References
1. Wheeler RJ, Hyman AA. Controlling compartmentalization by
non-membrane-bound organelles. Philos Trans R Soc B Biol Sci .
2018;373(1747):20170193. doi:10.1098/rstb.2017.0193
2. Alberti S. Phase separation in biology. Curr Biol .
2017;27(20):R1097-R1102. doi:10.1016/j.cub.2017.08.069
3. Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology
and disease. Science . 2017;357(6357):eaaf4382.
doi:10.1126/science.aaf4382
4. Alberti S, Dormann D. Liquid–Liquid Phase Separation in Disease.Annu Rev Genet . 2019;53(1):171-194.
doi:10.1146/annurev-genet-112618-043527
5. Uversky VN. Protein intrinsic disorder-based liquid–liquid phase
transitions in biological systems: Complex coacervates and membrane-less
organelles. Adv Colloid Interface Sci . 2017;239(6400):97-114.
doi:10.1016/j.cis.2016.05.012
6. Ranganathan S, Shakhnovich EI. Dynamic metastable long-living
droplets formed by sticker-spacer proteins. Elife . 2020;9:1-25.
doi:10.7554/eLife.56159
7. Sehgal PB, Westley J, Lerea KM, DiSenso-Browne S, Etlinger JD.
Biomolecular condensates in cell biology and virology: Phase-separated
membraneless organelles (MLOs). Anal Biochem . 2020;597:113691.
doi:10.1016/j.ab.2020.113691
8. Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in
Studying Liquid-Liquid Phase Separation and Biomolecular Condensates.Cell . 2019;176(3):419-434. doi:10.1016/j.cell.2018.12.035
9. Lin Y, Protter DSW, Rosen MK, Parker R. Formation and Maturation of
Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol
Cell . 2015;60(2):208-219. doi:10.1016/j.molcel.2015.08.018
10. Peskett TR, Rau F, O’Driscoll J, Patani R, Lowe AR, Saibil HR. A
Liquid to Solid Phase Transition Underlying Pathological Huntingtin
Exon1 Aggregation. Mol Cell . 2018;70(4):588-601.e6.
doi:10.1016/j.molcel.2018.04.007
11. Qamar S, Wang GZ, Randle SJ, et al. FUS Phase Separation Is
Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π
Interactions. Cell . 2018;173(3):720-734.e15.
doi:10.1016/j.cell.2018.03.056
12. Patel A, Lee HO, Jawerth L, et al. A Liquid-to-Solid Phase
Transition of the ALS Protein FUS Accelerated by Disease Mutation.Cell . 2015;162(5):1066-1077. doi:10.1016/j.cell.2015.07.047
13. Kanaan NM, Hamel C, Grabinski T, Combs B. Liquid-liquid phase
separation induces pathogenic tau conformations in vitro. Nat
Commun . 2020;11(1):1-16. doi:10.1038/s41467-020-16580-3
14. Babinchak WM, Surewicz WK. Liquid–Liquid Phase Separation and Its
Mechanistic Role in Pathological Protein Aggregation. J Mol Biol .
2020;432(7):1910-1925. doi:10.1016/j.jmb.2020.03.004
15. Wheeler RJ. Therapeutics-how to treat phase separation-associated
diseases. Emerg Top Life Sci . 2020;4(3):331-342.
doi:10.1042/ETLS20190176
16. Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. The nucleolus
as a multiphase liquid condensate. Nat Rev Mol Cell Biol .
2021;22(3):165-182. doi:10.1038/s41580-020-0272-6
17. Gui X, Luo F, Li Y, et al. Structural basis for reversible amyloids
of hnRNPA1 elucidates their role in stress granule assembly. Nat
Commun . 2019;10(1):1-12. doi:10.1038/s41467-019-09902-7
18. Yuan C, Levin A, Chen W, et al. Nucleation and Growth of Amino Acid
and Peptide Supramolecular Polymers through Liquid–Liquid Phase
Separation. Angew Chemie Int Ed . 2019;131(50):18284-18291.
doi:10.1002/ange.201911782
19. Molliex A, Temirov J, Lee J, et al. Phase Separation by Low
Complexity Domains Promotes Stress Granule Assembly and Drives
Pathological Fibrillization. Cell . 2015;163(1):123-133.
doi:10.1016/j.cell.2015.09.015
20. Hernández-Vega A, Braun M, Scharrel L, et al. Local Nucleation of
Microtubule Bundles through Tubulin Concentration into a Condensed Tau
Phase. Cell Rep . 2017;20(10):2304-2312.
doi:10.1016/j.celrep.2017.08.042
21. Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA.
Temperature, Hydrostatic Pressure, and Osmolyte Effects on
Liquid–Liquid Phase Separation in Protein Condensates: Physical
Chemistry and Biological Implications. Chem – A Eur J .
2019;25(57):13049-13069. doi:10.1002/chem.201902210
22. Brangwynne CP, Tompa P, Pappu R V. Polymer physics of intracellular
phase transitions. Nat Phys . 2015;11(11):899-904.
doi:10.1038/nphys3532
23. Zhou HX, Nguemaha V, Mazarakos K, Qin S. Why Do Disordered and
Structured Proteins Behave Differently in Phase Separation? Trends
Biochem Sci . 2018;43(7):499-516. doi:10.1016/j.tibs.2018.03.007
24. Ruff KM, Roberts S, Chilkoti A, Pappu R V. Advances in Understanding
Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein
Polymers. J Mol Biol . 2018;430(23):4619-4635.
doi:10.1016/j.jmb.2018.06.031
25. Ten Wolde PR, Frenkel D. Enhancement of protein crystal nucleation
by critical density fluctuations. Science .
1997;277(5334):1975-1978. doi:10.1126/science.277.5334.1975
26. Galkin O, Vekilov PG. Control of protein crystal nucleation around
the metastable liquid-liquid phase boundary. Proc Natl Acad Sci U
S A . 2000;97(12):6277-6281. doi:10.1073/pnas.110000497
27. Mohammadi P, Aranko AS, Lemetti L, et al. Phase transitions as
intermediate steps in the formation of molecularly engineered protein
fibers. Commun Biol . 2018;1(1):1-12.
doi:10.1038/s42003-018-0090-y
28. Wegmann S, Eftekharzadeh B, Tepper K, et al. Tau protein
liquid–liquid phase separation can initiate tau aggregation. EMBO
J . 2018;37(7):e98049. doi:10.15252/embj.201798049
29. Vogler TO, Wheeler JR, Nguyen ED, et al. TDP-43 and RNA form
amyloid-like myo-granules in regenerating muscle. Nature .
2018;563(7732):508-513. doi:10.1038/s41586-018-0665-2
30. Zhang X, Lin Y, Eschmann NA, et al. RNA stores tau reversibly in
complex coacervates. PLoS Biol . 2017;15(7).
doi:10.1371/journal.pbio.2002183
31. McManus JJ, Charbonneau P, Zaccarelli E, Asherie N. The physics of
protein self-assembly. Curr Opin Colloid Interface Sci .
2016;22:73-79. doi:10.1016/j.cocis.2016.02.011
32. Ray S, Singh N, Kumar R, et al. α-Synuclein aggregation nucleates
through liquid–liquid phase separation. Nat Chem .
2020;12(8):705-716. doi:10.1038/s41557-020-0465-9
33. Alberti S, Carra S. Quality Control of Membraneless Organelles.J Mol Biol . 2018;430(23):4711-4729. doi:10.1016/j.jmb.2018.05.013
34. Wu H, Fuxreiter M. The Structure and Dynamics of Higher-Order
Assemblies: Amyloids, Signalosomes, and Granules. Cell .
2016;165(5):1055-1066. doi:10.1016/j.cell.2016.05.004
35. Alberti S, Hyman AA. Are aberrant phase transitions a driver of
cellular aging? BioEssays . 2016;38(10):959-968.
doi:10.1002/bies.201600042
36. Boeynaems S, Alberti S, Fawzi NL, et al. Protein Phase Separation: A
New Phase in Cell Biology. Trends Cell Biol . 2018;28(6):420-435.
doi:10.1016/j.tcb.2018.02.004
37. Yewdall NA, André AAM, Lu T, Spruijt E. Coacervates as models of
membraneless organelles. Curr Opin Colloid Interface Sci .
2021;52:101416. doi:10.1016/j.cocis.2020.101416
38. Bah A, Forman-Kay JD. Modulation of intrinsically disordered protein
function by post-translational modifications. J Biol Chem .
2016;291(13):6696-6705. doi:10.1074/jbc.R115.695056
39. Monahan Z, Ryan VH, Janke AM, et al. Phosphorylation of the FUS
low‐complexity domain disrupts phase separation, aggregation, and
toxicity. EMBO J . 2017;36(20):2951-2967.
doi:10.15252/embj.201696394
40. Mann JR, Gleixner AM, Mauna JC, et al. RNA Binding Antagonizes
Neurotoxic Phase Transitions of TDP-43. Neuron .
2019;102(2):321-338.e8. doi:10.1016/j.neuron.2019.01.048
41. Ganassi M, Mateju D, Bigi I, et al. A Surveillance Function of the
HSPB8-BAG3-HSP70 Chaperone Complex Ensures Stress Granule Integrity and
Dynamism. Mol Cell . 2016;63(5):796-810.
doi:10.1016/j.molcel.2016.07.021
42. Liu Z, Zhang S, Gu J, et al. Hsp27 chaperones FUS phase separation
under the modulation of stress-induced phosphorylation. Nat Struct
Mol Biol . 2020;27(4):363–372. doi:10.1038/s41594-020-0399-3
43. Guo L, Kim HJ, Wang H, et al. Nuclear-Import Receptors Reverse
Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like
Domains. Cell . 2018;173(3):677-692.e20.
doi:10.1016/j.cell.2018.03.002
44. Frottin F, Schueder F, Tiwary S, et al. The nucleolus functions as a
phase-separated protein quality control compartment. Science .
2019;365(6451):342-347. doi:10.1126/science.aaw9157
45. Mateju D, Franzmann TM, Patel A, et al. An aberrant phase transition
of stress granules triggered by misfolded protein and prevented by
chaperone function. EMBO J . 2017;36(12):1669-1687.
doi:10.15252/embj.201695957
46. Patel A, Malinovska L, Saha S, et al. ATP as a biological
hydrotrope. Science . 2017;356(6339):753-756.
doi:10.1126/science.aaf6846
47. Kroschwald S, Maharana S, Mateju D, et al. Promiscuous interactions
and protein disaggregases determine the material state of
stress-inducible RNP granules. Elife . 2015;4:e06807.
doi:10.7554/eLife.06807
48. Gomes E, Shorter J. The molecular language of membraneless
organelles. J Biol Chem . 2019;294(18):7115-7127.
doi:10.1074/jbc.tm118.001192
49. Reichheld SE, Muiznieks LD, Keeley FW, Sharpe S. Direct observation
of structure and dynamics during phase separation of an elastomeric
protein. Proc Natl Acad Sci U S A . 2017;114(22):E4408-E4415.
doi:10.1073/pnas.1701877114
50. Cai H, Gabryelczyk B, Manimekalai MSS, Grüber G, Salentinig S,
Miserez A. Self-coacervation of modular squid beak proteins-a
comparative study. Soft Matter . 2017;13(42):7740-7752.
doi:10.1039/c7sm01352c
51. Tan Y, Hoon S, Guerette PA, et al. Infiltration of chitin by protein
coacervates defines the squid beak mechanical gradient. Nat Chem
Biol . 2015;11(7):488-495. doi:10.1038/nchembio.1833
52. Gabryelczyk B, Cai H, Shi X, et al. Hydrogen bond guidance and
aromatic stacking drive liquid-liquid phase separation of intrinsically
disordered histidine-rich peptides. Nat Commun . 2019;10(1):1-12.
doi:10.1038/s41467-019-13469-8
53. Nott TJ, Petsalaki E, Farber P, et al. Phase Transition of a
Disordered Nuage Protein Generates Environmentally Responsive
Membraneless Organelles. Mol Cell . 2015;57(5):936-947.
doi:10.1016/j.molcel.2015.01.013
54. Schuster BS, Reed EH, Parthasarathy R, et al. Controllable protein
phase separation and modular recruitment to form responsive membraneless
organelles. Nat Commun . 2018;9(1):1-12.
doi:10.1038/s41467-018-05403-1
55. Luo F, Gui X, Zhou H, et al. Atomic structures of FUS LC domain
segments reveal bases for reversible amyloid fibril formation. Nat
Struct Mol Biol . 2018;25(4):341-346. doi:10.1038/s41594-018-0050-8
56. Li HR, Chiang WC, Chou PC, Wang WJ, Huang J rong. TAR DNA-binding
protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a
few aromatic residues. J Biol Chem . 2018;293(16):6090-6098.
doi:10.1074/jbc.AC117.001037
57. Gallivan JP, Dougherty DA. A computational study of cation-π
interactions vs salt bridges in aqueous media: Implications for protein
engineering. J Am Chem Soc . 2000;122(5):870-874.
doi:10.1021/ja991755c
58. Liu FF, Liu Z, Bai S, Dong XY, Suna Y. Exploring the inter-molecular
interactions in amyloid-β protofibril with molecular dynamics
simulations and molecular mechanics Poisson-Boltzmann surface area free
energy calculations. J Chem Phys . 2012;136(14):145101.
doi:10.1063/1.3702195
59. Padrick SB, Miranker AD. Islet amyloid: Phase partitioning and
secondary nucleation are central to the mechanism of fibrillogenesis.Biochemistry . 2002;41(14):4694-4703. doi:10.1021/bi0160462
60. Falkenberg C V., Blinov ML, Loew LM. Pleomorphic ensembles:
Formation of large clusters composed of weakly interacting multivalent
molecules. Biophys J . 2013;105(11):2451-2460.
doi:10.1016/j.bpj.2013.10.016
61. Uversky VN. Proteins without unique 3D structures: Biotechnological
applications of intrinsically unstable/disordered proteins.Biotechnol J . 2015;10(3):356-366. doi:10.1002/biot.201400374
62. Uversky VN. Paradoxes and wonders of intrinsic disorder: Stability
of instability. Intrinsically Disord Proteins .
2017;5(1):e1327757. doi:10.1080/21690707.2017.1327757
63. Kostylev MA, Tuttle MD, Lee S, et al. Liquid and Hydrogel Phases of
PrP C Linked to Conformation Shifts and Triggered by Alzheimer’s
Amyloid-β Oligomers. Mol Cell . 2018;72(3):426-443.e12.
doi:10.1016/j.molcel.2018.10.009
64. Habchi J, Tompa P, Longhi S, Uversky VN. Introducing protein
intrinsic disorder. Chem Rev . 2014;114(13):6561-6588.
doi:10.1021/cr400514h
65. Darling AL, Liu Y, Oldfield CJ, Uversky VN. Intrinsically Disordered
Proteome of Human Membrane-Less Organelles. Proteomics .
2018;18(5-6):1700193. doi:10.1002/pmic.201700193
66. Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The
structural and functional signatures of proteins that undergo multiple
events of post-translational modification. Protein Sci .
2014;23(8):1077-1093. doi:10.1002/pro.2494
67. Li P, Banjade S, Cheng HC, et al. Phase transitions in the assembly
of multivalent signalling proteins. Nature .
2012;483(7389):336-340. doi:10.1038/nature10879
68. Su X, Ditlev JA, Hui E, et al. Phase separation of signaling
molecules promotes T cell receptor signal transduction. Science .
2016;352(6285):595-599. doi:10.1126/science.aad9964
69. Mitrea DM, Cika JA, Guy CS, et al. Nucleophosmin integrates within
the nucleolus via multi-modal interactions with proteins displaying
R-rich linear motifs and rRNA. Elife . 2016;5(FEBRUARY2016).
doi:10.7554/eLife.13571.001
70. Banani SF, Rice AM, Peeples WB, et al. Compositional Control of
Phase-Separated Cellular Bodies. Cell . 2016;166(3):651-663.
doi:10.1016/j.cell.2016.06.010
71. Nelson R, Sawaya MR, Balbirnie M, et al. Structure of the cross-β
spine of amyloid-like fibrils. Nature . 2005;435(7043):773-778.
doi:10.1038/nature03680
72. Sawaya MR, Sambashivan S, Nelson R, et al. Atomic structures of
amyloid cross-β spines reveal varied steric zippers. Nature .
2007;447(7143):453-457. doi:10.1038/nature05695
73. Eisenberg D, Jucker M. The amyloid state of proteins in human
diseases. Cell . 2012;148(6):1188-1203.
doi:10.1016/j.cell.2012.02.022
74. Hughes MP, Sawaya MR, Boyer DR, et al. Atomic structures of
low-complexity protein segments reveal kinked β sheets that assemble
networks. Science . 2018;359(6376):698-701.
doi:10.1126/science.aan6398
75. Peran I, Mittag T. Molecular structure in biomolecular condensates.Curr Opin Struct Biol . 2020;60:17-26.
doi:10.1016/j.sbi.2019.09.007
76. Lu J, Cao Q, Hughes MP, et al. CryoEM structure of the
low-complexity domain of hnRNPA2 and its conversion to pathogenic
amyloid. Nat Commun . 2020;11(1). doi:10.1038/s41467-020-17905-y
77. Hughes MP, Goldschmidt L, Eisenberg DS. Prevalence and species
distribution of the low-complexity, amyloid-like, reversible, kinked
segment structural motif in amyloid-like fibrils. J Biol Chem .
2021;297(4):101194. doi:10.1016/j.jbc.2021.101194
78. Kato M, Han TW, Xie S, et al. Cell-free formation of RNA granules:
Low complexity sequence domains form dynamic fibers within hydrogels.Cell . 2012;149(4):753-767. doi:10.1016/j.cell.2012.04.017
79. Burke KA, Janke AM, Rhine CL, Fawzi NL. Residue-by-Residue View of
In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase
II. Mol Cell . 2015;60(2):231-241.
doi:10.1016/j.molcel.2015.09.006
80. Murray DT, Kato M, Lin Y, et al. Structure of FUS Protein Fibrils
and Its Relevance to Self-Assembly and Phase Separation of
Low-Complexity Domains. Cell . 2017;171(3):615-627.e16.
doi:10.1016/j.cell.2017.08.048
81. Murthy AC, Dignon GL, Kan Y, et al. Molecular interactions
underlying liquid−liquid phase separation of the FUS low-complexity
domain. Nat Struct Mol Biol . 2019;26(7):637-648.
doi:10.1038/s41594-019-0250-x
82. Ding X, Sun F, Chen J, et al. Amyloid-Forming Segment Induces
Aggregation of FUS-LC Domain from Phase Separation Modulated by
Site-Specific Phosphorylation. J Mol Biol . 2020;432(2):467-483.
doi:10.1016/j.jmb.2019.11.017
83. Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M.
Liquid-liquid phase separation of the microtubule-binding repeats of the
Alzheimer-related protein Tau. Nat Commun . 2017;8(1):275.
doi:10.1038/s41467-017-00480-0
84. Guenther EL, Cao Q, Trinh H, et al. Atomic structures of TDP-43 LCD
segments and insights into reversible or pathogenic aggregation.Nat Struct Mol Biol . 2018;25(6):463-471.
doi:10.1038/s41594-018-0064-2
85. Ryan VH, Dignon GL, Zerze GH, et al. Mechanistic View of hnRNPA2
Low-Complexity Domain Structure, Interactions, and Phase Separation
Altered by Mutation and Arginine Methylation. Mol Cell .
2018;69(3):465-479.e7. doi:10.1016/j.molcel.2017.12.022
86. Conicella AE, Zerze GH, Mittal J, et al. ALS Mutations Disrupt Phase
Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity
C-Terminal Domain. Structure . 2016;24(9):1537-1549.
doi:10.1016/j.str.2016.07.007
87. Quiroz FG, Chilkoti A. Sequence heuristics to encode phase behaviour
in intrinsically disordered protein polymers. Nat Mater .
2015;14(11):1164-1171. doi:10.1038/nmat4418
88. Panas MD, Schulte T, Thaa B, et al. Viral and Cellular Proteins
Containing FGDF Motifs Bind G3BP to Block Stress Granule Formation.PLoS Pathog . 2015;11(2):e1004659.
doi:10.1371/journal.ppat.1004659
89. Conicella AE, Dignon GL, Zerze GH, et al. TDP-43 α-helical structure
tunes liquid–liquid phase separation and function. Proc Natl Acad
Sci U S A . 2020;117(11):5883-5894. doi:10.1073/pnas.1912055117
90. Murray DT, Zhou X, Kato M, Xiang S, Tycko R, McKnight SL. Structural
characterization of the D290V mutation site in hnRNPA2
low-complexity-domain polymers. Proc Natl Acad Sci U S A .
2018;115(42):E9782-E9791. doi:10.1073/pnas.1806174115
91. Deng Q, Holler CJ, Taylor G, et al. FUS is phosphorylated by DNA-PK
and accumulates in the cytoplasm after DNA damage. J Neurosci .
2014;34(23):7802-7813. doi:10.1523/JNEUROSCI.0172-14.2014
92. Quiroz FG, Li NK, Roberts S, et al. Intrinsically disordered
proteins access a range of hysteretic phase separation behaviors.Sci Adv . 2019;5(10):5177-5195. doi:10.1126/sciadv.aax5177
93. Liu J, Zhorabek F, Dai X, Huang J, Chau Y. Minimalist Design of an
Intrinsically Disordered Protein-Mimicking Scaffold for an Artificial
Membraneless Organelle. ACS Cent Sci . 2022;8(4):493–500.
doi:10.1021/ACSCENTSCI.1C01021
94. Liu J, Zhorabek F, Chau Y. Nucleic Acids Modulate Liquidity and
Dynamics of Artificial Membraneless Organelles. ACS Macro Lett .
2022;11(4):562-567. doi:10.1021/ACSMACROLETT.2C00167
95. Liu J, Zhorabek F, Zhang T, Lam JWY, Tang BZ, Chau Y. Multifaceted
Cargo Recruitment and Release from Artificial Membraneless Organelle.Small . 2022;(In press).
96. Liu J, Zhorabek F, Chau Y. Biomaterial design inspired by
membraneless organelles. arXiv Prepr arXiv210410927 . April 2021.
http://arxiv.org/abs/2104.10927. Accessed April 27, 2021.
97. Wallace EWJ, Kear-Scott JL, Pilipenko E V., et al. Reversible,
Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat
Stress. Cell . 2015;162(6):1286-1298.
doi:10.1016/j.cell.2015.08.041
98. Kroschwald S, Munder MC, Maharana S, et al. Different Material
States of Pub1 Condensates Define Distinct Modes of Stress Adaptation
and Recovery. Cell Rep . 2018;23(11):3327-3339.
doi:10.1016/j.celrep.2018.05.041
99. Franzmann TM, Jahnel M, Pozniakovsky A, et al. Phase separation of a
yeast prion protein promotes cellular fitness. Science .
2018;359(6371):eaao5654. doi:10.1126/science.aao5654
100. Sheu-Gruttadauria J, MacRae IJ. Phase Transitions in the Assembly
and Function of Human miRISC. Cell . 2018;173(4):946-957.e16.
doi:10.1016/j.cell.2018.02.051
101. Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne
CP. Spatiotemporal Control of Intracellular Phase Transitions Using
Light-Activated optoDroplets. Cell . 2017;168(1-2):159-171.e14.
doi:10.1016/j.cell.2016.11.054
102. Reed EH, Schuster BS, Good MC, Hammer DA. SPLIT: Stable Protein
Coacervation Using a Light Induced Transition. ACS Synth Biol .
2020;9(3):500-507. doi:10.1021/acssynbio.9b00503
103. Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates:
Organizers of cellular biochemistry. Nat Rev Mol Cell Biol .
2017;18(5):285-298. doi:10.1038/nrm.2017.7
104. Woodruff JB, Hyman AA, Boke E. Organization and Function of
Non-dynamic Biomolecular Condensates. Trends Biochem Sci .
2018;43(2):81-94. doi:10.1016/j.tibs.2017.11.005
105. Jawerth L, Fischer-Friedrich E, Saha S, et al. Protein condensates
as aging Maxwell fluids. Science . 2020;370(6522):1317-1323.
doi:10.1126/science.aaw4951
106. Zhang H. The glassiness of hardening protein droplets: Protein
condensates can age to form glasses that increase in viscosity but
retain elasticity. Science . 2020;370(6522):1271-1272.
doi:10.1126/science.abe9745
107. Dogra P, Joshi A, Majumdar A, Mukhopadhyay S. Intermolecular
Charge-Transfer Modulates Liquid-Liquid Phase Separation and
Liquid-to-Solid Maturation of an Intrinsically Disordered pH-Responsive
Domain. J Am Chem Soc . 2019;141(51):20380-20389.
doi:10.1021/jacs.9b10892
108. Ciryam P, Tartaglia GG, Morimoto RI, Dobson CM, Vendruscolo M.
Widespread Aggregation and Neurodegenerative Diseases Are Associated
with Supersaturated Proteins. Cell Rep . 2013;5(3):781-790.
doi:10.1016/j.celrep.2013.09.043
109. Ciryam P, Kundra R, Morimoto RI, Dobson CM, Vendruscolo M.
Supersaturation is a major driving force for protein aggregation in
neurodegenerative diseases. Trends Pharmacol Sci .
2015;36(2):72-77. doi:10.1016/j.tips.2014.12.004
110. Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein
granules in degenerative disorders. Cell . 2013;154(4):727-736.
doi:10.1016/j.cell.2013.07.038
111. Murakami T, Qamar S, Lin JQ, et al. ALS/FTD Mutation-Induced Phase
Transition of FUS Liquid Droplets and Reversible Hydrogels into
Irreversible Hydrogels Impairs RNP Granule Function. Neuron .
2015;88(4):678-690. doi:10.1016/j.neuron.2015.10.030
112. Nedelsky NB, Taylor JP. Bridging biophysics and neurology: aberrant
phase transitions in neurodegenerative disease. Nat Rev Neurol .
2019;15(5):272-286. doi:10.1038/s41582-019-0157-5
113. Elbaum-Garfinkle S. Matter over mind: Liquid phase separation and
neurodegeneration. J Biol Chem . 2019;294(18):7160-7168.
doi:10.1074/jbc.REV118.001188
114. von Mikecz A. Pathology and function of nuclear amyloid: Protein
homeostasis matters. Nucleus . 2014;5(4):311-317.
doi:10.4161/nucl.29404
115. Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in
neurodegenerative diseases. Cell Mol Life Sci 2018 7517 .
2018;75(17):3159-3180. doi:10.1007/S00018-018-2854-4
116. Mori K, Weng SM, Arzberger T, et al. The C9orf72 GGGGCC repeat is
translated into aggregating dipeptide-repeat proteins in FTLD/ALS.Science . 2013;339(6125):1335-1338. doi:10.1126/science.1232927
117. Kwon I, Xiang S, Kato M, et al. Poly-dipeptides encoded by the
C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells.Science . 2014;345(6201):1139-1145. doi:10.1126/science.1254917
118. Lee KH, Zhang P, Kim HJ, et al. C9orf72 Dipeptide Repeats Impair
the Assembly, Dynamics, and Function of Membrane-Less Organelles.Cell . 2016;167(3):774-788.e17. doi:10.1016/j.cell.2016.10.002
119. Li YR, King OD, Shorter J, Gitler AD. Stress granules as crucibles
of ALS pathogenesis. J Cell Biol . 2013;201(3):361-372.
doi:10.1083/jcb.201302044
120. Ryan VH, Fawzi NL. Physiological, Pathological, and Targetable
Membraneless Organelles in Neurons. Trends Neurosci .
2019;42(10):693-708. doi:10.1016/j.tins.2019.08.005
121. Ferreon JC, Jain A, Choi KJ, et al. Acetylation disfavors tau phase
separation. Int J Mol Sci . 2018;19(5):1360.
doi:10.3390/ijms19051360
122. López-Erauskin J, Tadokoro T, Baughn MW, et al. ALS/FTD-Linked
Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives
Disease Without Nuclear Loss-of-Function of FUS. Neuron .
2018;100(4):816-830.e7. doi:10.1016/j.neuron.2018.09.044
123. Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in
hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS.Nature . 2013;495(7442):467-473. doi:10.1038/nature11922
124. Mackenzie IR, Nicholson AM, Sarkar M, et al. TIA1 Mutations in
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase
Separation and Alter Stress Granule Dynamics. Neuron .
2017;95(4):808-816.e9. doi:10.1016/j.neuron.2017.07.025
125. Jain A, Vale RD. RNA phase transitions in repeat expansion
disorders. Nature . 2017;546(7657):243-247.
doi:10.1038/nature22386
126. Bouchard JJ, Otero JH, Scott DC, et al. Cancer Mutations of the
Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated
Compartments. Mol Cell . 2018;72(1):19-36.e8.
doi:10.1016/j.molcel.2018.08.027
127. Morelli FF, Verbeek DS, Bertacchini J, et al. Aberrant Compartment
Formation by HSPB2 Mislocalizes Lamin A and Compromises Nuclear
Integrity and Function. Cell Rep . 2017;20(9):2100-2115.
doi:10.1016/j.celrep.2017.08.018