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Abstract

We consider the following X-ray free electron lasers Schrödinger equation

(i∇−A)2u+ V (x)u− µ

|x|u =

(
1

|x| ∗ |u|
2

)
u−K(x)|u|q−2u, x ∈ R3,

where A ∈ L2
loc(R3,R3) denotes the magnetic potential such that the magnetic field B = curlA is

Z3-periodic, µ ∈ R, K ∈ L∞
(
R3

)
is Z3 -periodic and non-negative, q ∈ (2, 4). Using the variational

method, based on a profile decomposition of the Cerami sequence in H1
A

(
R3

)
, we obtain the existence

of the ground state solution for suitable µ ≥ 0. When µ < 0 is small, we also obtain the non-existence.

Furthermore, we give a description for the asymptotic behaviour of the ground states as µ→ 0+.
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1 Introduction

In this paper, we consider the following X-ray free electron lasers (XFEL) equation

(i∇−A)2u+ V (x)u− µ

|x|
u =

(
1

|x|
∗ |u|2

)
u−K(x)|u|q−2u, x ∈ R3, (1.1)

where A denotes the magnetic potential, V stands for the electric potential, K ∈ L∞
(
R3
)

and q ∈ (2, 4).

Equation (1.1) comes from the following time-dependent model arises as an effective single particle model

in X-ray free electron lasers [27, 17] with an atomic nucleus located at the origin

i∂tΦ = (i∇−A(t, x))
2

Φ +W (x)Φ +
λ1

|x|
Φ + λ2(| · |−1 ∗ |Φ|2)Φ + λ3|Φ|2σΦ. (1.2)
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A solution Φ of (1.2) can be considered as the wavefunction of an electron beam in an electric potential

W (x), interacting self-consistently through the Coulomb (Hartree) force with the strength λ2, the local

Fock approximation with the strength λ3, and interacting with an atomic nucleus, located at the origin, of

interaction strength λ1. Equation (1.1) can be regarded as a generalized stationary equation of (1.2) in the

case that A is independent of time, with λ1 = −µ, λ2 = −1 and λ3 being replaced by K(x).

The XFEL has many important applications in physics, recent developments using XFEL include the

observation of the motion of atoms [11], measuring the dynamics of atomic vibrations [28], biomolecular

imaging [38], etc. Although huge amount of studies have been made in physics, it seems that only very few

mathematical results could be found in the literatures. In mathematics, the earliest time that the Cauchy

problems for the XFEL equations with V (x) = 0 were considered seems to be in [2, 3]. For some recent

developments, we refer to [13, 29, 26, 25, 24] and the references therein. Especially, [26, 25, 24] are devoted to

the time-dependent problems; in [29], for the case A = 0 the authors obtained the existence of ground states

and normalized solutions for the XFEL Schrödinger equation with harmonic potential; in [13], the existence

and stability properties of standing waves have been discussed under the assumption that the potential A is

the vector potential such that the magnetic field B = curlA is constant. However, for more general magnetic

field, the discussion for stationary solutions, especially for ground states, seems still absent.

Equation (1.1) is also a special type of the nonlinear magnetic Schrödinger equation

∇2
Au+ V (x)u = g(x, |u|)u, x ∈ RN , (1.3)

where ∇A = (i∇ − A). Equation (1.3) has attracted a great quantity of attentions in recent decades. In

the study of magnetic Schrödinger equation, one key problem is to overcome the difficulty brings from the

presence of magnetic field. Esteban and Lions [23] obtained firstly the existence result when the magnetic

field is constant, and then Arioli and Szulkin [4] generalized the result to periodic magnetic field. Recently,

Devillanova and Tintarev [21] obtained the existence for a general bounded external magnetic field. The

researches on nonlinear magnetic Schrödinger equations have covered a variety of interesting topics, for more

examples, we refer to [12, 5, 22, 39, 31, 32, 33, 1, 18, 19, 20, 16, 36] and the references therein. Inspired by

the above works, in this paper, we are interested in the XFEL equation (1.1) with the magnetic field being

Z3-periodic.

We need the following assumptions:

(A) A ∈ L2
loc(R3,R3) and the magnetic field B = curlA is Z3-periodic.

(V1) V = Vp +Vl, where Vp ∈ L∞
(
R3
)

is Z3 -periodic, essinfx∈R3 Vp(x) > 0 and Vl ∈ L∞
(
R3
)
∩ L3

(
R3
)

satisfies

lim
|x|→+∞

Vl(x) = 0.

(V2) essinfx∈R3 V (x) = V0 > 0.

(K) K ∈ L∞
(
R3
)

is Z3 -periodic and non-negative.

In Lemma 2.6 we will show that there exists µ∗ such that for all µ ∈ [0, µ∗),∫
R3

|∇Au|2dx+

∫
R3

V (x)|u(x)|2dx− µ
∫
R3

|u(x)|2

|x|
dx
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is positive-definite on H1
A

(
R3
)
.

Our main results can be stated as follows.

Theorem 1.1 Suppose that conditions (A), (V 1), (V 2) and (K) hold. If µ ∈ [0, µ∗) and Vl satisfies

Vl(x) ≤ µ

|x|
for a.e. x ∈ R3\{0}, (1.4)

then there is a ground state solution u ∈ H1
A

(
R3
)

of equation (1.1).

Theorem 1.2 Suppose that (A), (V 1) and (K) hold. If µ < 0 and

Vl(x) >
µ

|x|
for a.e. x ∈ R3\{0}, (1.5)

then equation (1.1) has no ground state.

Finally, we give a description for the asymptotic behavior of the ground state when µ→ 0+.

Theorem 1.3 Suppose that (A), (V 1), (K) are satisfied and Vl ≡ 0. Let {µn} ⊂ [0, µ∗) be a sequence such

that µn → 0+. Let un ∈ H1
A

(
R3
)

be a ground state of (1.1) corresponding to µ = µn, then there is a sequence

{zn} ⊂ Z3 such that for gzn defined by (2.2) below, up to a subsequence, we have

gznun ⇀ u0, in H1
A

(
R3
)
,

where u0 ∈ H1
A

(
R3
)

is a ground state solution of (1.1) for µ = 0. Moreover, cn → c, where cn is the energy

of un and c is the energy of u0. The energy of a solution is defined by (2.1) below.

The rest of this paper is organized as follows. In section 2 we give some preliminaries and variational

setting. In section 3 we prove the existence and boundedness of a Cerami sequence in H1
A

(
R3
)
, and provide

a decomposition of bounded minimizing sequences. Section 4 is devoted to the proof of Theorem 1.1 and

Theorem 1.2. Finally, we give the proof of Theorem 1.3 in section 6.

2 Preliminaries and variational setting

In this section, we collect some preliminary results that we will use later.

Suppose that A ∈ L2
loc(R3,R3). For ∇A = (i∇−A), let

H1
A(R3) =

{
u ∈ L2(R3) : ∇Au ∈ L2(R3)

}
,

then H1
A(R3) is a Hilbert space with inner product

〈u, v〉 = <
∫
R3

(∇Au · ∇Av + uv)dx,

where u denotes the conjugation of u and <a denotes the real part of a ∈ C. The corresponding norm is

‖u‖H1
A(R3) =

√
〈u, u〉. We have the continuous embedding H1

A(R3) ↪→ Lp(R3) for 2 ≤ p ≤ 6 (see [23]). If

u ∈ H1
A(R3,C), then |u| ∈ H1(R3) and the following diamagnetic inequality holds

|∇|u|(x)| ≤ |(i∇−A(x))u(x)|, for a.e. x ∈ R3.
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The energy functional E : H1
A(R3)→ R of a solution u of (1.1) is defined by

E(u) =
1

2

∫
R3

|∇Au|2dx+
1

2

∫
R3

(
V (x)− µ

|x|

)
|u|2dx

− 1

4

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy +

1

q

∫
R3

K(x)|u|qdx, (2.1)

E is of C1-class on H1
A(R3). The corresponding Nehari manifold is defined by

N :=
{
u ∈ H1

A(R3)\{0} | E ′(u)u = 0
}
.

Note that, if the magnetic field B = curlA is Z3-periodic, i.e.

B(· − y) = B(·), ∀ y ∈ Z3,

then, in terms of a fixed magnetic potential A,

curl (A(· − y)−A(·)) = 0, ∀ y ∈ Z3.

Therefore, from [34, Lemma 1.1], we have

∀y ∈ Z3, ∃ φy ∈ H1
loc(R3), such that A(· − y) = A(·) +∇φy(·).

Set

gy := u→ eiφy(·)u(· − y), (2.2)

g−1
y := v → e−iφy(·+y)v(·+ y), (2.3)

we have

Lemma 2.1 ([4] ) Let u ∈ H1
A

(
R3
)
, z ∈ Z3 and v := gzu. Then v ∈ H1

A

(
R3
)
,
∫
R3 |∇Av|2 =

∫
R3 |∇Au|2 and

‖v‖H1
A(R3) = ‖u‖H1

A(R3). In particular, for each z ∈ Z3 the operator gz is an isometry on H1
A

(
R3
)
.

Define

Eper(u) := E(u)− 1

2

∫
R3

Vl(x)|u|2dx+
µ

2

∫
R3

|u|2

|x|
dx, (2.4)

Obviously, Eper is differential on H1
A

(
R3
)
.

Lemma 2.2 ([34] ) For all y ∈ Z3, there hold Eper (gyu) = Eper (u) and E ′per (gyu) = gyE ′per (u).

We also need the following lemmas.

Lemma 2.3 (Hardy-Littlewood-Sobolev inequality [30]) Let p, r > 1, 0 < λ < n and 1
p + λ

n + 1
r = 2. If

f ∈ Lp(Rn) and h ∈ Lr(Rn), then there exists a constant C independent of g and h, such that∣∣∣∣∫
Rn

∫
Rn

f(x)|x− y|−λh(y)dxdy

∣∣∣∣ ≤ C‖f‖p‖h‖r.
Lemma 2.4 ([15] ) Let 1 ≤ p < ∞. If q < N is such that 0 ≤ q ≤ p, then |u(·)|p

|·|q ∈ L1(RN ) for every

u ∈W 1,p(RN ). Furthermore, ∫
RN

|u(x)|p

|x|q
dx ≤

(
p

N − q

)q
‖u‖p−qLp ‖∇u‖qLp .

4



Remark 2.5 Let q = 1, p = 2, by the diamagnetic inequality and Lemma 2.4, we know that for any

u ∈ H1
A

(
R3
)

there holds

1

2
(‖∇Au‖22 + ‖u‖22) ≥ ‖∇|u|‖2‖u‖2 ≥

∫
R3

|u(x)|2

|x|
dx.

Lemma 2.6 There exists µ∗ such that for any 0 ≤ µ < µ∗ the quadratic form

Qµ : u 7→
∫
R3

|∇Au|2dx+

∫
R3

V (x)|u(x)|2dx− µ
∫
R3

|u(x)|2

|x|
dx

is positive-definite and gives a norm on H1
A

(
R3
)

which is equivalent to the standard one.

Proof. By the assumption on V (x), for any u ∈ H1
A(R3), we have

Qµ(u) ≤
∫
R3

|∇Au|2dx+

∫
R3

V (x)u2dx ≤ max{1, ‖V (x)‖L∞}
(
‖∇Au‖22 + ‖u‖22

)
.

On the other hand, by Lemma 2.4, let µ∗ = 2 min{1, V0}, then for any 0 < µ < µ∗,

Qµ(u) =

∫
R3

|∇Au|2dx+

∫
R3

V (x)u2dx− µ
∫
R3

|u(x)|2

|x|
dx

≥
∫
R3

|∇Au|2dx+ V0‖u‖22 − µ
∫
R3

|u(x)|2

|x|
dx

≥ 1

2
(µ∗ − µ)

(
‖∇Au‖22 + ‖u‖22

)
,

which implies the conclusion. 2

Lemma 2.6 yields that for 0 ≤ µ < µ∗, ‖u‖µ :=
√
Qµ(u) is an equivalent norm on H1

A

(
R3
)
. In the rest

of the paper we will always assume µ ∈ [0, µ∗) if we use the symbol 〈·, ·〉µ to denote the scalar product.

Moreover, we write

D(u) :=

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy.

It is known that D(u) is well-defined on H1
A

(
R3
)
. By the Hardy-Littlewood-Sobolev inequality and Sobolev

inequality, there is a constant C > 0 such that

D(u) ≤ C‖u‖4µ.

Now we can rewrite the energy functional as

E(u) =
1

2
‖u‖2µ −

1

4
D(u) +

1

q

∫
R3

K(x)|u(x)|qdx,

it is standard to check that E is of C1-class and its critical points are weak solutions of equation (1.1).

Let (E, ‖ · ‖E) be a Hilbert space. Suppose that H : E → R is a nonlinear functional of the form

H(u) =
1

2
‖u‖2E − I(u), (2.5)

where I is of C1 class and I(0) = 0. Let

N := {u ∈ E\{0} | H′(u)u = 0}

be the Nehari manifold, then it is obvious that any nontrivial critical point of H belongs to N . Recall that

a Cerami sequence for H at level c is a sequence {un}n ⊂ E such that

H (un)→ c, (1 + ‖un‖E)H′ (un)→ 0.
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The next result establishes the existence of Cerami sequence, which can be found in [37, 8].

Lemma 2.7 Suppose that the functional H(u) defined by (2.5) satisfies the following conditions:

(J1) there exists r > 0 such that

inf
‖u‖E=r

H(u) > 0.

(J2) I(tnun)
t2n

→ +∞ as tn → +∞, and un → u, with u ∈ E\{0}.

(J3) for all t > 0 and u ∈ N ,
t2 − 1

2
I ′(u)(u)− I(tu) + I(u) ≤ 0.

Then N 6= ∅, Γ 6= ∅ and

c := inf
N
H = inf

γ∈Γ
sup
t∈[0,1]

H(γ(t)) = inf
u∈E\{0}

sup
t≥0
H(tu) > 0,

where

Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, ‖γ(1)‖E > r, H(γ(1)) < 0}.

Moreover, there is a Cerami sequence for H at level c.

3 Profile decomposition of minimizing sequences

In this section, we will give a profile decomposition for the minimizing sequences. We firstly prove the

existence and boundedness of Cerami sequence via Lemma 2.7.

Lemma 3.1 Suppose (A), (V 1), (V 2) and (K) are satisfied. Let H = E, E = H1
A(R3) and

I(u) :=
1

4
D(u)− 1

q

∫
R3

K(x)|u(x)|qdx.

Then (J1)-(J3) hold.

Proof. The idea is similar to [6, Lemma 3.3]. It is easy to check that (J1) and (J2) hold. To prove (J3), let

u ∈ N , set

ϕ(t) =
t2 − 1

2
I ′(u)u− I(tu) + I(u), for t ≥ 0,

we see that ϕ(1) = 0. As u ∈ N , we have ‖u‖2µ = I ′(u)u > 0, which implies∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy >

∫
R3

K(x)|u(x)|qdx. (3.1)

Furthermore, we have

dϕ(t)

dt
= (t− t3)

∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy + (tq−1 − t)

∫
R3

K(x)|u(x)|qdx.

For any fixed x, y ∈ R3, define ψ : (0,+∞)→ R by

ψ(t) := ψ(x,y)(t) :=
|u(x)|2|u(y)|2

tq−4
. (3.2)

If t ∈ (0, 1], we have

dϕ(t)

dt
≥ (tq−1−t3)

∫
R3×R3

|u(x)|2|u(y)|2

|x− y|
dxdy = tq−1

∫
R3×R3

ψ(x,y)(1)−ψ(x,y)(t)

|x− y|
dxdy.
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As ψ is non-decreasing on (0, 1], we see that dϕ(t)
dt ≥ 0 for t ∈ (0, 1] and then ϕ(t) ≤ ϕ(1) = 0, so (J3) holds.

Similarly, if t ∈ (1,+∞), because q ∈ (2, 4), we have

dϕ(t)

dt
≤ (tq−1 − t3)

∫
R3

K(x)|u(x)|qdx ≤ 0.

Therefore, ϕ(t) ≤ ϕ(1) = 0 for t ∈ (1,+∞). This completes the proof for (J3). 2

Lemma 3.2 Any Cerami sequence {un} of E is bounded.

Proof. It can be deduced from the properties of Cerami sequences that

lim
n→+∞

E (un) = lim
n→+∞

(
E (un)− 1

q
E ′ (un)un

)
= lim
n→+∞

[(
1

2
− 1

q

)
‖un‖2µ +(

1

q
− 1

4
)

∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy

]
≥ lim
n→+∞

(
1

2
− 1

q

)
‖un‖2µ ,

now the boundedness of {un} follows from lim supn→+∞ E (un) < +∞. 2

In the next we will give a profile decomposition for the minimizing sequences.

Lemma 3.3 Suppose that {un}n ⊂ H1
A

(
R3
)

is a bounded sequence such that un ⇀ u0 in H1
A

(
R3
)
. Then

D (un − u0)−D (un) +D (u0)→ 0 as n→ +∞.

Lemma 3.3 can be proved by the similar arguments as in [14, Lemma 2.2], we omit it here.

Lemma 3.4 Suppose that {un}n ⊂ H1
A

(
R3
)
, ` ≥ 1, and for k = 1, . . . , `, there exists a sequence

{
zkn
}
n
⊂ Z3

satisfying
∣∣zkn∣∣ → +∞ and

∣∣∣zkn − zk′n ∣∣∣ → +∞ for k 6= k′. Let gzkn and g−1
zkn

be defined by (2.2) and (2.3).

Assume that un ⇀ u0 and wk ∈ H1
A

(
R3
)

satisfying g−1
zkn
un ⇀ wk in H1

A

(
R3
)
. If∥∥∥∥∥un − u0 −

∑̀
k=1

gzknw
k

∥∥∥∥∥
µ

→ 0, (3.3)

then we have

D (un)→ D (u0) +
∑̀
k=1

D
(
wk
)
.

Proof. Set an0 := un − u0, and

anm := un − u0 −
m∑
k=1

gzknw
k, m ∈ {1, . . . , `}.

As un ⇀ u0, by Lemma 3.3 we get

D (an0 )−D (un) +D (u0)→ 0.

Since g−1
z1n
un ⇀ w1, g−1

z1n
u0 ⇀ 0 and g−1

z1n
an0 = g−1

z1n
(un − u0), we have g−1

z1n
an0 ⇀ w1. Applying Lemma 3.3

again, we have

D
(
g−1
z1n
an0 − w1

)
−D

(
g−1
z1n
an0

)
+D

(
w1
)
→ 0,

or equivalently

D (an1 )−D (an0 ) +D
(
w1
)
→ 0. (3.4)
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Similarly,

D (an2 )−D (an1 ) +D
(
w2
)
→ 0. (3.5)

It yields from (3.4) and (3.5) that

D (an2 ) +D
(
w2
)

+D
(
w1
)
−D (an0 )→ 0.

Repeating the above process, we obtain

D (an` ) +
∑̀
k=1

D
(
wk
)
−D (un − u0)→ 0. (3.6)

In view of (3.3), an` → 0 holds. Therefore

D (an` )→ 0,

then from (3.6) we get

D (un − u0)→
∑̀
k=1

D
(
wk
)
.

Using Lemma 3.3 again, we obtain

D (un)→ D (u0) +
∑̀
k=1

D
(
wk
)
,

this completes the proof. 2

Similar to [6, Lemma 4.3, Corollary 4.4], we can get the following lemma and corollary.

Lemma 3.5 D′ : H1
A

(
R3
)
→
(
H1
A

(
R3
))∗

is weak-to-weak ∗ continuous, i.e. if {un}n is bounded and

un ⇀ u0 in H1
A

(
R3
)
, then for ϕ ∈ H1

A

(
R3
)
,

D′ (un) (ϕ)→ D′ (u0) (ϕ).

Corollary 3.1 E ′ : H1
A

(
R3
)
→
(
H1
A

(
R3
))∗

is weak-to-weak ∗ continuous.

Theorem 3.2 Under the conditions of Theorem 1.1, let {un} be a bounded Cerami sequence in H1
A

(
R3
)
.

Then there exists u0 ∈ H1
A

(
R3
)

such that un ⇀ u0 and E ′ (u0) = 0. Furthermore, up to a subsequence,

either un → u0 in H1
A

(
R3
)
, or there exist an integer ` ≥ 1 and sequences {wk}lk=1 ⊂ H1

A

(
R3
)
,
{
zkn
}
⊂ Z3

and {φzkn}
l
k=1 ⊂ H1

loc(R3), such that

1)
∣∣zkn∣∣→ +∞ and

∣∣∣zkn − zk′n ∣∣∣→ +∞ for k 6= k′;

2) wk 6= 0 and E ′per
(
wk
)

= 0 for 1 ≤ k ≤ `;
3) un − u0 −

∑`
k=1 gzknw

k → 0;

4) E (un)→ E (u0) +
∑`
k=1 Eper

(
wk
)
.

Proof. We divide the proof into six steps.

Step 1. Since {un}n is bounded, up to a subsequence, there exists u0 such that un ⇀ u0. As E ′ (un)→ 0,

by Corollary 3.1 we get E ′ (u0) = 0.

Step 2. Set v0
n := un − u0.

Case i). If

lim
n→+∞

sup
z∈R3

∫
B(z,1)

∣∣v0
n(x)

∣∣2 dx = 0, (3.7)
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we confirm that un → u0 in H1
A

(
R3
)

and the theorem is true in this situation. In fact, from

E ′ (un)
(
v0
n

)
=
∥∥v0
n

∥∥2

µ
+
〈
u0, v

0
n

〉
µ
− 1

4
D′ (un)

(
v0
n

)
+ <

∫
R3

K(x) |un|q−2
unv0

ndx,

we see that ∥∥v0
n

∥∥2

µ
=E ′ (un)

(
v0
n

)
−
〈
u0, v

0
n

〉
µ

+
1

4
D′ (un)

(
v0
n

)
−<

∫
R3

K(x) |un|q−2
unv0

ndx. (3.8)

As E ′ (u0) = 0, i.e., 〈
u0, v

0
n

〉
µ
− 1

4
D′ (u0)

(
v0
n

)
+ <

∫
R3

K(x) |u0|q−2
u0v0

ndx = 0,

and then from (3.8) we have∥∥v0
n

∥∥2

µ
=E ′ (un)

(
v0
n

)
− 1

4
D′ (u0)

(
v0
n

)
+ <

∫
R3

K(x) |u0|q−2
u0v0

ndx

+
1

4
D′ (un)

(
v0
n

)
−<

∫
R3

K(x) |un|q−2
unv0

ndx.

Since
{
v0
n

}
n

is bounded, it follows from E ′ (un)→ 0 that

E ′ (un)
(
v0
n

)
→ 0.

By Hölder’s inequality and the lemma of Lions [35], we have∣∣∣∣∫
R3

K(x)|u0|q−2u0v0
ndx

∣∣∣∣ ≤ ‖K‖∞‖u0‖q−1
q ‖v0

n‖q → 0,∣∣∣∣∫
R3

K(x) |un|q−2
unv0

ndx

∣∣∣∣ ≤ ‖K‖∞‖un‖q−1
q ‖v0

n‖q → 0.

Moreover, by the Hardy-Littlewood-Sobolev inequality, we have

D′ (un)
(
v0
n

)
→ 0 and D′ (u0)

(
v0
n

)
→ 0.

Thus
∥∥v0
n

∥∥2

µ
→ 0 and un → u0, which yields E (un)→ E (u0), then in the first case, the theorem is true.

Case ii). If (3.7) does not hold, we can find a sequence
{
z1
n

}
n
⊂ Z3 such that

lim inf
n→+∞

∫
B(z1n,1+

√
3)

∣∣v0
n

∣∣2 dx > 0.

Obviously we have
∣∣z1
n

∣∣ → +∞, and there are w1 ∈ H1
A

(
R3
)

and φz1n ∈ H1
loc(R3) such that (up to a

subsequence) g−1
z1n
un (x) ⇀ w1 6= 0. We confirm that E ′per(w

1) = 0.

Indeed, let w1
n := g−1

z1n
un(x), it follows from w1

n ⇀ w1 that

E ′per

(
w1
n

)
(ϕ)→ E ′per(w

1)(ϕ), ∀ ϕ ∈ C∞0
(
R3
)
.

Moreover,

o(1) = E ′(un)gz1nϕ = E ′per

(
w1
n

)
ϕ+ <

∫
R3

Vl
(
x+ z1

n

)
w1
nϕdx− µ<

∫
R3

ungz1nϕ

|x|
dx

= E ′per(w
1)ϕ+ <

∫
suppϕ

Vl
(
x+ z1

n

)
w1
nϕdx− µ<

∫
R3

ungz1nϕ

|x|
dx+ o(1),

and

E ′per(w
1)(ϕ) = −<

∫
suppϕ

Vl
(
x+ z1

n

)
w1
nϕdx+ µ<

∫
R3

ungz1nϕ

|x|
dx+ o(1).
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On the other hand, Lemma 2.4 implies that {un}n is bounded in L2
(
R3; |x|−1dx

)
, and from [9, Lemma 2.5],

we obtain that ∣∣∣∣∫
R3

ungz1nϕ

|x|
dx

∣∣∣∣ ≤
(∫

R3

|un|2

|x|
dx

)1/2(∫
R3

∣∣ϕ (x− z1
n

)∣∣2
|x|

dx

)1/2

→ 0.

Hence it is sufficient to show that
∫

supp ϕ
Vl
(
x+ z1

n

)
w1
nϕdx → 0. Fix any measurable set E ⊂ suppϕ, by

Hölder’s inequality, ∫
E

∣∣Vl (x+ z1
n

)
w1
nϕ
∣∣ dx ≤ ‖Vl‖∞ ∥∥w1

n

∥∥
2
‖ϕχE‖2 .

Thus the boundedness of
{
w1
n

}
n

in L2
(
R3
)

implies that the family
{
Vl
(
·+ z1

n

)
w1
nϕ
}
n

is uniformly integrable

on suppϕ. The Vitali’s convergence theorem yields

<
∫

suppϕ

Vl
(
x+ z1

n

)
w1
nϕdx→ 0,

which implies E ′per(w
1) = 0.

Step 3. Set v1
n := un − u0 − gz1nw

1 = v0
n − gz1nw

1.

Case i). If

sup
z∈R3

∫
B(z,1)

∣∣v1
n

∣∣2 dx→ 0 as n→ +∞, (3.9)

let us prove v1
n → 0 in H1

A

(
R3
)
. Firstly, from (3.9), by virtue of the Lemma of Lions, we have v1

n → 0 in

Lt
(
R3
)

for any 2 < t < 6. Repeating the argument of [7, Lemma 4.3, Step 4], from E ′ (u0)
(
v1
n

)
= 0 we

conclude that ∥∥v1
n

∥∥2

µ
=−

〈
u0, v

1
n

〉
µ
−
〈
gz1nw

1(x), v1
n

〉
µ

+
1

4
D′ (un)

(
v1
n

)
−<

∫
R3

K(x) |un|q−2
unv1

ndx+ o(1)

=− 1

4
D′ (u0)

(
v1
n

)
+ <

∫
R3

K(x) |u0|q−2
u0v1

ndx−
〈
gz1nw

1(x), v1
n

〉
µ

+
1

4
D′ (un)

(
v1
n

)
−<

∫
R3

K(x) |un|q−2
unv1

ndx+ o(1).

Since w1 is a critical point of Eper , we have∥∥v1
n

∥∥2

µ
=

1

4
D′ (un)

(
v1
n

)
− 1

4
D′ (u0)

(
v1
n

)
−

m∑
k=1

1

4
D′(gz1nw

1(x))
(
v1
n

)
−<

∫
R3

K(x)
(
|un|q−2

un − |u0|q−2
u0 −

∣∣gz1nw1(x)
∣∣q−2

gz1nw
1(x)

)
v1
ndx

−<
∫
R3

Vl(x)gz1nw
1(x)v1

ndx+ µ<
∫
R3

gz1nw
1(x)v1

n

|x|
dx+ o(1).

From [9, Lemma 2.5], we obtain

<
∫
R3

gz1nw
1(x)v1

n

|x|
dx→ 0.

Similarly to [7, Lemma 4.3, Step 4], we get

<
∫
R3

K(x)
(
|un|q−2

un − |u0|q−2
u0 −

∣∣gz1nw1(x)
∣∣q−2

gz1nw
1(x)

)
v1
ndx→ 0,

and

<
∫
R3

Vl(x)gz1nw
1(x)v1

ndx→ 0.
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Hence ∥∥v1
n

∥∥2

µ
=

1

4
D′ (un)

(
v1
n

)
− 1

4
D′ (u0)

(
v1
n

)
− 1

4
D′
(
gz1nw

1(x)
) (
v1
n

)
+ o(1).

To prove
∣∣D′ (un)

(
v1
n

)∣∣→ 0, it follows from Hardy-Littlewood-Sobolev and Hölder inequalities that∣∣D′ (un)
(
v1
n

)∣∣ ≤ ∫
R3×R3

|un(x)|2|un(y)||v1
n(y)|

|x− y|
dxdy ≤ C ‖un‖312

5

∥∥v1
n

∥∥
12
5

→ 0. (3.10)

Similar argument yields that D′ (u0)
(
v1
n

)
→ 0 and D′

(
gz1nw

1(x)
) (
v1
n

)
→ 0. Then we have v1

n → 0 in

H1
A

(
R3
)
.

Case ii). If (3.9) does not hold, then there is a sequence
{
z2
n

}
n
⊂ Z3 satisfying

lim inf
n→+∞

∫
B(z2n,1+

√
3)

∣∣v1
n

∣∣2 dx > 0, (3.11)

which yields that there exist w2 ∈ H1
A

(
R3
)

and φz2n ∈ H
1
loc(R3) such that (up to subsequences)∣∣z2

n

∣∣→ +∞,
∣∣z2
n − z1

n

∣∣→ +∞,

g−1
z2n
un(x) ⇀ w2 6= 0.

Furthermore, we confirm that

E ′per

(
w2
)

= 0.

Indeed, let w2
n := g−1

z2n
un(x), it follows from the discussion in Step 3 that

E ′per

(
w2
n

)
(ϕ)− E ′per

(
w2
)

(ϕ)→ 0

and E ′per

(
w2
n

)
(ϕ)→ 0 for any ϕ ∈ C∞0

(
R3
)
, so we have E ′per

(
w2
)

= 0, which gives the desired result.

Step 4. Repeating the procedure in Step 2 and 3, we can suppose that for an integer k ≥ 1, there exist{
zkn
}
n
⊂ Z3, {φzkn}n ⊂ H

1
loc(R3) and wk ∈ H1

A

(
R3
)

such∣∣zkn∣∣→ +∞,
∣∣∣zkn − zk′n ∣∣∣→ +∞ for k′ > k ≥ 1,

wkn := g−1
zkn
un(x) ⇀ wk 6= 0,

E ′per

(
wk
)

= 0.

Set

vkn = vk−1
n − gzknw

k, k ≥ 1.

Similar to Step 3, we can prove that if

sup
z∈R3

∫
B(z,1)

∣∣vkn∣∣2 dx→ 0 as n→ +∞, (3.12)

then

vkn → 0;

or if

sup
z∈R3

∫
B(z,1)

∣∣vkn∣∣2 dx > 0 as n→ +∞, (3.13)

then there exist two sequences
{
zk+1
n

}
n
⊂ Z3, {φzk+1

n
}n ⊂ H1

loc(R3), and wk+1 ∈ H1
A

(
R3
)

such that (up to

subsequences) ∣∣zk+1
n

∣∣→ +∞,
∣∣∣zk+1
n − zk

′

n

∣∣∣→ +∞, for k′ ≤ k,
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g−1

zk+1
n

un(x) ⇀ wk+1 6= 0, E ′per

(
wk+1

)
= 0.

Step 5. We prove that the above procedure will finish after finite number of steps. Since for any fixed

` ≥ 1 and k ∈ {1, 2, · · · , `}, we have E ′per(w
k) = 0, and there is some ρ > 0 such that

∥∥wk∥∥
µ
≥ ρ. Indeed,

from E ′per(w
k)wk = 0 we have

‖∇Awk‖22 +

∫
R3

Vp(x)
∣∣wk(x)

∣∣2 dx = D(wk)−
∫
R3

K(x)
∣∣wk(x)

∣∣q dx.
Then by ‖∇Awk‖22+

∫
R3 Vp(x)

∣∣wk(x)
∣∣2 dx ≥ c1‖wk‖2µ we obtain ‖wk‖2µ ≤ c2‖wk‖4µ, where c1, c2 are constants.

Hence there is some ρ > 0 such that
∥∥wk∥∥

µ
≥ ρ. In addition it results from the properties of a weak

convergence sequence that

0 ≤ lim
n→+∞

∥∥∥∥∥un − u0 −
∑̀
k=1

gzknw
k(x)

∥∥∥∥∥
2

µ

= lim
n→+∞

(
‖un‖2µ − ‖u0‖2µ −

∑̀
k=1

∥∥wk∥∥2

µ

)
≤ lim sup

n→+∞
‖un‖2µ − ‖u0‖2µ − `ρ

2.

Hence

ρ2` ≤ lim sup
n→+∞

‖un‖2µ − ‖u0‖2µ ,

which concludes that ` is bounded. This completes the proof of 3). Combining step 1, step 3 and step 4, we

conclude 1) and 2).

Step 6. In this step, we will prove 4). Indeed,

E (un) =
1

2
〈un, un〉µ −

1

4
D (un) +

1

q

∫
R3

K(x) |un(x)|q dx

=
1

2
〈u0, u0〉µ +

1

2
〈un − u0, un − u0〉µ + 〈u0, un − u0〉µ

− 1

4
D (un) +

1

q

∫
R3

K(x) |un(x)|q dx

=E (u0) + Eper (un − u0) + 〈u0, un − u0〉µ +
1

4
D (un − u0)

− 1

4
D (un) +

1

4
D (u0)− 1

q

∫
R3

K(x) [|un − u0|q + |u0|q − |un|q] dx

+
1

2

∫
R3

Vl(x) |un − u0|2 dx−
µ

2

∫
R3

|un − u0|2

|x|
dx.

As un ⇀ u0, we have

〈u0, un − u0〉µ → 0.

Using Lemma 3.3 we deduce that

D (un − u0)−D (un) +D (u0)→ 0.

Similar to the proof for the classical Brezis-Lieb lemma [10, Proposition 4.7.30], we can get∫
R3

K(x) [|un − u0|q + |u0|q − |un|q] dx→ 0.

Let E ⊂ R3 be a measurable set, it follows from (V1) and Hölder’s inequality that∫
E

|Vl(x)| |un − u0|2 dx ≤ ‖VlχE‖3‖un − u0‖23.
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Furthermore, since {un − u0}n is bounded in H1
A

(
R3
)
, by Vitali’s convergence theorem,∫

R3

Vl(x) |un − u0|2 dx→ 0.

Notice that ∫
R3

|un − u0|2

|x|
dx =

∫
R3

(un − u0)un
|x|

dx−
∫
R3

(un − u0)u0

|x|
dx,

repeating the similar arguments as above, we have
∫
R3

(un−u0)u0

|x| dx→ 0 and

∫
R3

(un − u0)un
|x|

dx =

∫
R3

(
un − u0 −

∑`
k=1 gzknw

k(x)
)
un

|x|
+
∑̀
k=1

gzknw
k(x)un

|x|
dx.

We now deduce that∣∣∣∣∣
∫
R3

gzknw
k(x)un

|x|
dx

∣∣∣∣∣ ≤
(∫

R3

∣∣wk (· − zkn)∣∣2
|x|

dx

)1/2(∫
R3

|un|2

|x|
dx

)1/2

→ 0,

and ∣∣∣∣∣∣
∫
R3

(
un − u0 −

∑`
k=1 gzknw

k(x)
)
un

|x|
dx

∣∣∣∣∣∣
≤

∫
R3

∣∣∣un − u0 −
∑`
k=1 gzknw

k(x)
∣∣∣2

|x|
dx


2(∫

R3

|un|2

|x|
dx

)1/2

≤C

∥∥∥∥∥un − u0 −
∑̀
k=1

gzknw
k(x)

∥∥∥∥∥
µ

(∫
R3

|un|2

|x|
dx

)1/2

→ 0,

where the Hölder’s inequality has been used, thus we get
∫
R3

|un−u0|2
|x| dx → 0. It follows from the above

conclusions that

E (un) = E (u0) + Eper (un − u0) + o(1). (3.14)

In the next let us prove

Eper (un − u0)→
∑̀
k=1

Eper

(
wk
)
. (3.15)

Firstly we have

Eper (un − u0) =
1

2
‖un − u0‖2µ −

1

4
D (un − u0) +

1

q

∫
R3

K(x) |un − u0|q dx

− 1

2

∫
R3

Vl(x) |un − u0|2 dx+
µ

2

∫
R3

|un − u0|2

|x|
dx

=
1

2

∥∥∥∥∥un − u0 −
∑̀
k=1

gzknw
k(x)

∥∥∥∥∥
2

µ

− 1

4
D (un − u0)

+
1

q

∫
R3

K(x) |un − u0|q dx+
1

2

∑̀
k=1

∥∥gzknwk(x)
∥∥2

µ
+ o(1)

=
∑̀
k=1

Eper

(
wk
)
+

1

4

∑̀
k=1

D
(
gzknw

k(x)
)
− 1

q

∑̀
k=1

∫
R3

K(x)
∣∣gzknwk(x)

∣∣q dx
− 1

4
D (un − u0) +

1

q

∫
R3

K(x) |un − u0|q dx+ o(1).
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From Lemma 3.3, by iterating and Lemma 3.4, we have

D (un − u0)−
∑̀
k=1

D
(
gzknw

k(x)
)
→ 0, as n→ +∞.

Using the similar arguments as above, we also have∫
R3

K(x) |un − u0|q dx−
∑̀
k=1

∫
R3

K(x)
∣∣gzknwk(x)

∣∣q dx→ 0, as n→ +∞.

Hence, (3.15) holds, and 4) follows from (3.14) and (3.15). So we complete the proof. 2

4 Existence and nonexistence of ground states

Proof of Theorem 1.1. Write cper := infNper
Eper , where Eper is defined by (2.4) and Nper is the

corresponding Nehari manifold. From 2) and 4) of Theorem 3.2, either

c = lim
n→+∞

E (un) = E (u0) (4.1)

or

c = lim
n→+∞

E (un) = E (u0) +
∑̀
k=1

Eper

(
wk
)
≥ E (u0) + `cper , (4.2)

where u0 and wk are the critical point of Eper .

We assert that there is a uper ∈ Nper such that

cper = Eper(uper) > 0.

In the case Vl(x) = µ
|x| , we have E = Eper and c = cper . If u0 6= 0, then (4.1) holds, cper = Eper (u0) > 0,

and u0 ∈ Nper , the assertion is true. If u0 = 0, due to c > 0, which is guaranteed by Lemma 2.7 and Lemma

3.1, we know that (4.1) does not hold. So

cper =
∑̀
k=1

Eper

(
wk
)
≥ `cper ,

we obtain ` = 1, cper = Eper (w1) > 0 and w1 ∈ Nper , then the assertion follows.

In the case Vl(x) < µ
|x| , let tper > 0 be the number such that tper uper ∈ N , then

V (x)− µ

|x|
= Vp(x) + Vl(x)− µ

|x|
< Vp(x) for a.e. x ∈ R3,

which implies that

cper = Eper (uper ) ≥ Eper (tper uper ) > E (tper uper ) ≥ inf
N
E = c > 0.

Hence cper > c > 0.

By the same process of Lemma 3.2, we conclude that E(u0) ≥ 0. If ` ≥ 1, from (4.2) we obtain

c ≥ `cper

which contradicts to cper > c. Hence, (4.1) holds, and by Theorem 3.2 we have un → u0 in H1
A

(
R3
)
,

0 < c = E(u0), and u0 6= 0 is a ground state solution of (1.1). 2
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Proof of Theorem 1.2. We assume by contradiction that u0 is a ground state for E . In particular

c = inf
N
E = E (u0) > 0.

The inequality (1.5) implies that

V (x)− µ

|x|
= Vp(x) + Vl(x)− µ

|x|
> Vp(x) for a.e. x ∈ R3,

by the similar argument as before, we have c > cper . On the other hand, fix u ∈ Nper , where Eper is given

by (2.4) with the corresponding Nehari manifold Nper , we may choose tz > 0 such that tze
iφzu(· − z) ∈ N

for any z ∈ Z3. Then

Eper(u) =Eper(e
iφzu(· − z)) ≥ Eper

(
tze

iφzu(· − z)
)

=E
(
tze

iφzu(· − z)
)
− 1

2

∫
R3

Vl(x) |tzu(· − z)|2 dx+
µ

2

∫
R3

|tzu(· − z)|2

|x|
dx

≥c− 1

2

∫
R3

Vl(x) |tzu(· − z)|2 dx+
µ

2

∫
R3

|tzu(· − z)|2

|x|
dx.

Note that Eper (tze
iφzu(· − z)) = Eper (tzu) ≤ cper , by the coercivity of Eper on Nper we confirm that

supz∈Z3 tz < +∞. Hence we have∫
R3

Vl(x) |tzu(· − z)|2 dx = t2z

∫
R3

Vl(x+ z)u2dx→ 0 as |z| → +∞.

It follows from [9, Lemma 2.5] that∫
R3

|tzu(· − z)|2

|x|
dx = t2z

∫
R3

|u(· − z)|2

|x|
dx→ 0 as |z| → +∞,

and therefore

Eper (u) ≥ c+ o(1).

Taking infimum over u ∈ Nper we see that

cper = inf
Nper

Eper ≥ c,

which is a contradiction. This ends the proof of Theorem 1.2. 2

5 Compactness of Ground states sequence

Suppose that {µn}n ⊂ (0, µ∗) is a sequence such that µn → 0+ as n→ +∞. Let En be the energy functional

corresponding to µ = µn, E0 and N0 be the energy functional and the Nehari manifold for µ = 0, respectively.

Define

cn := En (un) = inf
u∈Nn

En(u), c0 := E0 (u0) = inf
u∈N0

E0(u),

where un ∈ Nn is the ground state solution for En, in particular E ′n (un) = 0.

Lemma 5.1 The sequence {un}n is bounded in the norm ‖ · ‖H1
A

.

Proof. By Lemma 2.6, we know that µ∗

4 ‖un‖H1
A
≤ ‖un‖µn for µn ∈ [0, µ

∗

2 ). If ‖un‖µn is bounded, it

follows that ‖un‖H1
A

is bounded. Suppose by contradiction that ‖un‖µn
→ +∞. Consider sn > 0 such that
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snu0 ∈ Nn, we have

c0 = E0 (u0) ≥ E0 (snu0) = En (snu0) +
µns

2
n

2

∫
R3

|u0|2

|x|
dx ≥ cn +

µns
2
n

2

∫
R3

|u0|2

|x|
dx.

Then we obtain c0 ≥ cn. Thus

c0 ≥ lim
n→+∞

En (un) = lim
n→+∞

(
En (un)− 1

q
E ′ (un) (un)

)
= lim
n→+∞

[(
1

2
− 1

q

)
‖un‖2µn

+
1

q

∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy

−1

4

∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy

]
= lim
n→+∞

[(
1

2
− 1

q

)
‖un‖2µn

+

(
1

q
− 1

4

)∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy

]
≥ lim
n→+∞

(
1

2
− 1

q

)
‖un‖2µn

= +∞,

since 2 < q < 4. This yields a contradiction. 2

Lemma 5.2 limn→+∞ cn = c0.

Proof. Consider tn > 0 and sn > 0 such that tnun ∈ N0 and snu0 ∈ Nn, we have

cn = En (un) ≥ En (tnun) = E0 (tnun)− µnt
2
n

2

∫
R3

|un|2

|x|
dx ≥ c0 −

µnt
2
n

2

∫
R3

|un|2

|x|
dx, (5.1)

and

c0 = E0 (u0) ≥ E0 (snu0) = En (snu0) +
µns

2
n

2

∫
R3

|u0|2

|x|
dx ≥ cn +

µns
2
n

2

∫
R3

|u0|2

|x|
dx. (5.2)

By (5.1) and (5.2) we obtain

c0 ≥ cn +
µns

2
n

2

∫
R3

|u0|2

|x|
dx ≥ cn ≥ c0 −

µnt
2
n

2

∫
R3

|un|2

|x|
dx,

that is

c0 −
µnt

2
n

2

∫
R3

|un|2

|x|
dx ≤ cn ≤ c0. (5.3)

Since {un}n is bounded, then from Lemma 2.4 we know that
∫
R3

u2
n

|x|dx is also bounded.

In the next we will show that {tn}n is bounded. Assume by contradiction that tn → +∞. Let

Q(u) =

∫
R3

|∇Au|2dx+

∫
R3

V (x)|u(x)|2dx.

Since tnun ∈ N0, we have

E ′0 (tnun) (tnun) =t2nQ (un)−
∫
R3×R3

t4n|un(x)|2|un(y)|2

|x− y|
dxdy

+ tqn

∫
R3

K(x) |un|q dx = 0.

Hence,
Q (un)

tq−2
n

=

∫
R3×R3

t4n|un(x)|2|un(y)|2

tqn|x− y|
dxdy −

∫
R3

K(x) |un|q dx.

Obviously,
∫
R3 K(x) |un|q dx and

∫
R3×R3

|un(x)|2|un(y)|2
|x−y| dxdy is bounded, and

Q (un)

tq−2
n

→ 0,
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it follows that
∫
R3×R3

t4n|un(x)|2|un(y)|2
tqn|x−y| dxdy is bounded. By Lemma 2.7 we have 0 < c1 ≤ cn ≤ cn+1, and

then ∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy 9 0.

This is a contradiction. Combining with (5.3) and the boundedness of tn, we obtain

lim
n→+∞

cn = c0.

This completes the proof of Lemma 5.2. 2

Proof of Theorem 1.3. Suppose that

lim
n→+∞

sup
z∈R3

∫
B(z,1)

|un|2 dx = 0.

From the well known lemma of Lions we obtain

un → 0 in Lt
(
R3
)

for all t ∈ (2, 6) .

Similar to (3.10), we have

D′ (un) (un)→ 0 as n→ +∞.

Due to K ∈ L∞
(
R3
)

we have∫
R3

K(x)|un|qdx ≤ ‖K‖∞ ‖un‖qq → 0 as n→ +∞.

Recall that

‖un‖2µn
= D′ (un) (un)−

∫
R3

K(x) |un|q dx,

it results from the above estimates that ‖un‖µn
→ 0, and then we have

lim
n→+∞

En (un) = 0.

From Lemma 5.1 and c0 > 0, we get

lim
n→+∞

En (un) = c0 > 0,

which is a contradiction. Hence, there is a sequence {zn}n ⊂ Z3 such that

lim inf
n→+∞

∫
B(zn,1+

√
3)
|un|2 dx > 0.

Since g−1
zn un is bounded, there is u0 ∈ H1

A

(
R3
)
\{0} such that

g−1
zn un ⇀ u0 in H1

A

(
R3
)
,

g−1
zn un → u0 in L2

loc

(
R3
)
,

g−1
zn un → u0 for a.e. x ∈ R3.

Let wn = g−1
zn un. For any fixed ϕ ∈ C∞0

(
R3
)
,

E ′0 (wn) (ϕ) = E ′n (un) (gznϕ) + µn<
∫
R3

un(gznϕ)

|x|
dx = µn<

∫
R3

un(gznϕ)

|x|
dx.

By [9, Lemma 2.5] and Hölder’s inequality,

µn<
∫
R3

un(gznϕ)

|x|
dx→ 0 as n→ +∞.
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Hence E ′0 (wn) (ϕ)→ 0. It follows from Corollary 3.1 that

E ′0 (wn) (ϕ)→ E ′0(u0)(ϕ).

Thus u0 is a nontrivial critical point of E0. In particular, u0 ∈ N0. By Lemma 5.2 we have

c0 = lim
n→+∞

En (un) = lim
n→+∞

(
En (un)− 1

q
E ′n (un) (un)

)
= lim
n→+∞

[(
1

2
− 1

q

)
Q(un) +

(
1

q
− 1

2

)
µn

∫
R3

|un|2

|x|
dx

+(
1

q
− 1

4
)

∫
R3×R3

|un(x)|2|un(y)|2

|x− y|
dxdy

]
= lim
n→+∞

[(
1

2
− 1

q

)
Q(wn) +

(
1

q
− 1

2

)
µn

∫
R3

|un|2

|x|
dx

+(
1

q
− 1

4
)

∫
R3×R3

|wn(x)|2|wn(y)|2

|x− y|
dxdy

]
≥
(

1

2
− 1

q

)
Q(u0) + (

1

q
− 1

4
)

∫
R3×R3

|u0(x)|2|u0(y)|2

|x− y|
dxdy

=E0(u0)− 1

q
E ′0(u0)(u0) = E0(u0) ≥ c0.

Hence, E0(u0) = c and u0 ∈ H1
A

(
R3
)

is a ground state solution for E0. This ends the proof. 2
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