ2)C4 + λ̄3

2J2(λ̄2)C5

10



+
[
eλ2a − λ2

2J4(λ2)
]
D1 +

[
eλ̄2a − λ̄2

2J4(λ̄2)
]
D2 − γ1(λ)η1

−
[ iλ3

S(λ)
J4(−λ) +

λ3

S(λ)
J2(−λ)− iλ

S(λ)
e−λa

]
η2 − γ1(λ1)A1

−
[ λ̄3

1

S(λ̄1)
J2(−λ̄1) +

iλ̄3
1

S(λ̄1)
J4(−λ̄1)− iλ̄1

S(λ̄1)
e−λ̄1a

]
A2 = 0 (29)

and

λ5J2(λ)C1 + λ1λ̄
5
2J2(λ1)C2 + λ̄5

1J2(λ̄1)C3 + λ5
2J2(λ2)C4 + λ̄5

2J2(λ̄2)C5

+
[
λ2

2e
λ2a − λ4

2J4(λ2)
]
D1 +

[
λ̄2

2e
λ̄2a − λ̄4

2J4(λ̄2)
]
D2 − γ2(λ)η1

−
[ iλ5

S(λ)
J4(−λ) +

λ5

S(λ)
J2(−λ)− iλ3

S(λ)
e−λa

]
η2 − γ2(λ1)A1

−
[ λ̄5

1

S(λ̄1)
J2(−λ̄1) +

iλ̄5
1

S(λ̄1)
J4(−λ̄1)− iλ̄3

1

S(λ̄1)
e−λ̄1a

]
A2 = 0, (30)

where γ1(X) = X3

S(X)
J2(−X)− iX3

S(X)
J4(−X)+ iX

S(X)
e−Xa and γ2(X) = X5

S(X)
J2(−X)−

iX5

S(X)
J4(−X) + iX3

S(X)
e−Xa with J2, J4 as in the Appendix.

Then, the flexural gravity wave potentials ψj, j = 1, 2 are obtained as
ψ1(x, y) = χ(x, y) x > 0, y > 0 with η1 = R1

1, η2 = R1
2 and ψ2(x, y) =

χ(−x, y) x < 0, y > 0 with η1 = R2
2, η2 = R2

1.
By following the above solution procedure to the scattering problem in-

volving the submerged vertical solid barrier, it is found that

φj(x, y) = (R− 1)eiλx−λy +B1e
iλ1x−λ1y +B2e

−iλ̄1x−λ̄1y

+

∫ ∞
0

B(ξ) L(ξ, y) e(−1)jξx dξ, (−1)j+1x > 0, j = 1, 2,

where L(ξ, y) = ξ(1−Mξ2 +Dξ4) cos ξy−K sin ξy and R, B1, B2, B(ξ) are
unknowns.
The function B(ξ) will take the form of (20) with an appropriate P (y) while
the other constants satisfy the system of linear equations

U1 + U2 + U3 + U4 + U5 +
1

S(λ)
R +

1

S(λ1)
B1 +

1

S(λ̄1)
B2 = 0, (31)

λ2U1 +λ2
1U2 + λ̄2

1U3 +λ2
2U4 + λ̄2

2U5 +
λ2

S(λ)
R+

λ2
1

S(λ1)
B1 +

λ̄2
1

S(λ̄1)
B2 = 0, (32)
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λ4U1 +λ4
1U2 + λ̄4

1U3 +λ4
2U4 + λ̄4

2U5 +
λ4

S(λ)
R+

λ4
1

S(λ1)
B1 +

λ̄4
1

S(λ̄1)
B2 = 0, (33)

eλ2aV1 + eλ̄2aV2 −
iλ

S(λ)
e−λaR− iλ1

S(λ1)
e−λ1aB1 +

iλ̄1

S(λ̄1)
e−λ̄1aB2

= − iλ

S(λ)
e−λa, (34)

λ2
2e
λ2aV1 + λ̄2

2e
λ̄2aV2 −

iλ3

S(λ)
e−λaR− iλ3

1

S(λ1)
e−λ1aB1 +

iλ̄3
1

S(λ̄1)
e−λ̄1aB2

= − iλ3

S(λ)
e−λa, (35)

λJ1(λ)U1 + λ1J1(λ1)U2 + λ̄1J1(λ̄1)U3 + λ2J1(λ2)U4 + λ̄2J1(λ̄2)U5

−J3(λ2)V1 − J3(λ̄2)V2 − α(λ)R− α(λ1)B1

−
[ λ̄1

S(λ̄1)
J1(−λ̄1) +

iλ̄1

S(λ̄1)
J3(−λ̄1)

]
B2 =

iλ

S(λ)
J3(−λ), (36)

λ3J1(λ)U1 + λ3
1J1(λ1)U2 + λ̄3

1J1(λ̄1)U3 + λ3
2J1(λ2)U4 + λ̄3

2J1(λ̄2)U5

−λ2
2J3(λ2)V1 − λ̄2

2J3(λ̄2)V2 − β(λ)R− β(λ1)B1

−
[ λ̄3

1

S(λ̄1)
J1(−λ̄1) +

iλ̄3
1

S(λ̄1)
J3(−λ̄1)

]
B2 =

iλ3

S(λ)
J3(−λ), (37)

λ5J1(λ)U1 + λ1λ̄
5
2J1(λ1)U2 + λ̄5

1J1(λ̄1)U3 + λ5
2J1(λ2)U4 + λ̄5

2J1(λ̄2)U5

−λ4
2J3(λ2)V1 − λ̄4

2J3(λ̄2)V2 − γ(λ)R− γ(λ1)B1

−
[ λ̄5

1

S(λ̄1)
J1(−λ̄1) +

iλ̄5
1

S(λ̄1)
J3(−λ̄1)

]
B2 =

iλ5

S(λ)
J3(−λ), (38)
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λ3J2(λ)U1 + λ3
1J2(λ1)U2 + λ̄3

1J2(λ̄1)U3 + λ3
2J2(λ2)U4 + λ̄3

2J2(λ̄2)U5

+
[
eλ2a − λ2

2J4(λ2)
]
V1 +

[
eλ̄2a − λ̄2

2J4(λ̄2)
]
V2 − γ1(λ)R− γ1(λ1)B1

−
[ λ̄3

1

S(λ̄1)
J2(−λ̄1) +

iλ̄3
1

S(λ̄1)
J4(−λ̄1)− iλ̄1

S(λ̄1)
e−λ̄1a

]
B2

=
iλ3

S(λ)
J4(−λ)− iλ

S(λ)
e−λa, (39)

and

λ5J2(λ)U1 + λ5
1J2(λ1)U2 + λ̄5

1J2(λ̄1)U3 + λ5
2J2(λ2)U4 + λ̄5

2J2(λ̄2)U5

+
[
λ2

2e
λ2a − λ4

2J4(λ2)
]
V1 +

[
λ̄2

2e
λ̄2a − λ̄4

2J4(λ̄2)
]
V2 − γ2(λ)R− γ2(λ1)B1

−
[ λ̄5

1

S(λ̄1)
J2(−λ̄1) +

iλ̄5
1

S(λ̄1)
J4(−λ̄1)− iλ̄3

1

S(λ̄1)
e−λ̄1a

]
B2

=
iλ5

S(λ)
J4(−λ)− iλ3

S(λ)
e−λa, (40)

where Uj, j = 1, 2, 3, 4, 5 and Vj, j = 1, 2 are unknown constants.
Now, by using far-field behavior of the each term in the connection (10),

it may be obtained that

(1 + Γ)Rp = R +R1
1, (41)

ΓRp = −R1
2 (42)

for j = 1 and

(1 + Γ)Rp = R +R2
2, (43)

ΓRp = −R2
1 (44)

for j = 2.
The linear equations (17)-(19), (23)-(24) and (26)-(40) with η1 = R1

1, η2 = R1
2

or η1 = R2
2, η2 = R2

1 along with (41)-(42) or (43)-(44), respectively, are solved
to find all the unknown constants involved in the problem. Thus, the porous
potentials φpj(x, y), j = 1, 2 are explicitly known from the relation (13).
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2.2.2. capillary or membrane-coupled gravity wave scattering

The general problem for χ(x, y), x > 0, y > 0 in this case is (1), (2)
with D = 0, (5), (11)-(12) and (14). χ(x, y) is routinely determined as (see
Manam [10])

χ(x, y) = η1e
iλx−λy + η2e

−iλx−λy +

∫ ∞
0

A(ξ) L1(ξ, y) e−ξx dξ, x > 0, y > 0,

where L1(ξ, y) = ξ(1−Mξ2) cos ξy−K sin ξy, η1, η2, and A(ξ) are unknowns.
Also, λ is a positive real root of the dispersion equation Mx3 + x −K = 0.
The equation has complex conjugate roots λ1, λ̄1 with a negative real part.
Then, the unknowns involved are found to satisfy the linear equations

C1 + C2 + C3 +
1

S1(λ)
η1 +

1

S1(λ)
η2 = 0, (45)

λ2C1 + λ2
1C2 + λ̄2

1C3 +
λ2

S1(λ)
η1 +

λ2

S1(λ)
η2 = 0, (46)

eλ1aD1 + eλ̄1aD2 −
iλ

S1(λ)
e−λaη1 +

iλ

S1(λ)
e−λaη2 = 0, (47)

λJ1(λ)C1 + λ1J1(λ1)C2 + λ̄1J1(λ̄1)C3 − J3(λ1)D1 − J3(λ̄1)D2

−α(λ)η1 −
[ iλ

S1(λ)
J3(−λ) +

λ

S1(λ)
J1(−λ)

]
η2 = 0, (48)

λ3J1(λ)C1 + λ3
1J1(λ1)C2 + λ̄3

1J1(λ̄1)C3 − λ2
1J3(λ1)D1 − λ̄2

1J3(λ̄1)D2

−β(λ)η1 −
[ iλ3

S1(λ)
J3(−λ) +

λ3

S1(λ)
J1(−λ)

]
η2 = 0, (49)

λ3J2(λ)C1 + λ3
1J2(λ1)C2 + λ̄3

1J2(λ̄1)C3 +
[
eλ1a − λ2

1J4(λ1)
]
D1

+
[
eλ̄1a − λ̄2

1J4(λ̄1)
]
D2 − γ(λ)η1 −

[ iλ3

S1(λ)
J4(−λ) +

λ3

S1(λ)
J2(−λ)

]
η2 = 0,(50)

where S1(X) = X(1+MX2)+K, α(λ) = λ
S1(λ)

J1(−λ)− iλ
S1(λ)

J3(−λ), β(λ) =
λ3

S1(λ)
J1(−λ)− iλ3

S1(λ)
J3(−λ), γ(λ) = λ3

S1(λ)
J2(−λ)− iλ3

S1(λ)
J4(−λ)+ iλ

S1(λ)
e−λa and

Cj, Dj are arbitrary constants.
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Then, the membrane-coupled gravity wave potentials ψj, j = 1, 2 are ob-
tained as ψ1(x, y) = χ(x, y) x > 0, y > 0 with η1 = R1

1, η2 = R1
2 and

ψ2(x, y) = χ(−x, y) x < 0, y > 0 with η1 = R2
2, η2 = R2

1.
The solid wave potentials φj, j = 1, 2 are similarly obtained as

φj(x, y) = (R− 1)eiλx−λy +

∫ ∞
0

B(ξ) L1(ξ, y) e(−1)jξx dξ, (−1)j+1x > 0, j = 1, 2,

where L1(ξ, y) = ξ(1−Mξ2) cos ξy −K sin ξy and R, B(ξ) are unknowns.
Again, The function B(ξ) takes the form of (20) with appropriate P (y) while
the reflection amplitude R satisfies the system of linear equations

U1 + U2 + U3 +
1

S1(λ)
R = 0, (51)

λ2U1 + λ2
1U2 + λ̄2

1U3 +
λ2

S1(λ)
R = 0, (52)

eλ1aV1 + eλ̄1aV2 −
iλ

S1(λ)
e−λaR = − iλ

S1(λ)
e−λa, (53)

λJ1(λ)U1 + λ1J1(λ1)U2 + λ̄1J1(λ̄1)U3 − J3(λ1)V1 − J3(λ̄1)V2

−α(λ)R =
iλ

S1(λ)
J3(−λ), (54)

λ3J1(λ)U1 + λ3
1J1(λ1)U2 + λ̄3

1J1(λ̄1)U3 − λ2
1J3(λ1)V1 − λ̄2

1J3(λ̄1)V2

−β(λ)R =
iλ3

S1(λ)
J3(−λ), (55)

and

λ3J2(λ)U1 + λ3
1J2(λ1)U2 + λ̄3

1J2(λ̄1)U3 +
[
eλ1a − λ2

1J4(λ1)
]
V1

+
[
eλ̄1a − λ̄2

1J4(λ̄1)
]
V2 − γ(λ)R =

iλ3

S1(λ)
J4(−λ)− iλ

S1(λ)
e−λa, (56)

where Uj, j = 1, 2, 3 and Vj, j = 1, 2 are constants.
The system of equations (51)-(56) will determine the reflection amplitude

R of the submerged solid barrier while (45)-(50) with η1 = R1
1, η2 = R1

2 or
η1 = R2

2, η2 = R2
1 along with relations (41)-(42) or (43)-(44), respectively,

produce the reflection amplitude Rp and the other unknowns in an explicit
form.
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3. Mathematical problem and its solution approach for surface
piercing porous barrier case

We consider the scattering problem involving a surface piercing barrier
when the surface is covered with either a membrane or surface tension by
assuming D = 0 in (2). In the former case, both side of the barriers, mem-
brane is connected with a spring of zero stiffness (see Manam [10]). Then, the
spatial potentials φ̂j(x, y), j = 1, 2 satisfy the mixed boundary value problem
(1)− (7) with B = (0, a) and G = (a,∞).
It may be observed, due to the surface tension effect, the horizontal velocity
of the fluid is not continuous at the piercing point (0, 0). In order to make the
problem in which horizontal velocity is continuous across x = 0 and to utilize
the previously established solution procedure, we define a new potential as
given by

σj(x, y) = φ̂j(x, y)− φ̂cj(x, y), −∞ < x <∞, y > 0, j = 1, 2. (57)

In the above, φcj is the complex potential associated with wave scattering
by complete porous wall occupying the position at x = 0, y > 0. Then,
φcj, j = 1, 2 may be obtained (see Manam et al. [11]) as

φ̂cj(x, y) =


φ0(−x, y) +Rc φ

0(x, y) +

∫ ∞
0

E1(ξ)L1(ξ, y)e−ξ|x| dξ, (−1)j+1x > 0,

Tc φ
0(−x, y) +

∫ ∞
0

E2(ξ)L1(ξ, y)e−ξ|x| dξ, (−1)j+1x < 0,

where λ is the positive real root of the dispersion equation Mx3 +x−K = 0
and L1(ξ, y) = ξ(1−Mξ2) cos ξy −K sin ξy. Also, in the above, by utilizing
the mode-coupling relation on orthogonal functions L1(ξ, y) and e−λy (see
Manam [10]), the reflection and transmission amplitudes of the incident wave
from the complete porous barrier are obtained in an explicit form as given
by

Rc = 1− Tc +
2iM(µ− − µ+)

(1 + 3Mλ2)
=

1

1 + 2Γ

[
1 + 2iMΓ

(µ− − µ+)

(1 + 3Mλ2)

]
,

E1(ξ) = −E2(ξ) +
M(µ− − µ+)

∆(ξ)
= −iλMΓ

(µ− − µ+)

∆(ξ)(ξ − 2iλΓ)
,

where µ± =
∂φ̂cj(0±, 0)

∂x∂y
are undetermined constants in the problem and

∆(ξ) = ξ2(1−Mξ2)2 +K2.

16



Also, first it may be observed that if ((φ̂j)x(0−, 0) − (φ̂j)x(0+, 0)) =

((φ̂cj)x(0−, 0)−(φ̂cj)x(0+, 0)), then ((φ̂j)x(0−, y)−(φ̂j)x(0+, y)) = ((φ̂cj)x(0
−, y)−

(φ̂cj)x(0+, y)) for all y > 0 and subsequently, the potential
∂σj
∂x

is continuous
across x = 0 . Then the undetermined constant (µ− − µ+) will carry for-

ward to the problem for σj(x, y) since (µ−−µ+) =
(
∂φ̂j(0−,0)

∂x∂y
− ∂φ̂j(0+,0)

∂x∂y

)
. In

other words, the undetermined constant (µ−−µ+) in the scattering problem
involving the complete porous barrier has been fed from the last equality.
Since the membrane cover is connected to the barriers with the spring of

zero stiffness, then
∂φ̂j(0−,0)

∂x∂y
=

∂φ̂j(0+,0)

∂x∂y
= 0. In the case of free surface with

surface tension these constants,
∂φ̂j(0−,0)

∂x∂y
,

∂φ̂j(0+,0)

∂x∂y
are also known as edge

slope constants at the surface. (see Manam [10])
Now, the partial derivatives σjx, j = 1, 2 are continuous at x = 0,∀y ≥ 0.

It is clear from the definition (57) that the potentials σj, j = 1, 2 satisfy (1)-
(3), (5)and (7) . The new potentials σj(x, y), j = 1, 2 can be decomposed as
(see Lamb [7])

σj(x, y) =

{
ϕj(x, y), (−1)j+1x > 0,

−ϕj(−x, y), (−1)j+1x < 0.

The functions ϕj(x, y), j = 1, 2 defined in the quarter plane satisfy (1)-(2),
(5) and (7) along with

ϕjx(0, y) + 2iλΓϕj(0, y) = 0, y ∈ (0, a),

ϕj(0, y) = qj(y), y ∈ (a,∞),

ϕj(x, y) ∼ (Rp −Rc)φ
0(x, y), x→∞,

where the function qj(y), j = 1, 2 is given by

qj(y) =
1

2
(−1)j(φcj(0+, y)− φcj(0−, y)), y ∈ (a,∞),

= Rqe
−λy +

∫ ∞
0

E(ξ)L1(ξ, y) dξ, y ∈ (a,∞)

with

Rq =
1

1 + 2Γ

(iM(µ− − µ+)

1 + 3Mλ2
− 1
)
, E(ξ) =

M

2

ξ(µ− − µ+)

∆(ξ)(ξ − 2iλΓ)
.

Next, the above quarter plane problems for the solution potentials ϕj(x, y), j =
1, 2 are solved by defining a connection between them and a relatively easily
obtainable potentials, also known as auxiliary potentials.
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3.1. Determination of the potentials

The connection between the solution and the auxiliary potentials may be
defined as

ϕj(x, y) + iλΓ

∫ x

0

[
ϕ1((−1)j+1t, y) + ϕ2((−1)jt, y)

]
dt

= Ωj(x, y), (−1)j+1x > 0, j = 1, 2,

where the auxiliary potential Ωj satisfies (1)-(2) and (5). Then, it can be
easily verified that the potential Ωj, j = 1, 2, satisfies the boundary conditions

Ωjx(0, y) = 0, y ∈ (0, a), (58)

Ωj(0, y) = qj(y), y ∈ (a,∞), (59)

Ωj(x, y) ∼ R1jφ
0(x, y) +R2jφ

0(−x, y), (−1)j+1x→∞, (60)

where the R1j, R2j, j = 1, 2 are unknown constants such that

R11 −R21 = (1 + 2Γ)(Rp −Rc), R11 +R21 = Rp −Rc, (61)

and

R22 −R12 = (1 + 2Γ)(Rp −Rc), R22 +R12 = Rp −Rc. (62)

The potential function Ω(x, y) that satisfies (1)-(2),(5) and (60) may be ex-
panded as

Ω(x, y) = R1e
iλx−λy +R2e

−iλx−λy +

∫ ∞
0

C(ξ)L1(ξ, y)e−ξx dξ, x > 0, y > 0.

where R1, R2, C(ξ) are the unknowns and λ1 and λ̄1 are the other two roots of
dispersion relation. It is seen that Ω1(x, y) = Ω(x, y), x > 0 with R1 = R11,
R2 = R21 and Ω2(x, y) = Ω(−x, y), x > 0 with R1 = R22, R2 = R12.

A pair of integral equations are obtained by using the boundary conditions
(58) and (59). These integral equations are solved by the procedure as in
Manam [10], Manam and Kaligatla [12]. Then the unknowns R1 and R2

satisfy a system of linear equations

G1 +G2 +G3 −
iλ

S1(λ)
(R1 −R2) = 0, (63)
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G1λ
2 +G2λ

2
1 +G3λ̄

2
1 −

iλ3

S1(λ)
(R1 −R2) = 0, (64)

G1e
λa +G2e

λ1a +G3e
λ̄1a − iλ

S1(λ)
(R1 −R2)e−λa = 0, (65)

J5(λ)G1 + J5(λ1)G2 + J5(λ̄1)G3 + λ1J6(λ1)F1 + λ̄1J6(λ̄1)F2

− λ

S1(λ)
J6(−λ)(R1 +R2 −Rq)−

iλ

S1(λ)
J5(−λ)(R1 −R2)

= −
∫ ∞
a

∫ ∞
0

t ξE(ξ) cos ξt√
t2 − a2

dξdt, (66)

λ2J5(λ)G1 + λ2
1J5(λ1)G2 + λ̄1

2
J5(λ̄1)G3 + λ3

1J6(λ1)F1 + λ̄1
3
J6(λ̄1)F2

− λ3

S1(λ)
J6(−λ)(R1 +R2 −Rq)−

iλ3

S1(λ)
J5(−λ)(R1 −R2)

=

∫ ∞
a

∫ ∞
0

t ξ3E(ξ) cos ξt√
t2 − a2

dξdt, (67)

λJ1(λ)G1 + λ1J1(λ1)G2 + λ̄1J1(λ̄1)G3 + λ2
1J3(λ1)F1 + λ̄1

2
J3(λ̄1)F2

+
λ2

S1(λ)
J3(−λ)(R1 +R2 −Rq) +

iλ2

S1(λ)
J1(−λ)(R1 −R2)

=

∫ ∞
a

∫ ∞
0

ξ2E(ξ) sin ξt√
t2 − a2

dξdt, (68)

where J1, J3, J5 and J6 are given in the Appendix.
These set of six equations (63)-(68) and a pair of equations in (61) or

(62) are solved by taking either R1 = R11,R2 = R21 or R1 = R22,R2 = R12

for the eight unknown coefficients G1, G2, G3, F1, F2, R1, R2 and Rp interms
of µ− − µ+.

4. Numerical results

4.1. Flexural or ice-coupled gravity waves with submerged barrier

Numerical results are evaluated for the reflection coefficient and the total
energy against a wave parameter. Conservation of energy |Rp|2 + |Tp|2 = 1
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is validated when Γ = 0 for two barrier positions. In the computation,
parameters Young modulus E = 5GPa, Poisson’s ratio ν = 0.3, ice density
ρi = 922.5 kg m−3, water density ρ = 1025.0 kg m−3, acceleration due to
gravity g = 9.81 ms−2 are fixed. A typical value τ = −(EIρg)1/2 is chosen
for the compressive force on the floating structure.
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Figure 1: Variation of (a) reflection coefficient and (b) total wave energy
against time period 2π/ω when d = 0.5m and a = 1m.

In Figures 1–2, the reflection coefficient and the total energy for flexural
gravity waves are plotted against the time period T = 2π/ω for different
values of the porous parameter Γ when the thickness of the compressed plate
d = 0.5m and the submerged depths a = 1m, 20m respectively are kept
fixed. As observed in Manam and Kaligatla [12], enhanced reflection at
certain smaller time periods is sensitive to both the depth of submergence
and the plate thickness. For waves with these shorter time periods, reflection
as well as energy dissipation is found to be significantly small for any porous
parameter. At certain short to moderate resonant time periods of the incident
wave, significant energy dissipation is caused by the porous barrier. For
waves with moderate to longer time periods, 40-50% of the wave energy
is dissipated and 9-20% of the energy is reflected by the barrier when the
the porous barrier is considered with resistant effects in the moderate range
Γ = 0.5 to 1.0. Also, flexural gravity waves with certain time periods pass
through the porous barrier completely without any dissipation of energy. The
time period of these fully transmitted waves becomes longer with an increase
in the submerged depth of the barrier.

Figure 3 depicts that flexural gravity waves with small and intermediate
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Figure 2: Variation of (a) reflection coefficient and (b) total wave energy
against time period 2π/ω when d = 0.5m and a = 20m.

time periods have higher reflection than the flexural gravity waves under the
compressive force while those with longer time periods have slightly lower
reflection.
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Figure 3: Variation of (a) reflection coefficient and (b) total wave energy
against time period 2π/ω when d = 0.5m, a = 20m and τ = 0.

4.2. Capillary or membrane-coupled gravity waves with submerged barrier

The reflection coefficient and the total energy are plotted against the non-
dimensional wave parameter Ka for different values of the non-dimensional
membrane tension parameter β = MK2. A typical value of β chosen for wa-
ter at the room temperature is 0.074. The reflection and the energy curves for
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capillary gravity waves in this case are shown in Figure 4. Enhanced reflec-
tion as well as significant energy dissipation takes place at certain frequencies
which is due to the interplay between the surface tension and the incident
wave frequencies for all Γ values. However, moderate values of resistance
effects in the porous parameter Γ cause significant enhancement in the reflec-
tion and dissipation as compared to the inertial effects in Γ. Figure 5 shows
similar results for membrane coupled gravity waves with widening the gap
between resonant frequencies. Clearly, surface or membrane tension causes
enhanced reflection and porosity causes energy dissipation significantly at
the resonant frequencies.
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Figure 4: Variation of (a) reflection coefficient and (b) total wave energy
against the non-dimensional wavenumber Ka when β = 0.074.

4.3. Capillary or membrane-coupled gravity waves with surface piercing bar-
rier

The coefficient of reflection and total energy are evaluated against the
time period and non-dimensional wavenumber for membrane-coupled grav-
ity waves incident on the surface piercing barrier. Computations have been
done for the same edge slope constants. In Figure 6, reflection and energy
curves are depicted versus time period when β = 0.1 and a = 1m. Figure 6,
shows that reflection decreases as absolute value of porous effect parameter
Γ increases and energy loss increases as absolute value of non-zero Γ value
increases for waves with smaller time periods. Reflection of a solid barrier
is expectedly high. In Figures 7–8, reflection and energy curves are plotted
against the wavenumber Ka for various porous effect parameter Γ values
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Figure 5: Variation of (a) reflection coefficient and (b) total wave energy
against the non-dimensional wavenumber Ka when β = 0.1.
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Figure 6: Variation of (a) reflection coefficient and (b) total wave energy
against the against time period 2π/ω when β = 0.1 and a = 1m.
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with parameter values β = 0.074 and β = 0.1, respectively. The former one
for water with surface tension and latter for a tensioned membrane. Figures
7–8 depict that reflection increases with the decrease in the inertial and the
resistance of the porous parameter for all wavenumbers. Complete transmis-
sion occurs for waves with certain frequencies. Moreover, dissipation of wave
energy is mostly caused by the resistance effect of the porous parameter and
this happens for moderate to higher wavenumbers.
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Figure 7: Variation of (a) reflection coefficient and (b) total wave energy
against the non-dimensional wavenumber Ka when β = 0.074.
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Figure 8: Variation of (a) reflection coefficient and (b) total wave energy
against the non-dimensional wavenumber Ka when β = 0.1.
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5. Conclusions

Structure-coupled gravity wave scattering by a submerged vertical porous
barrier is explicitly solved by utilizing a connection between its solution wave
potential and the one pertaining to wave scattering by a submerged vertical
solid barrier. Also membrane coupled wave scattering by a surface piercing
porous barrier is explicitly solved by a similar connection between the wave
potentials. The method decomposes the original problem into two explicitly
solvable ones. Then, by solving the involved integral connections, the solution
wave potentials of the original problems are explicitly determined.

Numerical results for the explicitly found scattering quantities are graph-
ically presented. It is found that porous barriers with moderate resistance ef-
fects cause much desirable wave reflection and energy dissipation. At certain
resonant frequencies, enhanced reflection is caused by the membrane tension
while significant energy dissipation is caused by the porous barrier. Further,
complete transmission of capillary or membrane-coupled gravity waves past
the surface piercing porous barrier occurs at certain resonant wave frequen-
cies.
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Appendix

J1(x) ≡
∫ a

0

ext√
a2 − t2

dt =
π

2
[I0(ax) + L0(ax)],

J2(x) ≡
∫ a

0

t2ext√
a2 − t2

dt =
a2π

2
[I0(ax) + L0(ax)]− aπ

2x
[I1(ax) + L1(ax)],

J3(x) ≡
∫ ∞
a

ext√
t2 − a2

dt = K0(−ax),

J4(x) ≡
∫ ∞
a

t2ext√
t2 − a2

dt = −a
x
K1(−ax) + a2K0(−ax),

J5(x) ≡
∫ a

0

text√
(a2 − t2)

dt = a+
aπ

2
[I1(ax) + L1(ax)],

J6(x) ≡
∫ ∞
a

text√
t2 − a2

dt = aK1(−ax),

where K0, K1, I0, I1 are the modified Bessel functions and L0, L1 are the
Struve functions.
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