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Abstract

The nodes and their connection relationships (CRs) are the two main parts for a
complex dynamical network (CDN). In existing theoretical studies about the outer
synchronization, the nodes are considered as the main part of synchronization phe-
nomena mainly associated by coupling effect of CRs between nodes. However, if the
CRs between nodes are time-varying, they can also be regarded as one dynamic sys-
tem coupled with the nodes, and thus their state may evolve with time and maybe
assist the nodes to achieve the outer synchronization. From the angle of large-scale
systems, a CDN can be regarded as two interconnected subsystems, one of which is
the node subsystem (NS) and the other is the link subsystem (LS). Hence, how the
whole dynamic of LS contributes to the outer synchronization of NS is one of wor-
thy research problem. In this paper, the two CDNs are considered with the unknown
interaction. In each CDN, the dynamics of NS is modelled as the vector differential
equation, the LS is modelled as the Riccati matrix differential equation, and the two
kinds of differential equations are coupled with each other. By employing the above
dynamic models of CDNs and the synthesized coupling terms in the two LSs, the
adaptive controller of NS is synthesized for the response CDN. The results show that
the outer synchronization happens when the two LSs tracking the synthesized auxil-
iary dynamic tracking targets. Finally, the numerical simulation is given to show the
effectiveness of the theoretical results in this paper.
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1 INTRODUCTION

In the past decades, synchronization, as an important collective behavior of complex dynamic network (CDN), has been widely
used in various applications, such as social networks[1, 2], intelligent transportation[3, 4], power networks[5, 6], biological
neural networks[7, 8]. Therefore, the research on the synchronization of CDNs attracts much attention of researchers in recent
years[9–18]. In the existing literature, most studies regard the synchronization as the dynamic behavior of nodes, in which the
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connection relationship (CR) between nodes plays only the auxiliary role on assisting nodes to achieve synchronization. The
whole dynamics of CR is ignored.
In fact, the CRs between nodes can also be regarded as one dynamic system coupled with the nodes[19]. This phenomenon

also exists in some real networks. For example, Gamma oscillations in neurons (nodes) cause interneuron synapses (CR) to
become facilitation in neural networks[20, 21], the tripping of transmission lines (CR) influence the power supply efficiency
in some stations(nodes) of power grid[22, 23], the change of motors (nodes) speed will change the tension value(CR) between
motors in industrial winding system[24, 25]. Therefore, the whole dynamics of CR should be considered and integrated into the
synchronization of overall network.
From the perspective of large-scale system, a CDN can be considered as the interconnected system with the node subsystem

(NS) and the link subsystem (LS), which implies that NS and LS are the two main parts to emerge the dynamical behavior
of CDN[26, 27]. Therefore, the whole synchronization of network is influenced by not only the dynamics of NS but also the
dynamics of LS. According to the above view, the achievements in [9–18] could be explained that the links assisted the nodes to
emerge the synchronization, but the whole dynamics of LS was ignored. In [28, 29], the whole dynamics of LS is considered to
investigate the state synchronization of NS by designing the controller of NS and coupling mechanism of LS, but the obtained
results is only suitable to the same network. As far as we know, in the existing literature, the most studies of the synchronization
of CDNs are limited to the same network (called inner synchronization), and it is regrettable that the outer synchronization of
CDN is rarely considered with the whole dynamics of LS. Hence, it is very necessary to study the outer synchronization by
using the whole dynamics of LS.
The outer synchronization is the phenomenon occurring in different networks, in which the state variables of corresponding

nodes between different networks tend to be the same. At present, there are many research results for the outer synchronization
of CDN such as the complete outer synchronization[14–16], the hybrid outer synchronization[17, 18], the projective outer
synchronization [30, 31], and the generalized outer synchronization[32, 33]. However, it is noticed that the whole dynamics of
links is ignored in the above-mentioned literature. On the other hand, there exists the interaction between the involved CDNs
in reality, for example, the niche overlap interaction between the two biological communities[14], and the cascading interaction
between the two power networks in smart grid[34]. Therefore, when investigating the outer synchronization behaviors of the two
CDNs, the interaction between them should be considered. It is noticed that in [35–37], the interaction functions between CDNs
are required to be known. Obviously, this requirement is too strict in the sense of application due to the interconnection between
nodes interfered by the disturbances of nonlinear signals or hub nodes. To the best of our knowledge, it is seldom in the existing
literature to comprehensively consider both the unknown interaction of NS and the whole dynamics of LS for investigating the
outer synchronization.
Inspired by the above analysis, this paper focuses mainly on the whole dynamics of LS and the unknown interaction of NS, by

which the asymptotically outer synchronization is investigated for two CDNs, one of which CDN is called as the drive network
(DN), and another called as response network (RN). Compared with the existing literature, the key advantage of this paper is
that (i) the whole dynamics of LS in each CDN is modeled by the Riccati matrix differential equation with the coupling to
NS, in which the unknown interacting and inner coupling functions are mathematically represented. By employing the above
model of CDN, the adaptive controller of NS in RN and the coupling terms in the two LSs are synthesized to ensure the outer
synchronization happens asymptotically. (ii) Since it is usually difficult to measure the state of LS accurately in engineering
applications, that the state of LS is unavailable is required in this paper. This requirement increases the difficulty of designing
control scheme, and thus it also highlights the novelty of method in this paper. In fact, if two CDNs are considered with the
unknown interaction, the advantage of this paper proposes one of solutions to the problem: how can the controlled NS and LS
be coupled to facilitate the outer synchronization. In this solution, the synthesized auxiliary dynamic tracking targets of LSs
play the important role.
The rest of the paper is organized as follows. In Section 2, we propose two CDN models with unknown interactions in which

the NS and the LS aremutually coupled, and the correspondingmathematical assumptions are required. In Section 3, the adaptive
controller is proposed for the NS in RN, and the two coupling terms in the equations of LSs are synthesized with the help of their
auxiliary dynamic tracking targets, such that the asymptotic outer synchronization are achieved. In Section 4, the effectiveness
of our control method is verified by the simulation example. Finally, we give conclusions and expectations in Section 5.
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2 PRELIMINARIES AND MODEL DESCRIPTION

We consider the two directed CDNs Σ and Σ̄, each with N nodes. xji = xji(t) denotes the connection weight of the jth node
directing to the ith node in the network Σ, and x̄ji = x̄ji(t) denotes the connection weight of the jth node directing to the ith node
in the network Σ̄. In this paper, the self-connecting weight xii(t) and x̄ii(t) are allowed, where i, j = 1, 2,⋯ , N , the network Σ
and Σ̄ are called as DN and RN, respectively.
The dynamical of NS in DN is expressed as follows

żi = fi(zi, t) + c1
N
∑

j=1
xji(t)ℎj(z) + c̄1'i(z̄, t) (1)

and the dynamical of LS is expressed as

Ẋ = PX +XP T + Ψ(z, z̄) (2)

where zi = (zi1, zi2,⋯ , zin)T ∈ Rn is the state vector for the ith node, z = (zT1 , z
T
2 ,⋯ , zTN )

T ∈ RnN , c1 > 0 and c̄1 > 0
are the common coupling coefficients relative to DN and RN, respectively. fi(zi, t) ∈ Rn is the nonlinear continuous vector
function, ℎj(z) ∈ Rn is the internal associative function of DN, 'i(z̄, t) ∈ Rn represents the state interaction function on the
ith node by the internal state z̄i ∈ Rn of RN. X = [xij(t)]N×N is the CR matrix in DN, which is called to be the state matrix
of LS. z̄i ∈ Rn denotes the state of ith node in RN, z̄ = (z̄T1 , z̄

T
2 ,⋯ , z̄TN )

T ∈ RnN , i, j = 1, 2,⋯ , N . P ∈ RN×N is constant
matrix, Ψ(z, z̄) = M(t) + Θ(z, z̄) represents the coupling term of LS in DN, whereM = M(t) ∈ RN×N is a known bounded
time-varying matrix, Θ(z, z̄) ∈ RN×N is an unknown coupling state matrix.
The dynamical of NS in RN is expressed as follows

̇̄zi = f̄i(z̄i, t) + c̄2
N
∑

j=1
x̄ji(t)ℎ̄j(z̄) + c2'̄i(z, t) + ūi (3)

and the dynamical of LS is expressed as
̇̄X = P̄ X̄ + X̄P̄ T + Ψ̄(z, z̄) (4)

where ūi = (ūi1, ūi2,⋯ , ūin)T ∈ Rn is the control input for the ith node of RN, c̄2 > 0 and c2 > 0 are the common coupling
coefficients relative to RN and DN, respectively. f̄i(z̄i, t) ∈ Rn is the nonlinear continuous vector function, ℎ̄j(z̄) ∈ Rn is the
internal associative function of RN, '̄i(z, t) ∈ Rn represents the state interaction function on the ith node by the internal state
zi ∈ Rn of DN, i, j = 1, 2,⋯ , N . X̄ = [x̄ij(t)]N×N is the CR matrix in RN, which is called to be the state matrix of LS. P̄ ∈
RN×N is constant matrix, Ψ̄(z, z̄) = M̄(t) + Θ̄(z, z̄) represents the coupling state term of LS in RN, where M̄ = M̄(t) ∈ RN×N

is a known bounded time-varying matrix, Θ̄(z, z̄) ∈ RN×N is an unknown coupling state matrix.

Remark 1. (i) There are two external interaction parts in the models (1) and (3), respectively (c̄1'i(z̄, t) in (1), c2'̄i(z, t)
in (3)), which represents the interaction between states of NS in two networks. For example, in the spread of epidemics,
epidemics will spread at the infectious (one CDN) and preventive layers (another CDN) with interaction[14]. In the smart
grid, the power grid (one CDN) relies on the information network (another CDN) for control, and the information network
relies on the power grid for power supply [38]. This is different from the models in [14–18, 30–33]. (ii) The models (2) and
(4) are composed of two parts. One is linear part (PX+XP T in (2), P̄ X̄+X̄P̄ T in (4)), which represents the dynamic state
of LS. The other is coupling part with NS (Ψ(z, z̄) in (2), Ψ̄(z, z̄) in (4)), which represents the state coupling relationship
between LS and NS of the two networks. Ψ(z, z̄) and Ψ̄(z, z̄) are composed of two parts. One is known bounded time-
varying coupling part (M(t) and M̄(t)), the other is the unknown part (Θ(z, z̄) and Θ̄(z, z̄)) coupled with states of NS. To
the best of our knowledge, structural features of the above two models have hardly been considered in the existing literature.

In order to geometrically explain the topological composition meaning of Equation (2) for LS in DN (similarly, Equation (4)
for LS in RN), we can rewrite Equation (2).

dxij
dt

=
N
∑

k=1
pikxkj +

N
∑

k=1
xikpjk + mij(t) + �ij(z, z̄) (5)

where P = (pkj)N×N ,M = [mij(t)]N×N , Θ(z, z̄) = [�ij(z, z̄)]N×N ,  ij(z, z̄) = mij(t) + �ij(z, z̄), Ψ(z, z̄) = [ ij(z, z̄)]N×N .
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The structural composition of the dynamic Equation (5) can be illustrated in Fig.1 . Equation (5) implies that the change rate
of xij is directly influenced by four parts, the first part is a linear combination about xkj , the second part is linear combination
about xik, the third part is a known time-varying effect, and the fourth part is the state term coupling with NSs of the two
networks. From the network perspective, this means that the rate of change of the strength of CR between the ith node and the
jth node in DN is affected not only by the linear superposition of the strength of CR between them both and other nodes, but also
by the coupling of the two network states. The above structural features of Equation (5) also have a realistic network context.
For example, in a population of robots with multiple Kilobots[39, 40], changes in the communication strength (xij) between any
two of these Kilobots (the ith node and the jth node) are affected by the interaction of the other Kilobots (the kth node) with the
communication between the ith node and the jth node. In winding systems with multiple motors[24, 25], the web tension (xij)
change between two adjacent motors (the ith node and the jth node) are affected by the web tension of the other motors.

FIGURE 1 The graphical expression of the structural components of Equation (5)

Assumption 1. Consider the two CDNs with (1) and (3), where ℎj(z) and ℎ̄j(z̄) are known bounded. There exist unknown
positive constant �i and the known bounded continuous positive function ā∗i (z̄i, t) such that ‖‖fi(zi, t)‖‖ ≤ �i, ‖‖f̄i(z̄i, t)‖‖ ≤ ā∗i (z̄i, t)
for i, j = 1, 2,⋯ , N , where ‖∗‖ denotes the Euclidean norm of the vector “*" or matrix “*".
Assumption 2. Consider the two CDNs with (1) and (3), in which the state interaction functions 'i(z̄, t) and '̄i(z, t) are

bounded. There exist the unknown positive constant �i and known bounded continuous positive function b̄i(z, t) such that
‖

‖

'i(z̄, t)‖‖ ≤ �i and ‖‖'̄i(z, t)‖‖ ≤ b̄i(z, t) for i, j = 1, 2,⋯ , N .
Assumption 3. Consider the two CDNs with (2) and (4), the symmetric matrices P + P T and P̄ + P̄ T are Hurwitz stable.

Remark 2. (i) Assumptions 1 and 2 imply that the vector function fi(zi, t) and the state interaction function 'i(z̄, t) in
Equation (1) have unknown upper bounds, while the vector function f̄i(z̄i, t) and the state interaction function '̄i(z, t) in
Equation (3) have known upper bounds. In practical engineering, since RN is constructed for DN, Assumptions 1 and
2 are consistent with realistic network requirements. (ii) In the existing literature, if only the case of isolated nodes is
considered, there are many systems that satisfy Assumption 1, such as Lorenz chaotic systems[41], Chua circuit chaotic
systems[41], Duffing chaotic systems[41], and the winding system[24, 25]. (iii) In this paper, the main control objective is
to synchronize the node controller of RN with the states of DN, so the state coupling terms Θ(z, z̄) and Θ̄(z, z̄) for the two
LSs are required to be synthesized according to the control objective. This corresponds to the question “What structure of
the external coupling relation consisting of states can drive the node states of two networks to be outer synchronization?"
(iv) In particular, Assumption 3 holds if both P and P̄ matrices are symmetric and Hurwitz stable.

Introduce n × N order state matrices Z = Z(t) = [z1, z2,⋯ , zN ] and Z̄ = Z̄(t) = [z̄1, z̄2,⋯ , z̄N ], and n × N order
control input matrix Ū = [ū1, ū2,⋯ , ūN ], and n × N order function matrices F (z, t) = [f1(z1, t), f2(z2, t),⋯ , fN (zN , t)],
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F̄ (z̄, t) = [f̄1(z̄1, t), f̄2(z̄2, t),⋯ , f̄N (z̄N , t)], H(z) = [ℎ1(z), ℎ2(z),⋯ , ℎN (z)],H̄(z̄) = [ℎ̄1(z̄), ℎ̄2(z̄),⋯ , ℎ̄N (z̄)], Φ(z̄, t) =
['1(z̄, t), '2(z̄, t),⋯ , 'N (z̄, t)], and Φ̄(z, t) = ['̄1(z, t), '̄2(z, t),⋯ , '̄N (z, t)].
Using the above symbols, Equations (1) and (3) can be expressed as follows, respectively.

Ż = F (z, t) + c1H(z)X + c̄1Φ(z̄, t) (6)

̇̄Z = F̄ (z̄, t) + c̄2H̄(z̄)X̄ + c2Φ̄(z, t) + Ū (7)

If Assumptions 1 and 2 are satisfied, it is true for the following results.

‖F (z, t)‖ ≤ �, ‖
‖

F̄ (z̄, t)‖
‖

≤ ā(z̄, t), ‖Φ(z̄, t)‖ ≤ �, ‖
‖

Φ̄(z, t)‖
‖

≤ b̄(z, t) (8)

where � =

√

N
∑

k=1
�2k, ā(z̄, t) =

√

N
∑

k=1
[ā∗k(z̄k, t)]

2, � =

√

N
∑

k=1
�2k, b̄(z, t) =

√

N
∑

k=1
b̄2k(z, t).

Remark 3. (i) From Assumptions 1 and 2, the parameter � and � are unknown and the bounded function ā(z̄, t) and b̄(z, t)
are known in Inequality (8). (ii) From Assumptions 1 and 2, the matrix functions F (z, t), F̄ (z̄, t),H(z), H̄(z̄), Φ(z̄, t) and
Φ̄(z, t) are bounded.

3 DESIGN OF OUTER SYNCHRONIZATION CONTROLLER AND COUPLING TERMS

The estimated values of the parameters � and � in the Inequality (8) are denoted as �̂ and �̂, and the estimated errors are denoted
as �̄ = �̂ − � and �̄ = �̂ − �, respectively.
With reference to the literature[14, 15], we give the following definition.

Definition 1. Consider the two CDNs with (1)-(4), if lim
t→+∞

[z̄i(t) − zi(t)] = 0, i = 1, 2,⋯ , N , the two CDNs are said as
asymptotically achieving outer synchronization.

Control goal: Consider the two CDNs with (1)-(4). If Assumptions 1-3 are satisfied and suppose that the states z and z̄ are
available while xij = xij(t) and x̄ij = x̄ij(t) cannot available directly, design the adaptive controller ūi = ūi(zi, z̄i) for RN
and coupling terms Θ(z, z̄) and Θ̄(z, z̄) such that the two CDNs achieve asymptotical outer synchronization, that is to say that
lim
t→+∞

[z̄i(t)−zi(t)] = 0, i = 1, 2,⋯ , N , and the estimated values �̂, �̂ and the matricesX and X̄ of LS are ensured to be bounded.
To achieve the above control objective, we introduce the auxiliary dynamic tracking targets for LS with (2) and (4) as follows.

Ẋ∗ = PX∗ +X∗P T +M(t) (9)

̇̄X∗ = P̄ X̄∗ + X̄∗P̄ T + M̄(t) (10)
where X∗ = X∗(t) and X̄∗ = X̄∗(t) are the auxiliary dynamic tracking targets of LSs with (2) and (4), respectively.
Lemma 1[42]. Let B ∈ RN×N and �(B) be an arbitrary eigenvalue of B, Let G = 1

2
(B + BT ). Then �min(G) ≤ Re�(B) ≤

�max(G), where Re�(B) denotes the real part of �(B), �min(∗) and �max(∗) are the minimum and maximum eigenvalues of }} ∗ ε,
respectively.

Remark 4. According to the matrix straightening operation (vec(⋅)) and its properties[19], the differential Equations (9)
and (10) can be rewritten as follow.

d[vec(X∗)]
dt

= (IN ⊗ P + P ⊗ IN )vec(X∗) + vec[M(t)] (11)

d[vec(X̄∗)]
dt

= (IN ⊗ P̄ + P̄ ⊗ IN )vec(X̄∗) + vec[M̄(t)] (12)
where ⊗ denotes the Kronecker product. By using Assumption 3 and Lemma 1, it is seen that P is Hurwitz, and thus
P̃ = IN ⊗P +P ⊗IN and ̃̄P = IN ⊗ P̄ + P̄ ⊗ IN are also Hurwitz. Therefore, it can be obtained from (11) and (12) that
vec[X∗(t)] and vec[X̄∗(t)] are bounded due to vec[M(t)] and vec[M̄(t)] being bounded.
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The tracking errors of LSs are as follows.

ĖX = X −X∗ = PEX + EXP
T + Θ(z, z̄) (13)

ĖX̄ = X̄ − X̄∗ = P̄EX̄ + EX̄ P̄
T + Θ̄(z, z̄) (14)

Let the state error matrixE = Z̄−Z. It is seen that the control goal lim
t→+∞

[z̄i(t)−zi(t)] = 0 is equivalent to lim
t→+∞

[Z̄(t)−Z(t)] =

0. Let sign(E) =

{

E
‖E‖

, E ≠ On×N
On×N , E = On×N

, whereOn×N denotes the n×N order zero matrix. In order to achieve the above control

goal, the following adaptive controller is proposed.

Ū = −�E − c̄2H̄(z̄)X̄∗ + c1H(z)X∗ + V̄1 + V̄2 (15)

V̄1 = −[ā(z̄, t) + c2b̄(z, t)] ⋅ sign(E) (16)

V̄2 = −(�̂ + c̄1�̂)⋅sign(E) (17)
with the following adaptive laws.

̇̂� = �1 ‖E‖ ,
̇̂� = �2c̄1 ‖E‖ (18)

and the composition of the coupling terms.

Θ(z, z̄) = c1HT (z)E, Θ̄(z, z̄) = −c̄2H̄T (z̄)E (19)

where �, �1 and �2 are adjustable positive constants.

Remark 5. (i) From Equations (15)-(18), the controller consists of four parts. The first is the error feedback part −�E. The
second part −c̄2H̄(z̄)X̄∗+ c1H(z)X∗ is relative to the auxiliary tracking targets of LSs. The third is the robust control term
V̄1 for the uncertainties in RN with (3), and the fourth part is the term V̄2 with the adaptive estimation laws in (18) for the
uncertain parameters in DN with (1). (ii) The adaptive controller with (15)-(18) has three adjustable parameters, where �
will affect the convergence speed of outer synchronization, and thus its value should not be too small in application. �1
and �2 will affect the update speeds of the corresponding estimation laws in (19), and in general, their values should not be
too large. (iii) From the composition of the coupling terms, Θ(z, z̄) and Θ̄(z, z̄) are related to the state of the nodes in DN,
the state of the nodes in RN and their node state errors. With the action of the adaptive controller and the coupling terms
(influence NS by affecting LS), the node states of the two networks will achieve outer synchronization. At the same time,
two LSs can track to the given reference targets, respectively.

Lemma 2[28]. Let Υ ∈ RN×N be a given negative definite matrix. It is true that tr(ΞTΥΞ) ≤ 0 for the arbitrary matrix
Ξ ∈ RN×N . Particularly, tr(ΞTΥΞ) = 0 holds if only if Ξ is anN ×N zero matrix.
Using Equations (6)-(7), (9)-(10) and (13)-(15), the following error equations can be obtained.

Ė = −�E + F̄ (z̄, t) − F (z, t) + c̄2H̄(z̄)EX̄ − c1H(z)EX + c2Φ̄(z, t) − c̄1Φ(z̄, t) + V̄1 + V̄2 (20)

Let ei = z̄i − zi, i = 1, 2,⋯ , N . It is easy to verify that E = [e1, e2,⋯ , eN ], tr(ETE) =
N
∑

i=1
eTi ei =

N
∑

i=1
‖

‖

ei‖‖
2. Consider the

following positive definite function.

V (t) = V (E,EX , EX̄ , �̄, �̄) = 0.5tr(ETE) + 0.5tr(ET
XEX) + 0.5tr(E

T
X̄EX̄) + 0.5[�

−1
1 �̄

2 + �−12 �̄
2] (21)

Notice that for any matrix C and D of suitable dimensions, it has the following properties of the trace[28] tr(CD) = tr(DC)

and tr(DT ) = tr(D). And also that tr[ET sign(E)] =

{

tr(ETE)
‖E‖

, E ≠ On×N
tr(ETOn×N ), E = On×N

= ‖E‖, tr(CD) ≤ ‖D‖ ⋅ ‖C‖. Thus using

the adaptive controller (15)-(18) and the coupling terms (19), we can obtain the orbital derivative along the error system (20) as
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follows.

V̇ (t) = 0.5tr(ĖTE) + 0.5tr(ET Ė) + 0.5tr(ĖT
XEX) + 0.5tr(E

T
XĖX) + 0.5tr(Ė

T
X̄EX̄) + 0.5tr(E

T
X̄ĖX̄)

+ �−11 �̄ ̇̂� + �
−1
2 �̄

̇̂�
= 0.5tr{[−�E + F̄ (z̄, t) − F (z, t) + c̄2H̄(z̄)EX̄ − c1H(z)EX + c2Φ̄(z, t) − c̄1Φ(z̄, t) + V̄1 + V̄2]TE}
+ 0.5tr{ET [−�E + F̄ (z̄, t) − F (z, t) + c̄2H̄(z̄)EX̄ − c1H(z)EX + c2Φ̄(z, t) − c̄1Φ(z̄, t) + V̄1 + V̄2]}
+ 0.5tr{[PEX + EXP

T + Θ(z, z̄)]TEX} + 0.5tr{E
T
X[PEX + EXP

T + Θ(z, z̄)]}
+ 0.5tr{[P̄EX̄ + EX̄ P̄

T + Θ̄(z, z̄)]TEX̄} + 0.5tr{E
T
X̄[P̄EX̄ + EX̄ P̄

T + Θ̄(z, z̄)]T }

+ �−11 �̄ ̇̂� + �
−1
2 �̄

̇̂�
= −�tr(ETE) + tr[c̄2ET H̄(z̄)EX̄ − c1ETH(z)EX]
+ tr{ET [F̄ (z̄, t) − F (z, t) + c2Φ̄(z, t) − c̄1Φ(z̄, t) + V̄1 + V̄2]}
+ tr[ET

X(P + P
T )EX] + tr[Θ

T (z, z̄)EX] + tr[ET
X̄(P̄ + P̄

T )EX̄] + tr[Θ̄
T (z, z̄)EX̄]

+ �−11 �̄ ̇̂� + �
−1
2 �̄

̇̂�
= −�tr(ETE) + tr[ET

X(P + P
T )EX] + tr[E

T
X̄(P̄ + P̄

T )EX̄]

+ tr[c̄2ET H̄(z̄)EX̄ − c1ETH(z)EX] + tr[ΘT (z, z̄)EX] + tr[Θ̄
T (z, z̄)EX̄]

+ tr{ET [F̄ (z̄, t) + c2Φ̄(z, t) + V̄1]} + tr{ET [−F (z, t) − c̄1Φ(z̄, t) + V̄2]} + �−11 �̄ ̇̂� + �
−1
2 �̄

̇̂�
= −�tr(ETE) + tr[ET

X(P + P
T )EX] + tr[E

T
X̄(P̄ + P̄

T )EX̄]

+ tr{ET [F̄ (z̄, t) + c2Φ̄(z, t) − [ā(z̄, t) + c2b̄(z, t)] ⋅ sign(E)]}

+ tr{ET [−F (z, t) − c̄1Φ(z̄, t) − (�̂ + c̄1�̂)⋅sign(E)]} + �−11 �̄ ̇̂� + �
−1
2 �̄

̇̂�
≤ −�tr(ETE) + tr[ET

X(P + P
T )EX] + tr[E

T
X̄(P̄ + P̄

T )EX̄]

+ ‖E‖ ⋅ ‖
‖

F̄ (z̄, t) + c2Φ̄(z, t)‖‖ − [ā(z̄, t) + c2b̄(z, t)] ⋅ ‖E‖

+ ‖E‖ ⋅ ‖
‖

F (z, t) + c̄1Φ(z̄, t)‖‖ − (�̂ + c̄1�̂) ‖E‖ + �
−1
1 �̄ ̇̂� + �

−1
2 �̄

̇̂�
≤ −�tr(ETE) + tr[ET

X(P + P
T )EX] + tr[E

T
X̄(P̄ + P̄

T )EX̄]

+ ‖E‖ {‖
‖

F̄ (z̄, t)‖
‖

− ā(z̄, t) + c2[‖‖Φ̄(z, t)‖‖ − b̄(z, t)]}

+ ‖E‖ ⋅ [� + c̄1� − (�̂ + c̄1�̂)] + �−11 �̄ ̇̂� + �
−1
2 �̄

̇̂�
≤ −�tr(ETE) + tr[ET

X(P + P
T )EX] + tr[E

T
X̄(P̄ + P̄

T )EX̄]

+ ‖E‖ ⋅ [� − �̂ + c̄1(� − �̂)] + �−11 �̄ ̇̂� + �
−1
2 �̄

̇̂�
= −�tr(ETE) + tr[ET

X(P + P
T )EX] + tr[E

T
X̄(P̄ + P̄

T )EX̄]

+ �̄[− ‖E‖ + �−11 ̇̂�] + �̄[−c̄1 ‖E‖ + �−12
̇̂�]

= −�tr(ETE) + tr[ET
X(P + P

T )EX] + tr[E
T
X̄(P̄ + P̄

T )EX̄] (22)

By Assumption 3 and Lemma 2, we know that tr[ET
X(P + P

T )EX] and tr[E
T
X̄
(P̄ + P̄ T )E

X̄
] are negative definite functions

about EX and E
X̄
, respectively. Therefore, from (22), we know that V̇ (t) is a semi-negative definite function about E, EX , EX̄ ,

�̄ and �̄. The error system consisting of (13), (14) and (20) with controller (16)-(17) is stable in Lyapunov sense. Therefore, the
error matrices E, EX and EX̄ , the estimate values �̂ and �̂ are bounded. Accordingly, by using Assumptions 1-3 and Lemmas
1-2, it is seen that Ė(t), ĖX(t) and ĖX̄(t) are bounded, and then using Barbalat’s Lemma[43], we know that lim

t→∞
E(t) = 0,

lim
t→∞

EX(t) = 0 and limt→∞EX̄(t) = 0. Therefore, This completes the proof of the following theorem 1.

Theorem 1. Consider the two CDNs with Equations (1) - (4). If Assumptions 1-3 hold, the two CDNs are able to achieve
asymptotical outer synchronization with the adaptive controller (15)-(18) and the coupling terms (19), and the estimate values
�̂ and �̂, and state matrices X and X̄ of LS are guaranteed to be bounded.

Remark 6. (i) Theorem 1 implies that the designed node controller and coupling terms ensure that NSs of two networks
achieve asymptotic outer synchronization. (ii) Comparing with the existing literature, if the two NSs (1) and (3) achieve the
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asymptotic outer synchronization, the two LSs (2) and (4) are not only guaranteed to be bounded, but also track asymptot-
ically to our given reference targets X∗ and X̄∗, respectively. (iii) Since P̃ and ̃̄P are Hurwitz, the given reference targets
X∗ and X̄∗ are relative to the second part of Equations (11) and (12). Since the two LSs can trackX∗ and X̄∗, respectively,
then we have the following conclusion. (a) If the matricesM(t) and M̄(t) are both zero matrices, the solutions of Equations
(11) and (12) eventually converge to zero. This implies that all the connections between the nodes of each of the two net-
works will eventually break and both will become networks of isolated nodes. (b) If the matricesM(t) and M̄(t) are both
non-zero bounded time-varying matrices, the connections between all nodes of each of the two networks will eventually
change with the same as the dynamics of CR, which is different from some existing results in the literature[14–18, 30–33].

Remark 7. For the applications of Theorem 1, the following steps can be proposed.
Step 1: Considering NS of DN in (1) and NS of RN in (3). Determine whether the nonlinear function fi(zi, t), ℎj(z), ℎ̄j(z̄)
and the state activation function '̄i(z, t) are bounded or nor. If not, Theorem 1 is invalid;
Step 2: Considering LS for DN in (2) and LS for RN in (4), respectively. Determine whether matrices P +P T and P̄ + P̄ T

are Hurwitz matrices. If not, then Theorem 1 invalid;
Step 3: Considering NS of RN in (3), the norm bounds of the nonlinear functions f̄i(z̄i, t) and state activation function
'̄i(z, t) are determined, respectively;
Step 4: Design adaptive controller (15) - (18) and coupling terms of LS in (19).

4 SIMULATION EXAMPLE

Consider two time-varying weighted CDNs with Σ and Σ̄, each with 20 (N=20) nodes.
Choose the N Chua’s chaotic circuit systems[29] as the isolated nodes of the network Σ, respectively, whose dynamics

are given as fi(zi, t) = Aizi + gi(zi, t) =
⎡

⎢

⎢

⎣

−10 10 0
1 −1 1
0 −14.87 0

⎤

⎥

⎥

⎦

z +
⎡

⎢

⎢

⎣

azi1 + b(||zi1 + 1|| − |

|

zi1 − 1||
0
0

⎤

⎥

⎥

⎦

. The corresponding internal

function is ℎj(z) = [sin(j ∗ zi1zi2zi3), cos(j ∗ zi1zi2zi3), arctan(j ∗ zi1zi2zi3)]T , interaction function of the network 'i(z̄, t) =
[ sin(it)
1+e−z̄i1 z̄i2 z̄i3

, cos(it)
1+(z̄i1z̄i2z̄i3)

2 , arctan(it) ∗
z̄i1z̄i2z̄i3

1+(z̄i1z̄i2z̄i3)
2 ]T , i, j = 1, 2,⋯ , 10.

Choose the N Duffing chaotic systems[41] as the isolated nodes of the network Σ̄, respectively, whose dynam-

ics are given as f̄i(z̄i, t) = Āiz̄i + ḡi(z̄i, t) =
⎡

⎢

⎢

⎣

−35 35 0
−7 28 0
0 0 −3

⎤

⎥

⎥

⎦

z̄ +
⎡

⎢

⎢

⎣

0
−z̄i1z̄i3
z̄i1z̄i2

⎤

⎥

⎥

⎦

. The corresponding internal function

is ℎ̄j(z̄) = [cos(j ∗ z̄i1z̄i2z̄i3), arctan(j ∗ z̄i1z̄i2z̄i3), sin(j ∗ z̄i1z̄i2z̄i3)]T , interaction function of the network '̄i(z, t) =
[ cos(it)
1+(zi1zi2zi3)

2 ,
arctan(it)
1+e−zi1zi2zi3

, sin(it) ∗ zi1zi2zi3
1+(zi1zi2zi3)

2 ]T , i, j = 1, 2,⋯ , 10. The adaptive controller is given by Equations (15) - (18), and
the coupling terms are given by Equation (19).
The matrices P and P̄ in Equations (2) and (4) are generated by the following steps.
Step 1: By using −abs(rand(N, 1)),N negative real numbers 
i(i = 1, 2,⋯ , N) are generated randomly. ConstructN order

matrix Δ1 = diag(
1, 
2,⋯ , 
N ). Similarly, another group ofN negative real numbers �i(i = 1, 2,⋯ , N) is generated and thus
the order matrix Δ2 = diag(�1, �2,⋯ , �N ) is constructed.
Step 2: Generate matrices P1 and P2 by P1 = randn(N,N) and P2 = randn(N,N). Then we obtain twoN order orthogonal

matrices B1 and B2 by B1 = ortℎ(P1) and B2 = ortℎ(P2). Choose P = 4(B1Δ1BT1 + P1 − P
T
1 ) and P̄ = 4(B2Δ2B

T
2 + P2 − P

T
2 ).

It can be verified that the matrices P and P̄ generated by the above two steps satisfy Assumption 3. The other parameters are
chosen as follows. The adjustable parameters λ = 10, λ1 = 2.5, and λ2 = 2.5, the common connection strength c1, c̄1, c2 and c̄2
are randomly chosen in the interval (0, 10). The initial state zi(0), z̄i(0), i = 1, 2,⋯ , 20, and �̂(0), �̂(0) in the adaptive laws (18)
are randomly chosen in the interval (−10, 10). Generate the random constant matrices X(0) and X̄(0) by X(0) = randn(N,N)
and X̄(0) = randn(N,N) as the initial state of the two LSs. Similarly, the initial state tracking targets for the given two LSs
are chosen as X∗(0) = randn(N,N) and X̄∗(0) = randn(N,N). In addition, take the known coupling time-varying matrices
M(t) = (mij(t))N×N , mij(t) = 10 ∗ sin(t) and M̄(t) = (m̄ij(t))N×N , m̄ij(t) = 10 ∗ cos(t).The simulation results are shown in
Figs.2 –4 .
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FIGURE 2 (a) The outer synchronization error curves of the nodes without controller; (b) The outer synchronization error
curves of the nodes with the controller in this paper; (c) The response curves of adaptive estimated values in (18) with the
controller in this paper.

FIGURE 3 (a) The auxiliary tracking response error curves of LS with (2); (b) The auxiliary tracking response error curves of
LS with (4).

FIGURE 4 (a) The auxiliary tracking response curves of LS in (2); (b) The auxiliary tracking response curves of LS in (4).

Particularly, when both matricesM(t) and M̄(t) are zero matrices, that isM(t) = O and M̄(t) = O, whereO denotes the zero
matrix of the corresponding dimension. Then the auxiliary tracking target response curves of LSs with (2) and (4) are shown in
Fig.5 .
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FIGURE 5 (a) The auxiliary tracking response curves of LS in (2) withM(t) = O; (b) The auxiliary tracking response curves
of LS in (4) with M̄(t) = O.

From the above simulation figures, we can draw the following conclusions. (i) From Fig.2 (a), it is known that NSs of the
two networks do not achieve asymptotic outer synchronization without the application of the adaptive controller (15)-(18).
However, after applying the controller designed in this paper, it can be seen from Fig.2 (b) and Fig.2 (c) that two NSs can
achieve asymptotically outer synchronization and the adaptive estimation values is bounded. (ii) As can be seen from Fig.3 ,
LSs of the two networks can track to the tracking targets proposed in this paper, respectively. According to the coupling terms
M(t) and M̄(t), as can be seen from Fig.4 , the tracking targets of our given two LSs are not only bounded but also a dynamic
change process, which indicates that all nodes are not isolated after achieving the outer synchronization, but are in a time-varying
connected state. On the other hand, it can be seen from Fig.5 that all nodes of both networks are isolated after achieving the
outer synchronization when the coupling terms M(t) and M̄(t) vanish. This implies that the coupling terms M(t) and M̄(t)
determine whether or not all the nodes are isolated in the eventual network structure.

5 CONCLUSIONS

Asymptotical outer synchronization has been achieved for the two CDNs by using the adaptive controller of NS in RN and
the coupling terms in the two LSs in this paper. Compared with the existing results about the outer synchronization, the main
advantage of this paper is that on the one hand, the whole dynamical behavior of each LS is described by employing the Riccati
matrix differential equation with the coupling to the state of two NSs. On the other hand, the whole dynamical model of LS
not only clearly reflects the topology of two CDNs but also better understand the topology of two CDNs due to the synthesized
auxiliary dynamic tracking targets of LSs when the outer synchronization of NS is realized. Furthermore, the matrices have no
more flexible mathematical operational properties than vectors, but the methods can avoid the matrix straightening operation
with the methods in control theory. However, the outer synchronization of two CDNs with the discrete-time dynamics is not
discussed in this paper, the research topic will be considered in the future work.

ACKNOWLEDGMENTS

This work was supported by the Key Laboratory of Intelligent Manufacturing Technology (Shan-tou University), Ministry of
Education of China under Grant(202109242), the National Natural Science Foundation of China under Grant(61673120), and
the Team Project of Universities of Guangdong Province under Grant (2015KCXTD018).

Conflict of interest
The authors declare no potential conflict of interests.



AUTHOR ONE ET AL 11

References

1. Hassanibesheli F, Hedayatifar L, Gawroński P, Stojkow M, Skiba D, Kułakowski K. Gain and loss of esteem, direct
reciprocity and Heider balance. Physica A: Statistical Mechanics and its Applications. 2017;468:334-339.

2. Villani A, Frigessi A, Liljeros F, Nordvik MK, deBlasio BF. A characterization of internet dating network structures among
nordic men who have sex with men. PLoS One. 2012;7(7):e39717.

3. Tang J, Wang Y, Wang H, Zhang S, F Liu. Dynamic analysis of traffic time series at different temporal scales: A complex
networks approach. Physica A: Statistical Mechanics and its Applications. 2014;405:303-315.

4. Zhao L, Song Y, Zhang C, et al. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE
Transactions on Intelligent Transportation Systems. 2020;21(9):3848-3858.

5. Ding Y, Li X, Tian Y, Ledwich G, Mishra Y, Zhou C. Generating Scale-Free Topology for Wireless Neighborhood Area
Networks in Smart Grid. IEEE Transactions on Smart Grid. 2019;10(4):4245-4252.

6. Espejo R, Lumbreras S, Ramos A. A Complex-Network Approach to the Generation of Synthetic Power Transmission
Networks. IEEE Systems Journal. 2019;13(3):3050-3058.

7. Bassett D, Sporns O. Network neuroscience. Nat Neurosci. 2017;20:353-364.

8. Bose SK, Mallinson JB, Gazoni RM, Brown SA. Stable Self-Assembled Atomic-Switch Networks for Neuromorphic
Applications. IEEE Transactions on Electron Devices. 2017;64(12):5194-5201.

9. Wang Y, Cao Y, Guo Z, Huang T,Wen S. Event-based sliding-mode synchronization of delayed memristive neural networks
via continuous/periodic sampling algorithm. Applied Mathematics and Computation. 2020;383:125379. https://doi.org/10.
1016/j.amc.2020.125379.

10. Liu X. Synchronization and Control for Multiweighted and Directed Complex Networks. IEEE Transactions on Neural
Networks and Learning Systems. 2021;2021:1-8. https://doi.org/10.1016/j.amc.2020.125379.

11. Feng Y, Duan Z, Lv Y, Ren W. Some Necessary and Sufficient Conditions for Synchronization of Second-Order
Interconnected Networks. IEEE Transactions on Cybernetics. 2019;49(12):4379-4387.

12. Bao Y, Zhang Y, Zhang B. Fixed-time synchronization of coupled memristive neural networks via event-triggered control.
Applied Mathematics and Computation. 2021;411:126542.

13. Bao H, Park JH, Cao J. Adaptive synchronization of fractional-order memristor-based neural networks with time delay.
Nonlinear Dyn. 2015;82(3):1343-1354.

14. Li C, Sun W, Kurths J. Synchronization between two coupled complex networks. Physical Review E. 2007;76(4):046204.

15. Lu J, Ding C, Lou J, Cao J. Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers.
Journal of the Franklin Institute. 2015;352(11):5024-5041.

16. Wu X, Lu H. Outer synchronization of uncertain general complex delayed networks with adaptive coupling. Neurocomput-
ing. 2012;82(1):157-166.

17. Ma T, Zhang J. Hybrid synchronization of coupled fractional-order complex networks.Neurocomputing. 2015;157:166-172.

18. Wang J, Ma Q, Zeng L, Abd-Elouahab M. Mixed outer synchronization of coupled complex networks with time-varying
coupling delay. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2011;21(1):013121.

19. Moradimanesh Z, Khosrowabadi R, Eshaghi GM, Jafari GR. Altered structural balance of resting-state networks in autism.
Scientific reports. 2021;11(1):1-6.

20. Veit J, Hakim R, Jadi MP. Cortical gamma band synchronization through somatostatin interneurons. Nature neuroscience.
2017;20(7):951-959.

https://doi.org/10.1016/j.amc.2020.125379
https://doi.org/10.1016/j.amc.2020.125379
https://doi.org/10.1016/j.amc.2020.125379


12 AUTHOR ONE ET AL

21. Khalil R, Moftah MZ, Moustafa AA. The effects of dynamical synapses on firing rate activity: a spiking neural network
model. European Journal of Neuroscience. 2017;46(9):2445-2470.

22. Gan G, Zhu Z, Geng G, Jiang Q. An efficient parallel sequential approach for transient stability emergency control of
large-scale power system. IEEE Transactions on Power Systems. 2018;33(6):5854-5864.

23. Kouki M, Marinescu B, Xavier F. Exhaustive modal analysis of large-scale interconnected power systems with high power
electronics penetration. IEEE Transactions on Power Systems. 2020;35(4):2759-2768.

24. Chu X, Nian X, Sun M, Wang H, Xiong H. Robust observer design for multi-motor web-winding system. Journal of the
Franklin Institute. 2018;355(12):5217-5239.

25. Hou H, Nian X, Xiong H, Wang Z, Peng Z. Robust decentralized coordinated control of a multimotor web-winding system.
EEE Transactions on Control Systems Technology. 2016;24(4):1495-1503.

26. Zhao P, Wang Y. Asymptotical stability for complex dynamical networks via link dynamics. Mathematical Methods in the
Applied Sciences. 2020;43(15):8706-8713.

27. Gao Z, Wang Y. The structural balance analysis of complex dynamical networks based on nodes’ dynamical couplings.
PLoS One. 2018;13(1):e0191941.

28. Wang Y, Wang W, Zhang L. State synchronization of controlled nodes via the dynamics of links for complex dynamical
networks. Neurocomputing. 2020;384:225-230. https://doi.org/10.1016/j.neucom.2019.12.055.

29. Gao P, Wang Y, Liu L, Zhang L, Tang X. Asymptotical state synchronization for the controlled directed complex dynamic
network via links dynamics. Neurocomputing. 2021;448:60-66.

30. Wu Z, Fu X. Complex projective synchronization in drive-response networks coupled with complex-variable chaotic
systems. Nonlinear Dynamics. 2013;72(1):9-15.

31. Lei Y, Zhang L, Wang Y. Generalized matrix projective outer synchronization of non-dissipatively coupled time-varying
complex dynamical networks with nonlinear coupling functions. Neurocomputing. 2017;230:390-396.

32. LiW, Zhao L, Shi H, SunY. Realizing generalized outer synchronization of complex dynamical networks with stochastically
adaptive coupling. Mathematics and Computers in Simulation. 2021;18:379-390.

33. Li S. Linear generalized outer synchronization between two complex dynamical networks with time-varying coupling delay.
Optik. 2016;127(22):10467-10477.

34. Li M, Hu M, Wang B. Transportation dynamics on coupled networks with limited bandwidth. Scientific Reports.
2016;6(1):1-8.

35. SunY, LiW, ZhaoD.Outer synchronization between two complex dynamical networkswith discontinuous coupling.Chaos:
An Interdisciplinary Journal of Nonlinear Science. 2012;22(4):043125.

36. Sun W, Wu Y, Zhang J, Qin S. Inner and outer synchronization between two coupled networks with interactions. Journal
of the Franklin Institute. 2015;352(8):3166-3177.

37. DuW, Li Y, Zhang J, Yu J. Synchronisation between two different networks with multi-weights and its application in public
traffic network. International Journal of Systems Science. 2019;50(3):534-545.

38. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of failures in interdependent networks.Nature.
2010;464(7291):1025-1028.

39. Rubenstein M, Ahler C, Hoff N, Cabrera A, Nagpal R. Kilobot: A low cost robot with scalable operations designed for
collective behaviors. Robotics and Autonomous Systems. 2014;62(7):966-975.

40. Rubenstein M, Ahler C, Nagpal R. Kilobot: A low cost scalable robot system for collective behaviors. IEEE international
conference on robotics and automation. 2012;2012:3293-3298.

https://doi.org/10.1016/j.neucom.2019.12.055


AUTHOR ONE ET AL 13

41. Ge Z, Ou C. Chaos in a fractional order modified Duffing system. Chaos, Solitons Fractals. 2007;34(2):262-291.

42. Horn RA, Johnson CR. Topics in matrix analysis. Cambridge University Press; 1992.

43. Khalil HK. Nonlinear Systems. Englewood Cliffs, Prentice-Hall; 2002.


	Asymptotical outer synchronization control for the complex dynamical networks with unknown bounded interaction via links dynamics
	Abstract
	Introduction
	Preliminaries and model description
	Design of outer synchronization controller and coupling terms
	Simulation example
	Conclusions
	Acknowledgments
	References


