Non-instantaneous Impulsive Riemann-Liouville
Fractional Differential Systems: Existence and
Controllability Analysis in Banach Spaces

Lavina Sahijwani', N. Sukavanam? and Abdul Haq?

! Department of Mathematics,

Indian Institute of Technology Roorkee, India,
sahijwani.lavina@gmail.com,
2 Department of Mathematics,

Indian Institute of Technology Roorkee, India,
n.sukavanam@ma.iitr.ac.in
3 Department of Mathematics,

SRM Institute of Science and Technology, Tamil Nadu, India,
abdulh@srmist.edu.in

Abstract. The article is dedicated towards the study of fractional- order
non-linear differential systems with non-instantaneous impulses involv-
ing Riemann-Liouville derivatives with fixed lower limit and appropriate
integral type initial conditions in Banach spaces. First, mild solution of
the system is constructed and subsequently, its existence is proven using
Banach’s fixed point theorem. Then, results of approximate controlla-
bility are established using the concept of fractional semigroup and an
iterative technique. Suitable examples are given in the end supporting the
methodology along with pointing out corrections in examples presented
in previous articles.
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1 Introduction

Controllability is the qualitative property of steering any dynamical system from
initial arbitrary position to any desired final position utilizing appropriate con-
trol functions within stipulated time. Control theory, being a multidisciplinary
branch stemmed from mathematics to engineering, has wide-ranging implemen-
tation in robotics, aeronautical and automobile engineering, image processing,
biomathematical modelling and appreciably more. Control theory, in spaces of
infinite and finite dimensions, have thoroughly been discussed in [7] and [5] re-
spectively.

The conception of controllability was first initiated and established by Kalman
[19] in 1960, and since then it is the matter of prime importance for the re-
searchers worldwide.
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The results of existence and controllability for various differential systems of
integer and fractional order involving Riemann-Liouville and Caputo derivatives
have closely been demonstrated in many artefacts (refer [1-35]and references
therein).

The study of fractional calculus has long been admired from past three
decades. The first work, exclusively committed to the study of fractional calcu-
lus, is the book by Oldham and Spanier [28], 1974. Fractional derivatives serve
as an exemplary mechanism for the interpretation of heritable properties and
memory of profuse scientific, physical and engineering phenomena. On account
of finer accuracy and precision over integer-order models, fractional derivatives
accelerate its applications in diffusion process, biological mathematical models,
aerodynamics, viscoelasticity, electrical engineering, signal and image processing,
control theory, heat equation, electricity mechanics, electrodynamics of complex
medium, etc. (see [4,10,21,22,24, 31]).

In domain of fractional calculus, Riemann-Liouville and Caputo type deriva-
tives have maintained to be the centre of attention for numerous analysts.
Riemann-Liouville derivative shows supremacy over Caputo in the sense that
it allows the function involved to bear discontinuity at origin. On the other
hand, it doesn’t allow the use of traditional initial conditions, the initial condi-
tions involved in Riemann-Liouville case are either in the integral form or are
weighted initial conditions. Heymans and Podlubny [17] were the ones accred-
ited for the manifestation of physical significance to the initial conditions used
in regard of Riemann-Liouville fractional order viscoelastic systems.

Recently, researchers worldwide gravitate towards the analysis of impulsive
evolution systems with the focus on suitable mathematical modelling, existence
of integral solution, its stability, controllability and much more. In realistic
modelling, the occurrence of perturbations, due to extrinsic intercessions, is in-
evitable, yet, unpredictable. These perturbations or sudden changes are nothing
but impulses affecting the solution’s behaviour majorly. The literature consists
of artefacts addressing mainly two types of impulses, one is, instantaneous im-
pulses which happen for a very smaller period of time, and the other is, non-
instantaneous impulses, which start all at once but hold for a finite time interval,
for example, injection of a medical drug into the human body is sudden but takes
time to stabilize its effect. The books [6, 9] and articles [1-3, 13, 16, 34] contribute
to the study of various impulsive differential systems. [1, 23] addresses the frac-
tional differential systems involving Caputo derivative with non instantaneous
impulses. There is no such article in the literature so far addressing the analysis
for approximate controllability of Riemann-Liouville fractional evolution systems
having non-instantaneous impulses, and hence, is the motivation for the present
artefact.

The study of this article revolves around the following system:

oD} z(t) = Az(t) + Bu(t) + h(t, 2(t)), ¢t € ULy(pr,try1]s (1.1)
2(t) = et 2(t;)), tE (trpr], T=1,2,..,m,
oIt T Olimp, = Yr(pr (), T =1,2,00m,
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oftl_nz(t)|t:0 =20 € Z,

where (Dj stands for the Riemann-Liouville fractional derivative of order n
with fixed lower limit as 0. A : D(A) C Z — Z is densely defined and gen-
erates Cp-semigroup T'(t)(t > 0). For each fixed ¢, z(t) and wu(t) belong to
Banach spaces Z and U respectively. B : L([0,a];U) — L%([0,a]; Z) is a lin-
ear map. h is a function from [0,a] X Z to Z. The points p, and ¢, satisfy
the relation 0 = pg < t1 < p1 < t2 < ... < Py < tt1 = DPmt1 = Q.
The impulses start at points ., » = 1,2,...,m and continue for the interval
(tr,pr]. For r = 1,2,...m, 9, are the impulsive functions to be discussed later.
2(t) = 2(t;) = lima_o+2(t, — A) and z(t;7) = lima_o+2(t. + A) denotes the
left and right hand limit of z(¢) at ¢, r = 1,2, .., m respectively.

This artefact is drafted as: Section 2 gives the briefing for basic results and
definitions. Section 3 is dedicated to construction of mild solution. Results for
the existence of solutions based on suitable assumptions are apparent in Section
4. Section 5 accords with the sufficient assumptions and controllability condi-
tions. Section 6 presents examples in support of the theory presented along with
rectification in example given in [25]. The article is winded up with concluding
remarks and future scope in Section 7.

2 Preliminary facts

This segment provides a quick referral to some fundamental concepts and defi-
nitions which are beneficial for the smooth study of the paper.
Consider the Banach space

PCyy (0,0} 2) = {22 € C((Ury (prstrsn) U (UL (6,00)): Z),
z(pr) = 2(p, ) = lima_o+2(pr — A) <00, r=1,2,...,m,
(t = p) 7 "|2(t)]| < o0, for t € (pr,pria], 7=0,1,...;m,
2(ty) = 2(t7) = lima_g+ 2(t, — A) < 00, 7= 1,2, m}

Introduce the norm | z|[j0,q) on PC1_,([0,a]; Z) as ||z[[p,q) = maX,—o,1,...m |2
where ||z, = sup;c(p, p,.,) (¢ — )t 72(8)]] for r = 0,1,...,m.

Remark 1. PCy_,([0,a]; Z) is a dense subset of L4([0,al; Z) if ¢ < ﬁ

Throughout this article, it is considered that M = sup,c(o || T'(t)|| < oo and

— trat — pr).
T r:Hﬁ‘ffm( r+1 = Dr)

Some definitions related to fractional integrals and derivatives are :

Definition 1. The Riemann-Liouville n'"-order fractional integral is written in
terms of the following integral

wliett) = s [ @=r e om0

where I denotes the gamma function.
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Definition 2. The fractional nt"-order Riemann-Liouville derivative is defined
by the following expression

to Dy 2(t) = F(%—n) ((i) /to (t —r)" "1z (r)dr,

where 0 <n—1<n<n.

Definition 3. A function of the complex variable w defined by

Ey(w) = ; F(nl;Jr 1)
18 known as the Mittag-Leffler function in one parameter.
Lemma 1. [21]
(1) If f € C(to, al, then for any point t € (o, a)
to D (1o 1 f(£)) = f(1).
(i) If f € C(to,a] and 1, I} " f(t) € C(to,al, then for any point t € (to,a)

ol T ()=t
I(n)

Proposition 1. [31] The underneath holds true:

toltn(toD?f(t)) = f(t) (t— to)n_l.

(i) Foraa>0,0<n<1,

n a—1 __ F(O{) a+n—1
toIt (tftO) 17F(Oz+7])(t7t0) + )
ui a—1 __ F(a) a—n—1
to Dy (t — to) l—m(t—%) :

(i) For 0 <n <1,
tolf (t = o) ™" = I'(1 =),
to DI (t — 1)1 = 0.
Lemma 2. [35] The operator T, (t) possesses the underneath properties:

(i) For every fizred t > 0, operator T, (t) is linear and bounded, such that for any
z €7,
M
T, (t)z|| < =—||z]|.
1T ()=l T 121
where M is a constant such that ||T(t)|| < M fort € [0,7].
(11) T, (t)(t > 0) is strongly continuous.
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3 Construction of mild solution

In order to construct the mild solution z(¢) for the system (1.1), we proceed with
the discussion below:
Case 1: For ¢t € (0,t],

2(t) =" T, (t) 20 + /Ot(t — )", (t — s) [Bu(s) + h(s, z(s))]ds.
Case 2: For t € (t1, p1],
z(t) = i(t, 2(t1))
= (6,807 (1) 20 + /0 %ty — 1Tt — 8) [Bu(s) + hls, 2(5))]ds)

Case 3: For t € (p1,12],

oDI0) = T =g -9 s
1 d [t - 1 d [P L -
[‘(1_77)dt/0 (t*S) Z(S)d8+[,(1_n)dt/tl (t*S) ’l/)l(s,z(tl ))ds
1 d [t .
+F(1_n)dt/pl(t—s) z(s)ds
L r s e PuGe)),
T, Tt R, Gt nh
= —¢1(t,2(t)) + p, D 2(1)
Thus,

DI 2(t) = Az(t) + Bu(t) + h(t, 2(t)) + ¢1(t, 2(t))
PlItl_nZ(tNt:Pl = wl (pl’ Z(tl_))
Hence, for t € (p1,12]
2(t) = (t = p1)" Ty (t — p1)a (1, 2(87))

+ / (t —8)" T, (t — s) [Bu(s) + h(s, 2(s)) + ¢1(s, 2(s))]ds

p1

Continuing this process for each r = 2,3,...,m and taking lower limit of
Riemann-Liouville derivative as p, for each interval (p,,t,+1], we define the mild
solution as follows:

Definition 4. A function z € PC1_,([0,a]; Z) is called a mild solution of the
system (1.1) if it satisfies the following integral equation:

(t = pr)" Tyt — pr ) (pr, 2(87)) + / (t— )" T (t — 5) [Bul(s)

2(t) = +h(s,z(s)) + ér(s, z(s))]ds, forte (ITJT, trya], r=0,1,...,m 3.1)

qu(taZ(t;))’ fO’I"te (tT7p7"]7 T:172a"'am
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where
Yo = 20,
¢0 = 07 (32)
r—1 t —
o () Pt g (5, 2t 1))
¢r(t72(t>) = F(l_n)kzo</pk (t_8)1+nds+/tk+l (t—8)1+7’ ds)a
forr=1,2,....m; and
T = [ e, @OT @0, (3.3)
1 1 1
6(0) = £07 Hmy(07H),
(@) = 231y T D Gy g (0,00),
n=1 .

and &, is a probability density function defined on (0,00), that is,

&(0) >0 and [)°&,(0)do = 1.

Definition 5. Let z(t,u) be a mild solution of the system (1.1) at time t corre-
sponding to a control u(-) € L1([0,a];U). The set K,(h) = {z(a,u) € Z;u(-) €
L9([0,al; U} is called the reachable set for final time a. If K,(h) becomes dense
in Z, the system (1.1) is approzimately controllable on [0,a].

4 Existence of mild solution

This segment establishes the existence and uniqueness of mild solution for the
system (1.1) utilizing the Banach fixed point theorem. The results are based on
the below mentioned assumptions:

(HO) g € (5. 1=5)-
(H1) A constant x > 0 exists in a way satisfying
1h(t,z) = h(t,y)llz < kllz—yllz V 2,y € Z.

(H2) A function ¢(.) in L9([0,a]; RT), ¢ > %7 and a constant d > 0 exists such that

1h(t, 2)]|z < <(t) + d(t — p) "Izl 2

for a.e. t € (pr,prs1);7=0,1,....mand V z € Z.
(H3) For r =1,2,...,m, the impulsive functions v, defined from [t.,p,] X Z to Z
are continuous and there exist constants b, € (0,1], such that

[9r(t, 2) = et y)llz < brllz =yl 2-
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) The constant v < 1, where

B Mb, M &1(n)
=1,2,..m I'(n)(ty — pr—1)t~" I'(2n)
r—2

M tht1 — bk+1 r+1 — pr)
+ (Bt
I'(1+n) Q1 —mn) (Z Pr—tr Z (ter = pr)' = (pr — Preta)”

=0
Mbr(tr+1 B pr)l_n
(tr - pr—l)l_n
Theorem 1. The nonlinear system (1.1) admits a unique mild solution in
PCy_,([0,a]; Z) for each control u(-) € L9([0,al;U) under the assumptions
(HO0) — (H4).

Proof. Consider the operator G as

(tr—i-l - pr)n

(t = P Tt = ) 2(65)) + [ (6= 9 Tyt = ) [Bu(s)

(G =9 Lo, 2(6)) + 005, (D], Tor € (ot 7 =0,1,.,m
wr(t’G(Z(tr_»)’ for ¢ € (tr’pr]’ r=1....m.

First, it is evident that G maps PC1_,([0, a]; Z) into itself. It is now required
to prove G as a contraction operator on PCi_,([0,a]; Z).
Let z,y € PC1_,([0,a]; Z), then
Case 1: Forte (pr,tHl], r=0,1,2,....,m

(t=pr) "[(G2) (1) = (Gy)(B)|

< |7 ( *pr)[wr(p 2(t:)) = ©r (e y (it
(t—p) 77/ )Tyt — 9)[(h(s, 2(5)) — h(s,y(s)))]||ds
+(t—pp)' "/ (t = )" [Tyt = 5)[(6r(5, 2(5)) = 6r(s,4(s)))]|ds

T

S%H[%(pr, (7)) = ey (6|

| MA(t—p)' ™" / (t = 8)""l2(s) — ()] zds

I'(n) .
M(t —p.)' " ! -1 sz s
*w/pr“ 1|6 (5,2()) — o (s,9(8))| yds. (4.2)

Solving (t — p,)'~" f;r (t = s)17 || pr(s,2(5)) — & (s, y(s Hds seperately for r =
1,2,...,m as for we proceed with

7Lr71 thrl& s pk+lwk+1(slvz(t;—i—1)) s
ontoston = ([ g+ [ R )

k+1
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forr=1,2,...,m and for r =0, ¢g = 0.

So, basing our following evaluations for ¢ € (p., tH_ﬂ, r=1,...,m,
e flz(s) —y(sol e ( Tz (s1) = y(s)ll
n+1 —n w1 dst
Pk ( — 51) Pk pk) (3 - 51)
(k1 — )
S — WHH n (4.3)

Using (4.3) and ¢t — tg41 >t —p,, k=0,1,...,7 — 1, we obtain

bt z(s s
t_mln/"/ oo —vlel
Pr (5 —s1)

o (tegr —pi)" ||z — ¢ 1
< (t*pr)l 77( t+ pk) ”Z ka / -7 n+1 ds
n Pr (t - S) (5 — tk+1)
_ 1-n (tht1 —m)"”z—y”k (t_pr)n
=(t—pr) n
n(Pr — the1)" (t = trr1)
— t — n
< |z 2y||k( k+1 pk> . (4.4)
n Pr — tet1

Next, for k=0,1,...,r—1land r =1,2,...,m, we have
/p’“+1 [[¥r+1(s1, 2(tkt1)) — ¢k+1(81,y(tk+1))|\dsl
test (s —sp)"
< bess /pk+1 (trt1 —Pk)17n||fftk+1) —yer)ll
trt1 (tror —pr) (s — sl)nJrl
sz =yl L
Tt —pr) " [(5 —per1)” (5 —thg)”
b1z — yll 1
Dt —pr)' " (8 = prr1)”
Using (4.5) for k =0,1,2,...,7 —2 and r = 2,3,...,m, we obtain

(t— pr)l_" /t /Pk+1 (t— 8)7,—1 [Vkt1(s1, 2(ths1)) — Y1 (51, Y(trsr)) || ds,ds

IN

(4.5)

A= (s — 31)n+1
< _benallz = yll (t—p )1n/t 1 ds
Tl - T e =)0 =)'
< brsallz — ylle (t—p)t. (t—pr)"
(ks — pk)l_n ' n(pr — prs1)”
< b1 (tr1 — pr) 1z =yl (4.6)

T 2t — pe) (0 — 1)
and fork=r—1landr=1,2,...,m, it is

t—pr 1 n/ /tpr 77 1||¢r(817 ( )) wT(Sl’ ( ))”dslds

(s—s1)""
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bz =yl ¢ 1
<(t—p)t llz =yl in/ ds
P

n(tr — Pr— 1)1 I3 (t - 8)1 77(8 7p'r)
_n bz r
(- py ezl gy
n(tr _pr—l)
_n bz —yll—
< (trsr —po) et -y, (@7)
n(tr _pr—l)

Combining equations (3.2), (4.4), (4.6), and (4.7), we obtain

a—mfﬂ/a—@“W@@am—@wy )| ds

"

< Iz =yl TXE U1 — Pk 22 bri1(tri1 — pr)
~ nl(1-n) = T

o \Pr— tk+1 (tes1 — o) "(pr — Pry1)”
br( r+1 — pr)l n
+——I(1+ 4.8
et R (48)
Applying equation (4.8) in equation (4.2), we proceed as
(t = p) )(G2)(1) = (Gy) (1)

Mbr HZ*y”rfl Mr(t —p, )" /t -1 —1
< z =yl t—98)" " (s—p)" "ds

T0) G =)= 70 | | p,.( )T )

I M|z = ylljo,a) S <tk+1 - pk)n n = bpt1(tr+1 — pr)
FA+nmI(1—n)\ &= \pr — tes1 = (tetr — pe)' 7 (Pr — Prtr)”
Mbr(tr-i-l _pr)l_

(tr _Pr—l)lﬂ’
Mb, MgrI”
< I x1(n)
()t —pr—1)t=" ~ I'(2n)

r—1 r—2
N M Z <L‘k+1 ) " bit1(tri1 — pr)
I'(1+n)I(1—n) = \Pr — it = (trgr — )= (Pr — Prg1)”

Mbr tr - rlin
( +1 p) ‘|||Z

|z — y||[0,a]

(trJrl - pr)n

(t'r _prfl)l_n [0a]
=v|[z = ylljo,q- (4.9)
Case 2: Forte (tr,pr] r=1,2,...m

(t—pr_1)'™ ”H (G2)(t) — (Gy)(¢ H
= (t—pr1)'” "||¢r(t,G(Z( 2 ) = (8, Gy(t) |l
< be(t —pr—1) TG (2(8) — Gly(tn) 2

Mb, MkI(n)

T —p)t1 T Ty

<b, —pr)"
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r—1 r—2
+ M Z (tk:Jrl ) bk+1 7‘+1 pr)
I'(1+n)'(1—mn) Pr—tei1 = (k1 — pe)' (P — Prtr)”

k=0 =0
Mbr(trJrl _pr)lin
(tr _pr—l)l_n ||Z - yH[O,a]
< vz =yllo,a)- (4.10)

Therefore, on combining equations (4.9) and (4.10), we obtain
||GZ - Gy”[O,a] < VHZ - y”[O,a]

Thus, G is contraction and it is evident through Banach fixed point theorem
that G possess a unique fixed point z(-) in PC1_, ([0, a]; Z) which serves as the
requisite solution of system (1.1).

5 Controllability results

We define the following operators:
The Nemytskii operator corresponding to the nonlinear function h for t € (py, ty41],
r=0,1,...,m, be denoted by 2, : C1_,,([pr, tr+1]; Z) = LY[pr, tr41]; Z) is de-
fined by

Qh(z)(t) = h(tv Z(t))v

where Banach space C1_, ([pr, tr41]; Z) = {z : (t—pr)'7"2(t) € C([pr, tr11]; 2)}.
The Nemytskil operator corresponding to the function ¢, be denoted by (24,
Cr—n(lprs tr1]: Z) = LU ([pr, tr11]; Z) is defined by

25, (2)(t) = or(t, 2(1))-
The bounded linear operator F : LY([p,, t,+1]; Z) — Z as

try1
Fz = / (tr41 — S)W_lTn(tr-H — 8)z(s)ds.

r

The following assumptions are made to prove approximate controllability of the
system(1.1)

(H5) There is a constant & > 0 such that

Ih(t, 2) = h(t,y)llz < &t —p)' 7"z~ yllz

V z,y € Zand t € (p,,pry1], for r=0,1,...,m
(H6) For r = 1,2,...,m, the impulsive functions 1, defined from [t.,p,] X Z to
Z are continuous and there exist constants ¢, € (0, 1], such that

[t (t, ()|l < cr||2(t)]] for each t € [t,,p,] and z € Z.
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z)

(H7) pE,(MFr) < 1.
(H8) For any € > 0 and 9" () € LY([p,, tr+1]; Z), there exists a u"(-) € L([0, a]
and hence u”(-) € LI([pr, tr4+1]; U) satisfying

|F9” — FBu" ||z < €
1Bu” () La(p, trra)iz) < RI[O" ()l e

where N is a constant independent of ¥"(-) € LY([p, t,+1]; Z) and

-1 1
S tk+1 )1 (tr1 —pr)e
_ tk+1)1+n

Q=

OM

N "N{(trJrl - pr) 1 .

E\MET) 4 (54

n b1 (tr1 — Pk+1)% ! )
(b1 = p)' (L = g) / | 1 = nBn(MT)
for each r =1,2,...,m.
—(HT), any mild

Lemma 3. Under the assumptions (H0), (H2), (H3) and (H5)
solution of the system (1.1) satisfies the following:
Wio,a) < AE,(Mdr)  for any u(-) € LI([0,a];U),

(i) [l=(;,
N oE,(MFET) B
() (-0) =yt 0) o) < 2t B = B,
where
M Cr
ll2[lr—1

(tr - pr—l)lin

g—1
(]—]. q 1
(£=5) " o= (1Bulio + Islze)
[Ed =g r)” =2
k k+1 — Pk k-1
=T N + trp1 — pr
e (5 () e S gt

e () (Ergr — pr)“’lzr—1]

M <q—1>5 1
T a
—pk)"

Q =
I'(n) \gn—1
Mb, . M Ti(tkﬂ
T PA) (=) \ = \pr — T

max
B 20 Tt — proa)?
r—2 _
n Z brt1(tr+1 — pr) Mb,(ty 11 — pr)l "
(thr1 — PR (Dr — Dlog1)" (tr —pr—1)t="
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Proof. (i) Let z € PC1_;([0,a]; Z) be a mild solution of the system (1) corre-

sponding to the control u(-) € L1([0,a]; U), then

(t —p)" 1T (t — pi)i(pr, 2(t)) +/ (t — 8)17 1T, (t — 5)[Bul(s)

r

a(t) = +h(s,z(s)) + ér(s, z(s))]ds, for t € (pr,try1], r=0,1,....,m

QZJT(t,Z(t;)), fOI‘tG (tT7pT‘]7 7’:1,2,...,771
Case 1: For t € (py,tr41),7 =0,1,2,...,m
(t =) =)l
t
1T (t — pr)or(pr, 2(E))] + (¢ —pr)l_n/ (t = )" || T (t — ) [Bul(s)

Pr

IN

(s, 2(5)) + 605, 2(5))] [ ds

M — )17 ' — )" || Bu(s s, 2(s s, 2(s s
< ) erll2(te)ll + (t = pr) /pT(t )" HIBu(s)|| + (s, 2(s))[| + |6 (s, 2(s)) ] d

M| (=) Ny i [ o 1 B . o V(s
Sl e ) /p,,.“ ) 1Bus) |+ lls(s) |+ d(s = pr)' 7 12(s) ]

+(t*pr)1’"/ (tS)"lllcbr(S,Z(S))lldS]

cr 1) ¢ _1
s+ (A2 (o = o) Bl + )
-

_ M
~I'(n)

=)' [ (=9 s = ) a()]ds
e (5t = 5 2C+1r—+1>
+nf(1—n)<kz_:( ) +Z = Pre+1)" )

o \Pr — tht1

=0

+er () (g — pr)l‘"llzllml :

Thus,

1-n Md(tT 1 —pr)lfn ‘ n—1 1—n
(t—pr) "z(O)] < A+ J}(n) /p (t—s)""(s—pr) "[2(s)llds

Using generalised Gronwall’s inequality ([35]), it follows that

(t =)' 7"2()] < AE,(Mdr) (5.2)
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Case 2: For t € (t,,p,],r=1,2,....m

(t=pr) 2] = (t = pr—1) 00 (8, 2()]
< Cr(t - prfl)l_nHZ(tr)H
< AE,(Mdr) (5.3)

Clearly, on combining the results for both the cases discussed above, i.e., from
eqns. (5.2) and (5.3), it is proved that

12llf0.a) < AE,(Mdr) (5.4)
(ii) Similarly, proceeding to prove the next inequality, we have
Case 1: For t € (py,tr41],7=0,1,2,....m
(t =) 7"12(8) —y(D)]
<|T (¢ = pr)tr (prs 2(tr)) — Vi (pr, y ()|

t

T —ml—"( [ €= st 7 e - ) (Buts) - o)
P

o

+ / (t — sy Y| Tt — 3) (h(s. 2(5)) — h(s,5()))]|

r

+ / (t = )" M| Tt = 5) (60 (5, 2(5)) = b (5, (5) )Hds)

Pr

M 1-n ' — )" Y Bu(s) — Bu(s)|lds
< ooz~ it + -2 (/Tu 111 Bu(s) — Bu(s)d
+/ (t—s)"&(s —pr) T "2(s) — y(s)||ds

+/ (t—s)"_1||¢r(s,z(8))—¢r(5>y(3))|>d5]

M [ bls—yls o, aia(a=1NT o
S <q77—1) \Bu — Bolls

r—1

+ At - pr)l_n/ (t —8)1 (s — p) 7| 2(s) — y(s)||ds + 100 || y|| <Z (tk+1 )

r

r—2
bit1(tr+1 — pr) by(trsr — pp)t7
+Z 1—n 0 + (t — )1_77 F(1+77
k=0 (tot1 —pr)™ " (Pr — Prt1) r — Pr-1
M b'r‘HZ_y”[Oa] 1_1(q—1>q<_11
< —— 4 (tp41 —Dpr) @ Bu — Bv
T |t —pryimn el =g ) o

s =) 7 [ s = ) ()~ ) ds + llyllu(

o nl'(1—mn)

— lk+1

§ (tk+1 *Pk)"

= \Pr — tht
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r—2

. bet1(tryr —pr) n br (trt1 _pr)l_nf(l +m)I'(1— 77))]

o (tkt1 — k) (e — prgr)” (tr—proa)tTY
qg—1
M=% fg—1\'7T
( ) ||Bu — Bv||La
I'(n) \gn-1

Mpgrt=n [t 1=L(s _ Y 5(s) — u(s)llds
*fwnéf"* (s = p) 7 "l2(s) — y(s)|d

On applying generalised Gronwall’s identity ([35]), it leads to

< pllz = yllo,a +

(t =p) 7 2(t) =y < (2 = yllo,.a) + ol Bu — Bu| ) Ey(M&T) (5.5)
Case 2: For t € (t,p,],r=1,2,...,m
(t = pr—1) (1) = y(@)
= (t = pr—1) (8, 2(t) — i,y ()

< byt = pr—1) 7 2(tr) — y(t,)|l 2
< (ullz = ylljo,a] + ol Bu — Bv| 1a) Ey(MFT) (5.6)

On combining the results from Case 1 and Case 2, i.e. from eqns. (5.5) and (5.6),
the following is obtained

Iz = yllo.a) < (llz = ylljo,a) + oll Bu = Bul|za) Ep(MFT)

and this leads to

oE,(MRrT
I = slloa) < T2 By~ Bl (5.7
n

This accomplishes the proof.

Theorem 2. The nonlinear control system (1.1) becomes approzimately con-
trollable, provided the assumptions (HO), (H1) and (H3) — (H5) holds true and
A generates the differentiable semigroup T'(t).

Proof. In order to manifest approximate controllability of nonlinear control sys-
tem (1.1), it is adequate to claim that D(A) C K,(g), as it is well known that
domain of A, D(A) is dense in Z.

First, we will prove the approximate controllability of (1.1) in [0,¢] for ¢ €
(0,t1]. For any 29 € Z, it is understood that ¢,7~ T, (t1)z9 € D(A) because T'(t)
is differential semigroup (implies D(A) = Z). Now, for p € D(A), existence of a
function ¢ € L4([0,t1]; Z) can be shown such that F¢ = o — 17717}, (t1)20, like

-1

ot = =02 sy -
+2th"(2;_”} (o=t 1Ty (t)20) , t € (0,t1) (see [25]).

Next step is to show the existence of a control function u2(-) € L4([0,t1];U) in
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a way that the underneath inequality holds

o — t177 1T, (t1) 20 — F2(2.) — FBul||z < €

where z¢(t) is a mild solution of the system(1.1) in accord with the control u?(t).
With the use of hypothesis (H8), we can say that for any given ¢ > 0 and
ul(-) € LI([0,#1]; U), there exists a control u3(-) € LI([0,¢]; U) satisfying

_ €

llp — 17T (t1) 20 — F24(21) — FBuj||z < 52

where 21(t) = 2(t;u?), t € [0,t1]. Denote z2(t) = z(t,u3), again by hypothesis
(H8), there exists w) € LI([0,t1]; U) satisfying

IF[24(22) — 2n(21)] = F(BwY) ||z < ~

23
and
1B llze < R[£25(22) — 24(21)]l Lo
t i
([ ez - ) ar)
0
ty %
< NRE </ (tlfn”zQ(t) — zl(t)||Z)th>
0
1
< leéth HZQ — 21“0
oE,(MFRT) 0
< - s 7
N/stl 1= uE, (M7 )HB — Buj||La
Now, define
ug(t) = un(t) —wy(t), wug(t) €,
then

llp — t1"7' Ty (t1) 20 — F2(22) — FBug||z
<l — t1"7 1T (t1) 20 — F24(21) — FBu3||z + |FBw) — [F24(22) — F124(21)] | 2

1 1
< 27 + 2*3 €.
By applying inductions, a sequence {u9} in L7([0,#1]; U) is obtained such that
¥ F FBu, L !
o~ 7 Ty ()20 — F(za) ~ FBu il < ( gy + o5 + o+ gy
where z,(t) = 2(¢,u%(t)) and

|Bugy oy — Buj) e < NAt] 1]_5?(M))|Bu% — Buj_y | e
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By (5.1), it is evident that the sequence {Bul},en is a cauchy sequence in
L4([0,t1]; Z). Thus, for any € > 0, a positive integer ny can be found satisfying

€
IFBuY . —FBu) ||z < 3

Therefore,

lp = 61771 (t1) 20 — F2n(20) — FBuy, | 2
<llp = 00" Ty (t1) 20 — FS2n(2n) = FBupy 1z + |[FBup, 1 — FBuy, |1z

1 1 1 €
< ?4’2*34’4’% 6+§<€.

Thus, the approximate controllability of (1.1) is proved in the interval [0,¢1].
Further, we need to prove approximate controllability in [0, ¢] for ¢ € (p1, t2].
For any 1 (p1, 2(t1)) € Z, it is understood that (t2 — p1)" " Ty (ta—p1 )1 (p1, 2(t1)) €
D(A) because T'(t) is differential semigroup. Now, for p € D(A), existence of a
function 3 € L9([p1, t2]; Z) can be shown such that F¢; = p—(t2 — pl)nflTn(tg—

p1)Y1(p1, 2(t)).

Next step is to show the existence of a control function ul(-) € L4([p1,t2]; U)
in a way that the underneath inequality holds

lp = (ta = p1)" " Ty(tz — p)Y1(p1, 2(t1)) — F(2e) — F2y, (2e) — FBull|z < e

where 2(t) is a mild solution of the system(1.1) in accord with the control u}(t)
and

o — (t2—p1)" Ty (t2 — p1)vhi(p1, 2(1)) = p* € D(A).
With the use of hypothesis (H8), we can say that for any given ¢ > 0 and
ul(-) € L9([py,t2]; U), there exists a control us(-) € L([p1,ts]; U) satisfying
€
22
where 21 (t) = 2(t;ui), t € (p1,t2]. Denote 29(t) = z(t,ud), again by hypothesis
(H8), there exists w3 € LI([p1,t2]; U) satisfying

||p* — Fﬁh(Zl) - FQ¢1 (Zl) - IE‘Bu%”Z <

IF125(22) = 20(20)] + Fl2, (22) = 2oa(21)] = F(Bw)|z < 35
and

1Bews | s
SR[[2n(22) = 2nz0)l| Lo + (126, (22) — 2, (20) ]

=N [(/tl |h(t, z2(t)) — h(t,m(t))Hqut)é + </t2 1 (t, 22(t)) — ¢ (t, 21 (t))]| Ldt

0 P1

)

1

“1
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(t1 — po)"
(p1 — t)tH7

bl to 1/q
T = poy (/ (t —pl)_"”dt) ) |22 — mllo}
p1

1 ( (t1 — po)”

Q=

SN[R(tQ—pl)é22_21||1+F(11_ ) ( (t2 —p1)

Q=
Q=

+ (ta —p1)

(L —n) \ (pr — t2)"*7

btz — p1)7 " 0B, (MFT)
(ty = po) (L —ng)s ) | 1 = 1B (MET)

Now, define

<N [k(b - p1)

| Buj — Bujl|zo

then

" — F824(22) — Ff2y, (22) — FBus| 2
< |lp* —F2n(21) — F2,(21) — FBug||z
+|[FBwy — [F24(22) — F2(21)] — [F2, (22) — F24, (21)]ll 2

1 1
< 272 + 273 €.
By applying inductions, a sequence {ul} in L%([p1,t2]; U) is obtained such that

) 11 1
o™ — F24(2n) — F24, (2) — FBu || 7 < <22+23+~-~+2n+1>e,

where z,(t) = 2(¢,ul(t)) and

1Bup 41 — Buy | o

) N 1 (t1 —po)" :
R|F(t2 —p1)? o)
< /g( 9 pl) + F(l — 77) ((pl _ t1)1+n( 2 pl)
)T E, (MF
bi(ts — p1) ) 0By (MET) gt gt i
(tr —po)t (1 —nq)7 / | 1 = #En(MET)

By (5.1), it is evident that the sequence {Bul},en is a cauchy sequence on
L4([p1, ta]; Z). Thus, for any € > 0, a positive integer ng can be found satisfying

€

|FBuy,, 41 — FBu), |z < 5

Therefore,

H@* - FQh(ZnD) - IFth (Zno) - ]FBUTILD ”Z
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< 9" = F2n(2n,) = F 2y, (2,) = FBug1[lz + [FBug, 1 — FBuy, ||z
1 1 1 €
< 272+273++W €+§<6.

Thus, the approximate controllability of (1.1) is proved in the interval [0, 2].
Similarly, repeating the process for r = 2,3, ..., m, we finally get

[ —(a— pm)n_lTn(a = Pm)V1(Pm, 2(tm)) —F 2 (2c) —FQy,, (2c) —FBu"[|z <€
which establishes the approximate controllability of the system (1.1) in [0, a].

Remark 2. It should be noted that if the semigroup T'(¢) is not differentiable, the
proposed concepts in the above theorem holds valid for zg, ¥, (pr, 2(t,)) € D(A)
instead of zg, ¥y (pr, 2(tr)) € Z.

6 Examples

Ezample 1. Examine the following fractional differential problem with Riemann-
Liouville derivative involving non-instantaneous impulses:

2
oDZz(t,n) = Az(t,n) + Bu(t,n) + h(t, z(t,n)), t € U o(pr, try1] C [0,1], n €N,
z(t,n) = (¢, 2(tr,n)), t € UL, (tr,pr], n €N, (6.1)
1
ol z(t,x)|i=0 = zo,n, M EN

1
p7-]t32(tan)|t:p7- = ¥ (pr, 2(tr,n)), neN.

Let W = W' = [2 be the space of square summable infinite sequences w =
oo

(w1, wa, ..., Wy,...) with the norm [jw|| = ? lw,|?. The operator A : D(A) C
n=1

W — W is defined as
Aw = (— - = ey T Ny .-
w = (—wr, Wa, ..., nw )

where

D(A) = {weW | Z|—%<w,en)|2 < oo}

A can be written in the form of

oo

Aw = Z(—%)(w,e@en, w € D(A)

n=1
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where e,, n € N are the eigen vectors corresponding to the eigen values —%

respectively and {eq,es,...,€n,...} forms an orthonormal basis of W. A differ-
entiable semigroup T'(¢)(t > 0) in W having A as its infinitesimal generator is
written as

Z “wl(w,en)en, weW and ||T()]| <1, M =1.

The map B : W — W is defined as

o0

Bu = Z(u, €n)en

n=2

The system (6.1) can be written as system (1.1) in abstract form and thus

follows approximate controllability from Theorem 2 under assumptions H(1)-
H(8).

Remark 3. Approximate controllability of system (1.1) is proved by assuming
that T'(t) forms a differentiable semigroup which leads to D(4) = Z and to-
gether with closed graph theorem it follows that A is bounded. For this reason,
the example presented in [25] does not support the theory as the chosen A is
differential (unbounded) operator.

Ezample 2. Examine the below mentioned initial value problem with Riemann-
Liouville derivative involving non-instantaneous impulses:

) 2
oD z(t,x) = 322 2(t,

z<,:c> w 2ty ,2)), tE U, (tpr], @ € [0,7),
)=0=z(t,7), t€(0,1]

% (t,0)|im0 = 20(x) € D(A), € [0,7]

oo 10 2(,2) |y, = 61 (pro 2(tr,2)) € D(A), @ € [0,7]

Let W = W' = L2(|0, ]), the map B = I and the operator A : D(A) C W — W
defined as

Aw =w"

where
2

DA) = SweW | w, ow are absolutely continuous, ow ew
ox Ox?

and w(0) =0 = w(ﬂ)}

(E) + u(t) + h(tu z(t,x)), te Uyl:()(phtﬂrl] - [07 1}7 x € [O’W]v

(6.2)
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Then, A can be written in the form of

Aw =) (=) (w, ), w e D(A)
=1

where a(z) = \/gsm lz (I € N) are the eigen functions corresponding to the

eigen values —I? respectively and {a1, ag, ...} forms an orthonormal basis of W.
A semigroup T'(t)(¢t > 0) in W having A as its infinitesimal generator is written
as

T(tw=> e w,a)ar, weW and [TEH)]|<e, M=
=1

Let us choose the nonlinear function h as

Bt 2(1,2)) = 1+ (- pr)? +6(t — po) [2(1,2) + sinz(t, ),

where ¢ € (py,pr4+1] and 7 =0,1,...,m. § and § are constants and 8 > 1 — 1.
Now,

1h(t, 2(t,2)) = h(t,y(t )| < |0](t = pr)P|l2(8 ) — y(t,x) + sinz(t,x) — siny(t,z)]|
< [81(t = p) P = p) T2t ) — y(t )|
+ ||2008(Z(t7 ?) ;— y(t, 2) )sin(z(t’ ?) g y(t x))H]
S 2‘5|(t 7pr)1777||2(t, x) - y(ta IE)H
< 2|8][[z(t, z) — y(t, )]

and

1B (t, 2(t,2))| < 1+ (t —pr)? + [8](t — pp) | sinz(t, z) + 2(t, z)]|
<1+ (t—pp)% 4 2/6|(t — p)P 771t — p) | 2(2, 2))|
< (14 (t—pr)?) +200(t — pp) " 2(E, 2) |

It is evident that assumptions (H1), (H2) and (H5) are satisfied with x = & =
d = 2|¢|. Similarly, the assumptions (H3) and (H6) are satisfied by choosing
suitable impulsive functions. Further, the assumptions (H4), (H7) and (H8) are
satisfied by choosing ¢ to be sufficiently close to zero. Thus, approximate control-
lability of (6.2) follows from Theorem 2 without assuming T'(¢) as differentiable
semigroup.

7 Concluding remarks

The article established the results for existence and approximate controllabil-
ity of the non-instantaneous impulsive fractional differential systems involving
Riemann-Liouville derivatives. Approximate controllability has been achieved
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with the use of Lemma 3, interval wise Nemytskii operators and iterative tech-
niques for control sequence. The article rectifies the inappropriate use of un-
bounded operator in the example presented in [25] (see Remark 3). The present
work opens up the potential study in the direction for various analysis to-
wards fractional evolution systems governed by Riemann-Liouville derivatives
perturbed by non-instantaneous impulses which cover a wide range of applica-
tions. The proposed future work emerges from relaxing the Lipschitz continuity
on the nonlinear operator. If the nonlinear operator h is not Lipschitz, then
even existence of solution is the matter of prime investigation. Also, the present
findings can be extended for the partial approximate controllability or finite
approximate controllability of the considered system with general nonlocal con-
ditions. For some idea, see [12,26, 27].
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