References

Acharya, R., Pedarla, A., Bheemasetti, T. V., Puppala, A. J., Zhang, N., 2015. Shrinkage induced pressure measurement to address desiccation cracking in expansive soils. Geotech. Special Publication, pp. 2122-2130. https://doi.org/10.1061/9780784479087.196
Bargues Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A., Laudon, H., Ilstedt, U., 2014. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resources Research 50 (4), 3342-3355. https://doi.org/10.1002/2013wr015197
Bouma, J., De Laat, P. J. M., 1981. Estimation of the moisture supply capacity of some swelling clay soils in the Netherlands. Journal of Hydrology 49, 247-259. https://doi.org/10.1016/0022-1694(81)90216-x
Busch, S., Weihermüller, L., Huisman, J. A., Steelman, C. M., Endres, A. L., Vereecken, H., van der Kruk, J., 2013. Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface. Water Resour. Res. 49, 8480–8494. https://doi.org/10.1002/2013wr013992
Cao, J. H., 2021. Guest Editor’s Preface to the “Critical Zone and Eco Geological Environment in the Karst Graben Basin”. Acta Geoscientica Sinica, 42 (3), 4. https://doi.org/10.3975/cagsb.2021.032901
Chen, H., Liu, J., Wang, K., Wei, Z., 2011. Spatial distribution of rock fragments on steep hillslopes in karst region of northwest Guangxi. China. CATENA 84, 21–28. https://doi.org/10.1016/j.catena.2010.08.012
Dal Bo, I., Klotzsche, A., Schaller, M., Ehlers, T. A., Kaufmann, M. S., Fuentes Espoz, J. P., Vereecken, H., van der Kruk, J., 2019. Geophysical imaging of regolith in landscapes along a climate and vegetation gradient in the Chilean coastal cordillera. CATENA 180, 146-159. https://doi.org/10.1016/j.catena.2019.04.023
Di Prima, S., Giannini, V., Ribeiro Roder, L., Giadrossich, F., Lassabatere, L., Stewart, R. D., Abou Najm, M. R., Longo, V., Campus, S., Winiarski, T., Angulo-Jaramillo, R., del Campo, A., Capello, G., Biddoccu, M., Roggero, P. P., Pirastru, M., 2022. Coupling time-lapse ground penetrating radar surveys and infiltration experiments to characterize two types of non-uniform flow. Science of The Total Environment 806, 150410. https://doi.org/10.1016/j.scitotenv.2021.150410
Estrada-Medina, H., Tuttle, W., Graham, R. C., Allen, M. F., Jiménez-Osornio, J. J., 2010. Identification of underground karst features using ground penetrating radar in northern Yucatán, México. Vadose Zone 9, 653-661. https://doi.org/10.2136/vzj2009.0116
Fernandes, A. L., Medeiros, W. E., Bezerra, F. H. R., Oliveira, J. G., Cazarin, C. L., 2015. GPR investigation of karst guided by comparison with outcrop and unmanned aerial vehicle imagery. Appl. Geophys 112, 268-278. https://doi.org/10.1016/j.jappgeo.2014.11.017
Flury, M., Flühler, H., 1995. Tracer characteristics of Brilliant Blue FCF. Soil Sci. Soc. Am. J. 59, 22-27. https://doi.org/10.2136/sssaj1995.03615995005900010003x
Ghannoum, O., Phillips, N. G., Conroy, J. P., Smith, R. A., Attard, R. D., Woodfield, R., Logan, B. A., Lewis, J. D., Tissue, D. T., 2010. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Global Change Biology 16 (1), 303-319. https://doi.org/10.1111/j.1365-2486.2009.02003.x
Guo, L., J. Chen, and H. Lin (2014), Subsurface lateral preferential flow network revealed by time-lapse ground-penetrating radar in a hillslope, Water Resour. Res., 50. https://doi.org/10.1002/2013wr014603
Hagedorn, F., Bundt, M., 2002. The age of preferential flow paths. Geoderma 108, 119-132. https://doi.org/10.1016/s0016-7061(02)00129-5
Han, X. L., Liu, J. T., Zhang, J., Zhang, Z. C., 2016. Identifying soil structure along headwater hillslopes using ground penetrating radar based technique. Journal of Mountain Science 13 (3), 405-415. https://doi.org/10.1007/s11629-014-3279-7
Levatti, H. U., Prat, P. C., Ledesma, A., Cuadrado, A., Cordero, J. A., 2017. Experimental analysis of 3D cracking in drying soils using ground-penetrating radar. Geotechnical testing journal, 40 (2), 221-243. https://doi.org/10.1520/gtj20160066
Li, T. C., Shao, M. A., Jia, Y. H., Jia, X. X., Huang, L. M., Gan, M., 2019. Small-scale observation on the effects of burrowing activities of ants on soil hydraulic processes. Eur. J. Soil Sci. 70, 236-244. https://doi.org/10.1111/ejss.12748
Liao, Y. L., Zhang, Z. R., Zhou, X., 2000. Understanding of the dilation shrinkage characteristic of guizhou carbonate derived laterite based on karstification. Carsologica Sinica, 19 (4), 342-346. https://doi.org/10.3969/j.issn.1001-4810.2000.04.008
Lipsius, K., Mooney, S. J., 2006. Using image analysis of tracer staining to examine the infiltration patterns in a water repellent contaminated sandy soil. Geoderma 136, 865-875. https://doi.org/10.1016/j.geoderma.2006.06.005
Liu, D. D., She, D. L., 2020b. Combined effects of moss crusts and pine needles on evaporation of carbonate-derived laterite from karst mountainous lands. Journal of Hydrology, 586, 124859. https://doi.org/10.1016/j.jhydrol.2020.124859
Liu, D. D., She, D. L., 2020a. The effect of fracture properties on preferential flow in carbonate-derived laterite from karst mountainous agroforestry lands. Soil and Tillage Research 203. https://doi.org/10.1016/j.still.2020.104670
Liu, M. X., Xu, X. L., Wang, D. B., Sun, A. Y., Wang, K. L., 2016. Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective. J. Hydrol. 535, 173-180. https://doi.org/10.1016/j.jhydrol.2016.01.033
Mossadeghi-Björklund, M., Arvidsson, J., Keller, T., Koestel, J., Lamandé, M., Larsbo, M., Jarvis, N., 2016. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil. Soil Tillage Res. 156, 91-98.
Nobles, M. M., Wilding, L. P., Lin, H. S., 2010. Flow pathways of bromide and Brilliant Blue FCF tracers in caliche soils. J. Hydrol. (Amst) 393, 114-122. https://doi.org/10.1016/j.still.2015.09.013
Ou Yang, G. Q., 2020. Research on Effect of Grain-size Composition and Cracking State on Collapsing Gully Erosion. MA thesis, Nanchang University, Nanchang, China.
Peng, W. X., Wang, K. L., Song, T. X., Zeng, F. P., Wang, J. R., 2008. Controlling and restoration models of complex degradation of vulnerable karst ecosystem. Acta Ecologica Sinica 28 (2), 811-820. https://doi.org/10.3321/j.issn:1000-0933.2008.02.044
Rouchier, S., Janssen, H., Rode, C., Woloszyn, M., Foray, G., Roux, J. J., 2012. Characterization of fracture patterns and hygric properties for moisture flow modelling in cracked concrete. Construction and Building Materials 34 (3), 54-62
Schaik, N., 2009. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. CATENA 78 (1), 36-47. https://doi.org/10.1016/j.conbuildmat.2012.02.047
Shem, K., Catherine, M., Ong, C., 2009. Gas exchange responses ofEucalyptus, C. africana and G. robusta to varying soil moisture content in semi-arid (Thika) Kenya. Agroforestry Systems 75 (3), 239-249. https://doi.org/10.1007/s10457-008-9176-8
Sheng, F., Kang, W., Zhang, R. D., Li, E., 2009. Study on heterogeneous characteristics of soil water flow in field by dye tracing method. Shui Li Xue Bao 40 (1), 101-108. https://doi.org/10.3321/j.issn:0559-9350.2009.01.015
Sheng, F., Liu, H., Kang, W., Zhang, R., Tang, Z., 2014. Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model. Journal of Hydrology 508 (3) 137-146. https://doi.org/10.1016/j.jhydrol.2013.10.048
Sima, J., Jiang, M., Zhou, C., 2014. Numerical simulation of desiccation cracking in a thin clay layer using 3d discrete element modeling. Computer and Geotechnics, 56 (3), 168-180. https://doi.org/10.1016/j.compgeo.2013.12.003
Soil Survey Staff, 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. US Department of Agriculture, National Resources and interpreting soil surveys. US Department of Agriculture, National Resources Conservation Service, Washington, DC.
Tang, Y., Sun, K., Zhang, X., Zhou, J., Yang, Q., Liu, Q., 2016. Microstructure changes of red clay during its loss and leakage in the karst rocky desertification area. Environ. Earth Sci. 75, 537. https://doi.org/10.1007/s12665-016-5419-6
Teixeira, R. D. S., Fialho, R. C., Costa, D. C., Nogueira de Sousa, R., Santos, R. S., Teixeira, A. P. M., Reis, T. G., Ribeiro da Silva, I., 2020. Land‐use change with pasture and short rotation eucalypts impacts the soil C emissions and organic C stocks in the Cerrado biome. Land Degradation & Development 31 (7), 909-923. https://doi.org/10.1002/ldr.3480
Tsakiroglou, C. D., Klint, K. E. S., Nilsson, B., Theodoropoulou, M. A., Aggelopoulos, C. A., 2012. From aperture characterization to hydraulic properties of fractures. Geoderma 181-182, 65-77. https://doi.org/10.1016/j.geoderma.2012.02.027
Waller, P. W., Wallender, W. W., 1993. Changes in cracking, water content and bulk density of salinized swelling clay field soils. Soil Science 156, 414-423. https://doi.org/10.1097/00010694-199312000-00006 
Wang, K, Zhang, C., Chen, H., Yue, Y., Fu, Z., 2019. Karst landscapes of China: Patterns, ecosystem processes and services. Landscape Ecology 34 (3), 2743-2763. https://doi.org/10.1007/s10980-019-00912-w 
Yang, J., Nie, Y., Chen, H., Wang, S., Wang, K., 2016. Hydraulic properties of karst fractures filled with soils and regolith materials: implication for their ecohydrological functions. Geoderma 276, 93-101. https://doi.org/10.1016/j.geoderma.2016.04.024 
Zhang, J. M., Luo, Y., Zhou, Z., Chong, L., Victor, C., Zhang, Y. F., 2021. Effects of preferential flow induced by desiccation cracks on the slope stability. Engineering Geology, 288, 106164. https://doi.org/10.1016/j.enggeo.2021.106164 
Zhang, R., Xu, X., Liu, M., Zhang, Y., Xu, C., Yi, R., Luo, W., 2018. Comparing evapotranspiration characteristics and environmental controls for three agroforestry ecosystems in a subtropical humid karst area. J. Hydrol. (Amst) 563, 1042-1050. https://doi.org/10.1016/j.jhydrol.2018.06.051 
Zhang, Z. B., Zhou, H., Zhao, Q. G., Lin, H., Peng, X., 2014. Characteristics of cracks in two paddy soils and their impacts on preferential flow. Geoderma 228-229, 114-121. https://doi.org/10.1016/j.geoderma.2013.07.026 
Zhao, S. L., 2014. The characteristics of fissures development in deposits and its effects on rainfall infiltration process—Taking the Meilishi 3# Landslide as an example. MA thesis, Chengdu University of Technology, Chengdu, China.
Zhu, L., Fan, D., Ma, R., Zhang, Y., Zha, Y., 2018. Experimental and numerical investigations of influence on overland flow and water infiltration by fracture networks in soil. Geofluids 2018, 1-16. https://doi.org/10.1155/2018/7056858 
Zhu, L., Shen, T., Ma, R., Fan, D., Zha, Y., 2020. Development of cracks in soil: an improved physical model. Geoderma, 1 (1), 1. https://doi.org/10.1016/j.geoderma.2020.114258 
Figures caption:
FIGURE 1 Location of research area and the three study sites in Jianshui County, Yunnan Province, China.
FIGURE 2 Main steps of infiltration experiment: (a) identification of envelope curves on radargram; (b) soil profile at pedon 1 (yellow dotted lines represent the boundary between horizons, white dashed boxes represent cracks found during excavation); (c) Plexiglas columns for experiment and text device; and (d) experimental groups to be performed.
FIGURE 3 Infiltration process over time in different treatments (only IR1.5, ΛR1.5, and VR1.5 treatments are shown here), with blue lines indicating dye traces, yellow lines indicating moisture wetting front traces, and red dotted regions indicating that the preferential flow occurred after 40 minutes.
FIGURE 4 Comparison of dye-stained and wetting areas for I- and Λ-shaped cracks filled with rock fragment treatment (the wetting area was wetted by water, excluding the area wetted by Brilliant Blue FCF solution). The shaded part after the fitted line represented the 95% confidence interval.
FIGURE 5 Effect of crack inclusion (only CK, IR2, ΛR1.5, ΛS1.5, and IS2 treatments are shown here).
FIGURE 6 Effect of crack width (the crack width is the average of tests).
FIGURE 7 Effect of CK, IR1.5, VR1.5, and ΛR1.5 treatments crack configurations.
FIGURE 8 Effect of crack inclusion (a), crack width (b), and crack configuration (c) on the mean infiltration rate, dye-penetration depth, cumulative information, and wetting front depth. Different lowercase letters indicate significant differences between treatments atp <0.05 (e.g. a, b, and c indicate significant differences; a and ab indicate no significant differences). The error bars indicate the standard deviation of 3–4 replicates.
FIGURE 9 Dye coverage of soil vertical profiles and stained area ratio for the I- and Λ-shaped configurations filled with rock fragment are shown here.