Reference
[1] V. H. Nowotny, Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn, Prog. Solid. State. Chem. 5 (1971) 27.
[2] M. W. Barsoum, M. Radovic, Elastic and Mechanical Properties of the MAX Phases, Ann. Rev. Mater. Res. 41 (2011) 195.
[3] M. W. Barsoum, T. El-Raghy, Synthesis and Characterization of a Remark-able Ceramic: Ti3SiC2, J. Am. Ceram. Soc. 79 (1996) 1953.
[4] M. W. Barsoum and T. El-Raghy, A Progress Report on Ti3SiC2, Ti3GeC2 and the H-Phases, M2BX, J. Mater. Synth. Process. 5 (1997) 197.
[5] J. Y. Wang, Y. C. Zhou, Polymorphism of ceramic: First-principles investigations, Phys. Rev. B 69 (2004) 144108.
[6] S. Gupta, M.W. Barsoum, On the tribology of the MAX phases and their composites during dry sliding: a review, Wear 271 (2011) 1878.
[7] P. Eklund, M. Beckers, U. Jansson, H. Hogberg, L. Hultman, The Mn +1AXn phases: Materials science and thin-film processing, Thin. Solid. Films. 518 (2010) 1851.
[8] I. Salama, T. El-Raghy, M. W. Barsoum, Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC,J. Alloys. Compd. 347 (2002) 271.
[9] N. J. Lane, S. C. Vogel, M. W. Barsoum, Temperature-Dependent Crystal Structures of Ti2AlN and Cr2GeC as Determined from High Temperature Neutron Diffraction, J. Am. Ceram. Soc. 94 (2011) 3473.
[10] W. Sun, W. Luo, R. Ahuja, Role of correlation and relativistic effects in MAX phases, J. Mater. Sci. 47 (2012) 7615.
[11] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M. W. Barsoum, Y. Gogotsi, MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries, Electrochem. Commun. 16 (2012) 61.
[12] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248.
[13] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, MXenes: A New Family of Two-Dimensional Materials, Adv. Mater. 26 (2014) 982.
[14] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. C. Hosler, L. Hultman, P. R. C. Kent, Y. Gogotsi, M. W. Barsoum, Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes), ACS. Nano.9 (2015) 9507.
[15] Q. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian, J. Halim, J. Palisaitis, L. Hultman, M. W. Barsoum, P. O. A. Persson, J. Rosen, Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering,Nat. Commun. 8 (2017) 14949.
[16] Y. C. Zhou, F. L. Meng, J. Zhang, New MAX‐Phase Compounds in the V-Cr-Al-C System, J. Am. Ceram. Soc. 91 (2008) 1357.
[17] L. Y. Zheng, J. M. Wang, X. P. Lu, F. Z. Li, J. Y. Wang, Y. C. Zhou, (Ti0.5Nb0.5)5AlC4: A New‐Layered Compound Belonging to MAX Phases, J. Am. Ceram. Soc. 93 (2010) 3068.
[18] Z. M. Liu, L. Y. Zheng, L. C. Sun, Y. H. Qian, J. Y. Wang, M. S. Li, G. P. Bei, (Cr2/3Ti1/3)3AlC2and (Cr5/8Ti3/8)4AlC3: New MAX-phase Compounds in Ti-Cr-Al-C System, J. Am. Ceram. Soc. 97 (2014) 67-69.
[19] Z. M. Liu, E. D. Wu, J. M. Wang, Y. H. Qian, H. M. Xiang, X. C. Li, Q. Q. Jin, G. G. Sun, X. P. Chen, J. Y. Wang, M. S. Li, Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2MAX phase, Acta. Mater. 73 (2014) 186.
[20] B. Anasori, M. Dahlqvist, J. Halim, E. J. Moon, J. Lu, B. C. Hosler, E. N. Caspi, S. J. May, L. Hultman, P. Eklund, Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3, J. Appl. Phys. 118 (2015) 094304.
[21] M. Dahlqvist, J. Lu, R. Meshkian, Q. Z. Tao, L. Hultman, J. Rosen, Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering, Sci. Adv. 3 (2017) e1700642.
[22] M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases, J. Phys.: Condens. Matter.26 (2014) 505503.
[23] Y. L. Bai, N. Srikanth, C. K. Chua, K. Zhou, Density Functional Theory Study of Mn+1AXnPhases: A Review, Crit. Rev. Solid. State. 44 (2019) 56.
[24] A. Togo, L. Chaput, I. Tanaka, G. Hug, First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2, Phys. Rev. B  81 (2010) 174301.
[25] A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,Phys. Rev. B  78 (2008) 134106.
[26] N. J. Lane, S. C. Vogel, G. Hug, A. Togo, L. Chaput, L. Hultman, M. W. Barsoum, Neutron diffraction measurements and first-principles study of thermal motion of atoms in select Mn+1AXn and binary MX transition-metal carbide phases, Phys. Rev. B  86 (2012) 214301.
[27] M. A. Pietzka, J. C. Schuster, Summary of Constitutional Data on the Al-C-Ti System, J. Phase Equilib. 15 (1994) 392.
[28] Z. G. Wu, R. E. Cohen, More accurate generalized gradient approximation for solids, Phys. Rev. B 73 (2006) 235116.
[29] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.
[30] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188.
[31] A. Togo, I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015) 1.
[32] Y. C. Zhou, X. H. Wang, Z. M. Sun, S. Q. Chen, Electronic and structural properties of the layered ternary carbide Ti3AlC2, J. Mater. Chem. 11 (2001) 2335.
[33] N. V. Tzenov, M.W. Barsoum, Synthesis and Characterization of Ti3AlC2, J. Am. Ceram. Soc. 83 (2000) 825.
[34] M. W. Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, A. Payzant, C. R. Hubbard, Thermal properties of Ti3SiC2, J. Phys. Chem. Solids.60 (1999) 429.
[35] S. Q. Feng, Y. Yang, F. Guo, L. Su, X. R. Cheng, C. S. Yuan, K. Yang, Structural, Elastic, Electronic and Hardness Properties of Osmium Diboride Predicted from First Principles Calculations, J. Alloy. Compd. 844 (2020) 156098.
[36] Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2and IrN3 from first principles, Phys. Rev. B 76 (2007) 054115.
[37] R. Hill, The Elastic Behaviour of a Crystalline Aggregate,Proc. Soc. London. A 65 (1952) 349.
[38] S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954) 833.
[39] Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, J. Meng, Crystal structures and elastic properties of superhard and from first principles, Phys. Rev. B 76 (2007) 054115.
[40] J. Haines, J. M. Leger, G. Boequillon, Synthesis and Design of Superhard Materials, Annu. Rev. Matter. Res. 31 (2001) 1.
[41] S. Q. Feng, J. L. Zhao, Y. Yang, W. B. Zhang, J. Y. Li, X. L. Cheng, X. R. Cheng, First Principle Study on Electronic, Thermophysical and Optical Properties of ScAl3C3 and UAl3C3 under high pressure, J. Mater. Res. Technol. 8 (2019) 5774.
[42] S. Q. Feng, F. Guo, F. Miao, Z. Wang, C. S. Yuan, K. Yang, Nb-based double transition metal silicides MAX-phase: a first-principle study, Chem. Phys. 551 (2021) 111321.