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1. introduction

In 1912, Bernstein [6] gave an elegant and simple constructive proof of Weierstrass first approximation
theorem, which deals with the approximation of continuous functions on a compact interval [a, b], by using
a sequence of polynomial operators known as Bernstein polynomials [28]. The approximation properties
of the Bernstein polynomials and their various modifications and generalizations have been extensively
discussed by many researchers in the literature, see for instance [2] and [20]. The essential role of a
sequence of positive linear operators was not observed meticulously until the theorem of P .P. Korovkin,
which provides a tool to determine the convergence of a sequence of positive linear operators to the identity
operator with regard to the supremum norm of the space C[a, b]. Several researchers e.g., Baskakov
[5], Szász [37] and Lupaş and Müller [31] etc., introduced the sequences of positive linear operators to
approximate continuous functions on the infinite interval [0,∞). The approximation properties of these
most familiar operators have been invesigated by many researchers, for instance please see [12,18,21,35,38]
etc. In 1976, the famous mathematician Gadjiev [17] gave the Korovkin type theorem to approximate
continuous functions defined on [0,∞), which has since been applied by many researchers to establish the
convergence of various sequences of positive linear operators. The sequence of positive linear operators
introduced by Lupaş and Müller [31], widely known in the literature as Gamma operators, is defined as

Gn(f ;κ) =

∫ ∞
0

Kn(κ, u)f
(n
u

)
du, (1.1)

where

Kn(κ, u) =
κn+1

Γ(n+ 1)
e−κuun, κ ∈ (0,∞).

These operators are one of the most extensively discussed operators in approximation theory. Zeng
[40] studied some convergence properties of Gamma operators,e.g. the asymptotic rate of convergence
for locally bounded functions and the optimal rate of convergence for absolutely continuous functions.
Karsli [23] determined the rate of convergence by a new kind of Gamma operators for functions with
derivatives of bounded variation. Later, Karsli et al. [26] extended the study of these operators to the
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pointwise convergence rate of the operators at the Lebesgue points of a function of bounded variation on
[0,∞). Several generalizations and modifications of Gamma operators have been thoroughly investigated
by researchers to study the approximation of functions in different function spaces, for instance one may
refer to [1, 3, 4, 9–11,13,14,16,19,24,25,29,30,33,34,36,39] etc.

Following King’s approach [27], Betus and Usta [7] introduced a modification of the operators 1.1 as

Gn(f ;κ) =

∫ ∞
0

Kn(κ, u)f

(√
(n− 1)(n− 2)

u1/n

)
du, (1.2)

where

Kn(κ, u) =
κn

Γ(n+ 1)
e−κu

1/n

,κ ∈ (0,∞),

so as to preserve the function κ2, and studied some approximation properties e.g. Voronovskaya type
theorems, pointwise estimates and the rate of convergence of continuous functions in a weighted space.
Our goal in this paper is to define a q- analogue of the operators (1.2) and examine some of their approx-
imation properties for functions in a polynomial weighted space. To this end, first we recall some basic
notations and definitions of quantum calculus [22], which are used throughout this article.
For any fixed real number q satisfying 0 < q < 1 and r ∈ N, the q-integer of r is defined as

[r]q :=

{
1−qr
1−q , if q 6= 1,

r, if q = 1,

and the q-factorial [r]q! as

[r]q! :=

{
[r]q[r − 1]q...[1]q, if r ∈ N,
1, if r = 0.

For any k ∈ N
⋃
{0} such that 0 ≤ k ≤ r, the binomial coefficient is defined as(

r

k

)
q

:=
[r]q!

[r − k]q![k]q!
.

The q-exponential function is defined as

Eq(u) =

∞∑
κ=0

qκ(κ−1)/2
uκ

[κ]q!
,

and for any real valued function h, the q-improper integral is defined as∫ ∞/A
0

h(u)dqu =

∞∑
κ=−∞

h

(
qκ

1− q

)
qκ.

Further, the q-analogue of Gamma function is defined as

Γq(κ) =

∫ ∞/A
0

uκ−1Eq(−qu)dqu, κ > 0.

For any ρ ∈ N ∪ {0}, let us consider the weighted function wρ(u) defined as

w0(u) = 1, wρ(u) = 1 + uρ, if ρ ≥ 1, u ∈ [0,∞).

With the above function wρ(u), the associated weighted space is given by

Cρ := {f : (0,∞)→ R| f(u)

wρ(u)
is bounded and uniformly continuous in (0,∞)},
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with the norm ||f ||ρ = supu>0
|f(u)|
wρ(u)

. For any ρ1 < ρ2, it is evident that Cρ1 ⊂ Cρ2 and ||f ||ρ2 < ||f ||ρ1 .

Further, for any u > 0 and ρ, k ∈ N, the following inequalities are easily verified:

w2ρ(u)

(wρ(u))2
≤ 1,

(wρ(u))2

w2ρ(u)
≤ 4,

wρ(u)wk(u)

wρ+k(u)
≤ 3. (1.3)

For f ∈ Cρ, and q ∈ (0, 1), we present a q- analogue of the modified Gamma operators (1.2) as follows:

Gn,q(f ;κ) =

∫ ∞/A
0

Kn,q(κ, u)f

(√
[n− 1]q[n− 2]q

u1/n

)
dqu, (1.4)

where

Kn,q(κ, u) =
κn

Γ[n+ 1]q
Eq(−qκu1/n).

It is clear that as q → 1−, the operator Gn,q(f ;κ) tends to the modified Gamma operator (1.2).
We also consider a modification of the operators (1.4) to approximate functions in the space

Cρ := {f ∈ Cρ : f (m) ∈ Cρ−m for all 0 ≤ m ≤ ρ}, ρ ∈ N ∪ {0}

.
For f ∈ Cρ, ρ ∈ N ∪ {0}, the modified operator is defined as

Gn,q,ρ(f ;κ) =

∫ ∞/A
0

Kn,q(κ, u)Jρ

(
κ,
√

[n− 1]q[n− 2]q

u1/n

)
dqu, (1.5)

κ ∈ (0,∞) and n(∈ N) > 2ρ and

Jρ(κ, u) =

ρ∑
k=0

f (k)(u)

k!
(κ − u)k, κ, u > 0. (1.6)

Note that the operator Gn,q,ρ reduces to the operator Gn,q defined by (1.4), if we take ρ = 0 and f ∈ C0.
In Section 2, we shall show that Gn,q,ρ is a positive linear operator from Cρ to Cρ for all n > 2ρ. In section
3, we show that the operators Gn,q,ρ have better rate of convergence than the operators Gn,q.

The main purpose of this paper is to study the approximation properties of the operators (1.4) in a
polynomial weighted space f ∈ Cρ of continuous functions on (0,∞) and the approximation degree of
the modified operators for the differentiable functions in the above weighted space. Following the ideas
developed in the paper [34], we determine the convergence rate of the operators (1.4) in terms of the
moduli of continuity of first and second orders through the approach of Steklov means. We also establish
the Voronovskaya type asymptotic theorems for the q- operators (1.4) and for their modification defined
for a polynomial weighted space of differentiable functions.

2. Auxiliary results

This section is devoted to preliminary results, which will be useful to prove our main results.

Lemma 1. For q ∈ (0, 1),κ ∈ (0,∞) and k ∈ N ∪ {0} we have

Gn,q(uk;κ) =
Γ[n− k]q

√
([n− 1]q[n− 2]q)

k

Γ[n]q
κk.
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Proof. Putting κu1/n = t, we have

Gn,q(uk;κ) =
κn

Γ[n+ 1]q

∫ ∞/A
0

E(−qκu1/n)

√
([n− 1]q[n− 2]q)

k

uk/n
dqu

=
[n]q

√
([n− 1]q[n− 2]q)

k

Γ[n+ 1]q
κk
∫ ∞/A
0

E(−qt)tn−k−1dqt

=
Γ[n− k]q

√
([n− 1]q[n− 2]q)

k

Γ[n]q
κk.

Consequently, a simple calculation yields:

Lemma 2. The operators Gn,q(f ;κ) satisfy

(i) Gn,q(1;κ) = 1;

(ii) Gn,q(u;κ) =

√
[n− 2]q
[n− 1]q

κ;

(iii) Gn,q(u2;κ) = κ2;

(iv) Gn,q(u3;κ) =

√
[n− 1]q[n− 2]q

[n− 3]q
κ3;

(v) Gn,q(u4;κ) =
[n− 1]q[n− 2]q
[n− 3]q[n− 4]q

κ4.

�

Using the linearity of the operators (1.4) and applying Lemma 2, we easily obtain the following result:

Lemma 3. The operators Gn,q(f ;κ) satisfy

(a) Gn,q(u− κ;κ) =

(√
[n−2]q
[n−1]q − 1

)
κ;

(b) Gn,q((u− κ)2;κ) = 2

(
1−

√
[n−2]q
[n−1]q

)
κ2;

(c) Gn,q((u− κ)3;κ) =

(√
[n−1]q [n−2]q

[n−3]q + 3
√

[n−2]q
[n−1]q − 4

)
κ3;

(d) Gn,q((u− κ)4;κ) =

(
[n−1]q [n−2]q
[n−3]q [n−4]q − 4

√
[n−1]q [n−2]q

[n−3]q − 4
√

[n−2]q
[n−1]q + 7

)
κ4.

Remark 1. Throughout this paper, we assume that {qn}n∈N is a sequence in (0, 1) such that lim
n→∞

qn = 1

and lim
n→∞

qnn = λ, (0 ≤ λ < 1), then using Lemma 3, we easily derive:

lim
n→∞

[n]qn Gn,qn(u− κ;κ) = −1

2
λκ,

lim
n→∞

[n]qn Gn,qn((u− κ)2;κ) = λκ2

lim
n→∞

[n]2qn Gn,qn((u− κ)3;κ) =

(
3λ2 + 2λ

2

)
κ3

lim
n→∞

[n]2qn Gn,qn((u− κ)4;κ) = 3λ2κ4.

Remark 2. Continuing the process further in an analogous manner in Lemma 3, it can be observed that
for k ∈ N and n > 2k, there exists a positive constant M0(k), depending on k such that

Gn,q((u− κ)2k;κ) ≤M0(k)
κ2k

[n]kq
, κ > 0.
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Lemma 4. Let k ∈ N. Then there exists M1(k), a positive constant depending on k such that

Gn,q(|u− κ|k;κ) ≤M1(k)
κk

[n]
k/2
q

, κ > 0.

The proof of the lemma easily follows from Cauchy-Schwarz inequality and Remark 2.

The following result shows that the operators Gn,q are positive linear operators from the space Cρ into
Cρ, for all n > ρ.

Lemma 5. Let ρ ∈ N ∪ {0}, then for every f ∈ Cρ, there exists M2(ρ) a positive constant depending on
ρ such that

||Gn,q(f)||ρ ≤M2(ρ)||f ||ρ, ∀n > ρ.

Proof. From equation (1.4) and Lemma (1), we have

Gn,q(wρ(u);κ) = Gn,q(1 + uρ;κ)

= 1 +
Γ[n− ρ]q

√
([n− 1]q[n− 2]q)

ρ

Γ[n]q
κρ

= 1 +

√
([n− 1]q[n− 2]q)

ρ

[n− 1]q[n− 2]q...[n− ρ]q
κρ, ∀n > ρ.

This shows that

1

wρ(κ)
Gn,q(wρ(u);κ) ≤M2(ρ), ∀κ > 0 and n > ρ, (2.1)

where M2(ρ) > 0 is a constant depending upon ρ.
Now, from equation (1.4) and (2.1), we get

||Gn,q(f)||ρ ≤ ||f ||ρ||Gn,q(wρ)||ρ ≤M2(ρ)||f ||ρ, n > ρ.

�

Lemma 6. Let k ∈ N then for all n > 2(ρ+ k), there exists a constant M3(k, ρ) > 0, such that

1

wρ+k(κ)
Gn,q

(
|u− κ|kwρ(u);κ

)
≤M3(k, ρ)

1

[n]
k/2
q

, κ ≥ 0.

Proof. Since

1

wρ+k(κ)
Gn,q

(
|u− κ|kwρ(u);κ

)
= Gn,q

(
|u− κ|k

wρ+k(κ)
wρ(u);κ

)
.

By using Cauchy-Schwarz inequality and equation (1.3) , we obtain

Gn,q
(
|u− κ|k

wρ+k(κ)
wρ(u);κ

)
≤

{
Gn,q((u− κ)2k;κ)

}1/2{
Gn,q

(
(wρ(u))2

(w(ρ+k)(κ))2
;κ
)}1/2

≤ 4

{
Gn,q((u− κ)2k;κ)

}1/2{
1

w2(ρ+k)(κ)
Gn,q(w2(ρ+k)(u);κ)

}1/2

.

From Remark (2) and equation (2.1), it is evident that for all n > 2(k + ρ), the proof of the lemma
follows. �

Lemma 7. For every f ∈ Cρ and n > 2ρ, there exists a positive constant M4(ρ) such that

||Gn,q,ρ(f)||ρ ≤M4(ρ)

ρ∑
k=0

||f (k)||ρ−k.
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Proof. From equations (1.5) and (1.6), we may write

|Gn,q,ρ(f ;κ)| ≤
ρ∑
k=0

Gn,q(|f (k)(u)||u− κ|k;κ)

Since f (k) ∈ Cρ−k, from Lemma (6), we have

|Gn,q,ρ(f ;κ)| ≤
ρ∑
k=0

||f (k)||ρ−kGn,q(wρ−k(u)|u− κ|k;κ)

≤ wρ(κ)M4(ρ)

ρ∑
k=0

||f (k)||ρ−k[n]q
−k/2

holds for all κ > 0, hence

||Gn,q,ρ(f)||ρ ≤M4(ρ)

ρ∑
k=0

||f (k)||ρ−k.

�

3. Main Results

3.1. Approximation properties of the operator Gn,q.

Theorem 3.1. Suppose that for a fixed ρ ∈ N ∪ {0}, f ∈ Cρ such that f ′, f ′′ ∈ Cρ . Then, there exists a
positive constant M5(ρ) such that

1

wρ(κ)
|Gn,q(f ;κ)− f(κ)| ≤ κ||f ′||ρ

(
qn−2

[n− 2]q

)1/2

+M5(ρ)||f ′′||ρ
κ2

[n]q
,

for all κ > 0 and n ≥ 2ρ+ 4.

Proof. Since f ∈ Cρ and f ′, f ′′ ∈ Cρ, by the Taylor formula, for each κ > 0, we may write

f(u) = f(κ) + f ′(κ)(u− κ) +

∫ u

κ
(u− s)f ′′(s)ds.

Therefore, we have

Gn,q(f ;κ) = f(κ) + f ′(κ)Gn,q((u− κ);κ) + Gn,q
(∫ u

κ
(u− s)f ′′(s)ds;κ

)
. (3.1)

Now, from [34], we get∣∣∣∣ ∫ u

κ
(u− s)f ′′(s)ds

∣∣∣∣ ≤ ||f ′′||ρ(wρ(u) + wρ(κ))(u− κ)2. (3.2)

By using equations (3.1), (3.2), Lemma 3 and applying Cauchy-Schwarz inequality, we obtain

1

wρ(κ)
|Gn,q(f ;κ)− f(κ)| ≤ ||f ′||ρ

√
Gn,q((u− κ)2;κ) + Gn,q

(∣∣∣∣ ∫ u

κ
(u− s)f ′′(s)ds

∣∣∣∣;κ)
≤
√

2κ||f ′||ρ
(

1−

√
[n− 2]q
[n− 1]q

)1/2

+ ||f ′′||ρ
[

1

wρ(κ)
Gn,q

(
(u− κ)2wρ(u);κ

)
+Gn,q((u− κ)2;κ)

]
.
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By using Hölder’s inequality, equations (1.3), (2.1) and Remark 2, we get

1

wρ(κ)
|Gn,q(f ;κ)− f(κ)| ≤ κ||f ′||ρ

(
qn−2

[n− 2]q

)1/2

+ ||f ′′||ρ
[√
Gn,q((u− κ)4;κ)

{
4Gn,q

(
w2ρ(u)

w2ρ(κ)
;κ
)}1/2

+Gn,q((u− κ)2;κ)

]
≤ κ||f ′||ρ

(
qn−2

[n− 2]q

)1/2

+M5(ρ)||f ′′||ρ
κ2

[n]q
.

�

For f ∈ Cρ, ρ ∈ N ∪ {0}, the k-th (k = 1, 2) order modulus of continuity ωk is defined as

ωk(f, Cρ;℘) = sup
0≤h≤℘

||4khf(.)||ρ, ℘ ≥ 0,

where 41
hf(u) ≡ f(u+ h)− f(u) and 42

hf(u) ≡ f(u+ 2h)− 2f(u+ h) + f(u). From [8,15], we have

lim
℘→0+

ωk(f, Cρ;℘) = 0, k = 1, 2, for all f ∈ Cρ.

In the following theorem, we derive an estimate of the rate of convergence by the operators (1.4) with
the aid of the modulus of continuity of order 2.

Theorem 3.2. For every f ∈ Cρ, ρ ∈ N ∪ {0} and κ > 0, there exists a positive constant M8(ρ) such
that

1

wρ(κ)
|Gn,q(f ;κ)− f(κ)| ≤M8(ρ)

{
κ
(

qn−2

[n− 2]q

)1/2

+ ω2

(
f ;

κ√
[n]q

)}
,

for all n > 2ρ+ 4.

Proof. Following [8], for f ∈ Cρ the Steklov function fh is defined as

fh(u) =
4

h2

∫ h/2

0

∫ h/2

0

{2f(u+ s+ t)− f(u+ 2(s+ t))}dsdt

for u > 0, and h > 0. If f ∈ Cρ then from [8], for all h > 0, it is known that f
(k)
h ∈ Cρ for k = 0, 1, 2 and

||f − fh||ρ ≤ ω2(f ;h), (3.3)

||f ′′h ||ρ ≤
9

h2
ω2(f ;h). (3.4)

For any f ∈ Cρ, we may write

1

wρ(κ)
|Gn,q(f ;κ)− f(κ)| ≤ 1

wρ(κ)
(|Gn,q(f(u)− fh(u);κ)|+ |Gn,q(fh;κ)− fh(κ)|+ |fh(κ)− f(κ)|).

By using Lemma (5), Theorem (3.1), equations (3.3) and (3.4), we obtain

1

wρ(κ)
|Gn,q(f ;κ)− f(κ)| ≤ M6(ρ)||f − fh||ρ + κ||f ′h||ρ

(
qn−2

[n− 2]q

)1/2

+M7(ρ)||f ′′h ||ρ
κ2

[n]q
+ ||f − fh||ρ

≤ κ||f ′h||ρ
(

qn−2

[n− 2]q

)1/2

+ {M6(ρ) + 1 + 9M7(ρ)
κ2

h2[n]q
}ω2(f ;h)

Taking h = κ√
[n]q

, we reach the desired result. �

As a consequence of the above theorem, we have an immediate corollary as follows:
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Corollary 1. For any f ∈ Cρ, ρ ∈ N ∪ {0} and κ > 0, we have

lim
n→∞

Gn,qn(f ;κ) = f(κ).

Note that this convergence is uniform on any compact interval [a, b] of (0,∞).

In the next result, we establish the Voronovskaja type asymptotic theorem for the operators Gn,qn .

Theorem 3.3. Let ρ ∈ N ∪ {0} and f ∈ Cρ such that f ′, f ′′ ∈ Cρ, then for any κ > 0, there holds

lim
n→∞

[n]qn(Gn,qn(f ;κ)− f(κ)) =
λ

2
{κ2f ′′(κ)− κf ′(κ)}.

Proof. By our hypothesis, from Taylor’s formula for f about κ > 0, we have

f(u) = f(κ) + (u− κ)f ′(κ) +
1

2
(u− κ)2f ′′(κ) + ξκ(u)(u− κ)2, u > 0, (3.5)

where ξκ(u) is a function satisfying limu→κ ξκ(u) = ξκ(κ) = 0.
Operating Gn,qn(.;κ) on both sides of the above equation (3.5) and using Lemma 3, we get

[n]qn(Gn,qn(f ;κ)− f(κ)) = [n]qn

(√
[n− 2]qn
[n− 1]qn

− 1

)
{κf ′(κ)− κ2f ′′(κ)}

+[n]qnGn,qn((u− κ)2ξκ(u);κ). (3.6)

Now, we show that [n]qnGn,qn((u− κ)2ξκ(u);κ)→ 0, as n→∞, for any κ > 0.
By using Cauchy-Schwarz inequality, we arrive at

|Gn,qn((u− κ)2ξκ(u);κ)| ≤
√
Gn,qn((u− κ)4;κ)

√
Gn,qn((ξκ(u))2;κ). (3.7)

From the properties of ξκ(u) and Corollary (1), it follows that

lim
n→∞

Gn,qn((ξκ(u))2;κ) = (ξκ(κ))2 = 0, (3.8)

for any κ > 0.
Further from Remark 1, for all κ > 0, we have

[n]qn

√
Gn,qn((u− κ)4;κ) = O(1), as n→∞. (3.9)

Therefore combining (3.7)-(3.9), we obtain

lim
n→∞

[n]qnGn,qn((u− κ)2ξκ(u);κ) = 0.

Consequently, applying Remark 1 to the equation (3.6), we reach the required result. �

3.2. Approximation properties of the operator Gn,q,ρ.

Our following result is an analogue of Theorem 3.2 for the operators (1.5).

Theorem 3.4. For every f ∈ Cρ and ρ ∈ N, there exists a constant M9(ρ) such that the following
inequality holds

1

wρ(κ)
|Gn,q,ρ(f ;κ)− f(κ)| ≤ M9(ρ)

[n]
ρ/2
q

ω1

(
f (ρ), C0;

κ√
[n]q

)
, κ > 0

for n > 2ρ+ 2. Furthermore,

||Gn,q,ρ(f)− f ||ρ+1 ≤
3M9(ρ)

[n]
ρ/2
q

ω1

(
f (ρ), C0;

1√
[n]q

)
for n > 2ρ+ 2.
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Proof. For every f ∈ Cρ and κ > 0, from equations (1.5) and (1.6), we may write

Gn,q(f ;κ)− f(κ) = Gn,q((Jρ,q(κ, u)− f(κ));κ)

. For any f ∈ Cρ, the Taylor’s formula about u > 0, is given by

f(κ) =

ρ∑
k=0

f (k)(u)

k!
(κ − u)k +

(κ − u)ρ

(ρ− 1)!
hρ(κ, u), κ > 0

where

hρ(κ, u) =

∫ 1

0

(1− v)ρ−1{f (ρ)(u+ v(κ − u))− f (ρ)(u)}dv. (3.10)

From equation (1.6) we have

f(κ)− Jρ,q(κ, u) =
(κ − u)ρ

(ρ− 1)!
hρ(κ, u)

and therefore, we obtain

|Gn,q,ρ(f ;κ)− f(κ)| ≤ Gn,q(|Jρ,q(κ, u)− f(κ)|;κ)

=
1

(ρ− 1)!
Gn,q(|κ − u|ρ|hρ(κ, u)|;κ). (3.11)

Now, we estimate |hρ(κ, u)| in terms of the first order modulus of continuity ω1. Since f (ρ) ∈ C0, from
equation (3.10), we get

|hρ(κ, u)| ≤
∫ 1

0

(1− v)ρ−1ω1(f (ρ), C0; v|κ − u|)dv

≤ ω1(f (ρ), C0; |κ − u|)
∫ 1

0

(1− v)ρ−1dv

≤ 1

ρ
ω1

(
f (ρ), C0;

κ√
[n]q

)(√
[n]q
κ
|κ − u|+ 1

)
, κ > 0. (3.12)

From equations (3.11) and (3.12), we have

|Gn,q,ρ(f ;κ)−f(κ)| ≤ 1

ρ!
ω1

(
f (ρ), C0;

κ√
[n]q

){√
[n]q
κ
Gn,q,ρ(|κ−u|ρ+1;κ)+Gn,q,ρ(|κ−u|ρ;κ)

}
. (3.13)

The first assertion of the theorem follows from Lemma (3). Further from [32], for any κ > 0 and n ∈ N,
we have

ω1

(
f (ρ);

κ√
[n]q

)
≤ (κ + 1)ω1

(
f (ρ);

1√
[n]q

)
.

Thus, from equations (1.3) and (3.13), the second assertion of the theorem follows. �

Remark 3. If we take ρ = 2 in the above Theorem 3.4 and comparing with the Theorem 3.3, then it can
be observe that the operators Gn,q,ρ have better rate of convergence than the operators Gn,q
Corollary 2. Let ρ ∈ N, then for every f ∈ Cρ, we have

lim
n→∞

[n]ρ/2qn (Gn,qn,ρ(f ;κ)− f(κ)) = 0, κ > 0.

Further

lim
n→∞

[n]ρ/2qn ||Gn,qn,ρ(f)− f ||ρ+1 = 0.

In the next corollary, we investigate the convergence rate of the operators (1.5) for those functions
f ∈ Cρ, where f (ρ) belongs to the Lipschitz class LipMµ, 0 < µ ≤ 1, defined as

LipMµ = {f ∈ C0 : |f(κ)− f(u)| ≤M |κ − u|µ, 0 < µ ≤ 1, κ, u > 0},
M > 0 is a constant depending on f .
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Corollary 3. For any f ∈ Cρ such that f (ρ) ∈ LipµM , 0 < µ ≤ 1, and ρ ∈ N, for all κ > 0, we have

Gn,qn,ρ(f ;κ)− f(κ) = O

(
1

[n]
(ρ+µ)/2
qn

)
, as n→∞.

Also,

||Gn,qn,ρ(f)− f ||ρ+1 = O

(
1

[n]
(ρ+µ)/2
qn

)
, as n→∞.

Lastly, we establish a Voronovskaya type result for the operators (1.5).

Theorem 3.5. Let f ∈ Cρ and ρ ∈ N ∪ {0} such that the derivatives f (ρ+1) and f (ρ+2) are bounded and
continuous on (0,∞), then for all κ > 0, we have

Gn,qn,ρ(f ;κ)− f(κ) =
(−1)ρf (ρ+1)(κ)

(ρ+ 1)!
Gn,qn((u− κ)ρ+1;κ)

+
(−1)ρ(ρ+ 1)f (ρ+2)(κ)

(ρ+ 2)!
Gn,qn((u− κ)ρ+2;κ) + o

(
1

[n]q
(ρ+2)/2

)
, as n→∞.

Proof. To prove this theorem, we use the Taylor’s expansion of f (k), 1 ≤ k ≤ ρ at κ > 0, which is given
as

f (k)(u) =

ρ+2−k∑
j=0

f (k+j)(κ)

j!
(u− κ)j + ηk(u,κ)(u− κ)ρ+2−k, for u ≥ 0,

where ηk(u,κ) is a function such that for a fixed κ > 0, ηk(u,κ)u2 ∈ C0 and limu→κ ηk(u,κ) = 0 for all
k, 0 ≤ k ≤ ρ.
Then, equation (1.6) can be written as

Jρ(κ, u) =

ρ∑
k=0

1

k!

{ ρ+2−k∑
j=0

f (k+j)(κ)

j!
(u− κ)j + ηk(u,κ)(u− κ)ρ+2−k

}
(κ − u)k, κ, u > 0

=

ρ∑
k=0

(−1)k

k!

ρ+2−k∑
j=0

f (k+j)(κ)

j!
(u− κ)k+j +

{ ρ∑
k=0

(−1)k

k!
ηk(u,κ)

}
(u− κ)ρ+2

On simplification, the above expression becomes

Jρ(κ, u) =

ρ∑
k=0

(−1)k
ρ+2∑
i=k

(
i

k

)
f (i)(κ)

i!
(u− κ)i + ηρ(u,κ)(u− κ)ρ+2

=

ρ∑
i=0

f (i)(κ)

i!
(u− κ)i

i∑
k=0

(
i

k

)
(−1)k +

f (ρ+1)(κ)(u− κ)ρ+1

(ρ+ 1)!

ρ∑
k=0

(
ρ+ 1

k

)
(−1)k

+
f (ρ+2)(κ)(u− κ)ρ+2

(ρ+ 2)!

ρ∑
k=0

(
ρ+ 2

k

)
(−1)k + ηρ(u,κ)(u− κ)ρ+2 (3.14)
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where ηρ(u,κ) =
∑ρ
k=0

(−1)k
k! ηk(u,κ).

It can be easily seen that for a non-negative integer i there hold:

i∑
k=0

(−1)k
(
i

k

)
=

{
1 if i = 0
0 if i ≥ 1,

i∑
k=0

(−1)k
(
i+ 1

k

)
= (−1)i,

i∑
k=0

(−1)k
(
i+ 2

k

)
= (i+ 1)(−1)i.

By virtue of these identities and equations (1.5) and (3.14), we have

Gn,qn,ρ(f ;κ)− f(κ) =
(−1)ρf (ρ+1)(κ)

(ρ+ 1)!
Gn,qn,ρ((u− κ)ρ+1;κ) +

(−1)ρ(ρ+ 1)f (ρ+2)(κ)

(ρ+ 2)!
Gn,qn,ρ((u− κ)ρ+2;κ)

+Gn,qn,ρ(ηρ(u,κ)(u− κ)ρ+2;κ). (3.15)

Since, limu→κ ηρ(u,κ) = ηρ(κ,κ) = 0, hence from Corollary (1), we have

lim
n→∞

Gn,qn,ρ((ηρ(u,κ))2;κ) = (ηρ(κ,κ))2 = 0.

Thus, from Hölder’s inequality and remark (2), we get

Gn,qn,ρ(ηρ(u,κ)(u− κ)ρ+2;κ) = o

(
1

[n]
(ρ+2)/2
q

)
, as n→∞. (3.16)

The proof of the theorem follows from equations (3.15) and (3.16).
�
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