Reference
[1] V. H. Nowotny,
Strukturchemie
einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge,
Sn, Prog. Solid. State. Chem. 5 (1971) 27.
[2] M. W. Barsoum, M. Radovic,
Elastic
and Mechanical Properties of the MAX Phases, Ann. Rev. Mater.
Res. 41 (2011) 195.
[3] M. W. Barsoum, T. El-Raghy, Synthesis and Characterization of a
Remark-able Ceramic: Ti3SiC2, J.
Am. Ceram. Soc. 79 (1996) 1953.
[4] M. W. Barsoum and T. El-Raghy, A Progress Report on
Ti3SiC2,
Ti3GeC2 and the H-Phases,
M2BX, J. Mater. Synth. Process. 5 (1997) 197.
[5] J. Y. Wang, Y. C. Zhou, Polymorphism of ceramic:
First-principles investigations, Phys. Rev. B 69 (2004) 144108.
[6] S. Gupta, M.W. Barsoum, On the tribology of the MAX phases and
their composites during dry sliding: a review, Wear 271 (2011)
1878.
[7] P. Eklund, M. Beckers, U. Jansson, H. Hogberg, L. Hultman,
The
Mn +1AXn phases: Materials science and
thin-film processing, Thin. Solid. Films. 518 (2010) 1851.
[8] I. Salama, T. El-Raghy, M. W. Barsoum, Synthesis and mechanical
properties of Nb2AlC and (Ti,Nb)2AlC,J. Alloys. Compd. 347 (2002) 271.
[9] N. J. Lane, S. C. Vogel, M. W. Barsoum, Temperature-Dependent
Crystal Structures of Ti2AlN and Cr2GeC
as Determined from High Temperature Neutron Diffraction, J. Am.
Ceram. Soc. 94 (2011) 3473.
[10] W. Sun, W. Luo, R. Ahuja, Role of correlation and relativistic
effects in MAX phases, J. Mater. Sci. 47 (2012) 7615.
[11] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P.
Simon, M. W. Barsoum, Y. Gogotsi, MXene: A Promising Transition Metal
Carbide Anode for Lithium-Ion Batteries, Electrochem. Commun. 16
(2012) 61.
[12] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L.
Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional Nanocrystals Produced
by Exfoliation of Ti3AlC2, Adv.
Mater. 23 (2011) 4248.
[13] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, MXenes: A
New Family of Two-Dimensional Materials, Adv. Mater. 26 (2014)
982.
[14] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. C. Hosler, L.
Hultman, P. R. C. Kent, Y. Gogotsi, M. W. Barsoum, Two-Dimensional,
Ordered, Double Transition Metals Carbides (MXenes), ACS. Nano.9 (2015) 9507.
[15] Q. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian, J. Halim, J.
Palisaitis, L. Hultman, M. W. Barsoum, P. O. A. Persson, J. Rosen,
Two-dimensional Mo1.33C MXene with divacancy ordering
prepared from parent 3D laminate with in-plane chemical ordering,Nat. Commun. 8 (2017) 14949.
[16] Y. C. Zhou, F. L. Meng, J. Zhang, New MAX‐Phase Compounds in
the V-Cr-Al-C System, J. Am. Ceram. Soc. 91 (2008) 1357.
[17] L. Y. Zheng, J. M. Wang, X. P. Lu, F. Z. Li, J. Y. Wang, Y. C.
Zhou,
(Ti0.5Nb0.5)5AlC4:
A New‐Layered Compound Belonging to MAX Phases, J. Am. Ceram.
Soc. 93 (2010) 3068.
[18] Z. M. Liu, L. Y. Zheng, L. C. Sun, Y. H. Qian, J. Y. Wang, M.
S. Li, G. P. Bei,
(Cr2/3Ti1/3)3AlC2and
(Cr5/8Ti3/8)4AlC3:
New MAX-phase Compounds in Ti-Cr-Al-C System, J. Am. Ceram. Soc.
97 (2014) 67-69.
[19] Z. M. Liu, E. D. Wu, J. M. Wang, Y. H. Qian, H. M. Xiang, X. C.
Li, Q. Q. Jin, G. G. Sun, X. P. Chen, J. Y. Wang, M. S. Li, Crystal
structure and formation mechanism of
(Cr2/3Ti1/3)3AlC2MAX phase, Acta. Mater. 73 (2014) 186.
[20] B. Anasori, M. Dahlqvist, J. Halim, E. J. Moon, J. Lu, B. C.
Hosler, E. N. Caspi, S. J. May, L. Hultman, P. Eklund, Experimental and
theoretical characterization of ordered MAX phases
Mo2TiAlC2 and
Mo2Ti2AlC3, J.
Appl. Phys. 118 (2015) 094304.
[21] M. Dahlqvist, J. Lu, R. Meshkian, Q. Z. Tao, L. Hultman, J.
Rosen, Prediction and synthesis of a family of atomic laminate phases
with Kagomé-like and in-plane chemical ordering, Sci. Adv. 3
(2017) e1700642.
[22] M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Trends in
electronic structures and structural properties of MAX phases: a
first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta),
M2AlN, and hypothetical M2AlB phases, J. Phys.: Condens. Matter.26 (2014) 505503.
[23] Y. L. Bai, N. Srikanth, C. K. Chua, K. Zhou,
Density
Functional Theory Study of Mn+1AXnPhases: A Review, Crit. Rev. Solid. State. 44 (2019) 56.
[24] A. Togo, L. Chaput, I. Tanaka, G. Hug, First-principles phonon
calculations of thermal expansion in
Ti3SiC2,
Ti3AlC2, and
Ti3GeC2, Phys. Rev. B 81 (2010)
174301.
[25] A. Togo, F. Oba, I. Tanaka, First-principles calculations of
the ferroelastic transition between rutile-type and
CaCl2-type SiO2 at high pressures,Phys. Rev. B 78 (2008) 134106.
[26] N. J. Lane, S. C. Vogel, G. Hug, A. Togo, L. Chaput, L.
Hultman, M. W. Barsoum, Neutron diffraction measurements and
first-principles study of thermal motion of atoms in select
Mn+1AXn and binary MX transition-metal
carbide phases, Phys. Rev. B 86 (2012) 214301.
[27] M. A. Pietzka, J. C. Schuster, Summary of Constitutional Data
on the Al-C-Ti System, J. Phase Equilib. 15 (1994) 392.
[28] Z. G. Wu, R. E. Cohen, More accurate generalized gradient
approximation for solids, Phys. Rev. B 73 (2006) 235116.
[29] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.
[30] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone
integrations, Phys. Rev. B 13 (1976) 5188.
[31] A. Togo, I. Tanaka, First principles phonon calculations in
materials science, Scr. Mater. 108 (2015) 1.
[32] Y. C. Zhou, X. H. Wang, Z. M. Sun, S. Q. Chen, Electronic and
structural properties of the layered ternary carbide
Ti3AlC2, J. Mater. Chem. 11
(2001) 2335.
[33] N. V. Tzenov, M.W. Barsoum, Synthesis and Characterization of
Ti3AlC2, J. Am. Ceram. Soc. 83
(2000) 825.
[34] M. W. Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, A.
Payzant, C. R. Hubbard, Thermal properties of
Ti3SiC2, J. Phys. Chem. Solids.60 (1999) 429.
[35] S. Q. Feng, Y. Yang, F. Guo, L. Su, X. R. Cheng, C. S. Yuan, K.
Yang, Structural, Elastic, Electronic and Hardness Properties of Osmium
Diboride Predicted from First Principles Calculations, J. Alloy.
Compd. 844 (2020) 156098.
[36] Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, J. Meng,
Crystal
structures and elastic properties of superhard IrN2and IrN3 from first principles, Phys. Rev. B 76
(2007) 054115.
[37] R. Hill, The Elastic Behaviour of a Crystalline Aggregate,Proc. Soc. London. A 65 (1952) 349.
[38] S. F. Pugh, XCII. Relations between the elastic moduli and the
plastic properties of polycrystalline pure metals, Phil. Mag. 45
(1954) 833.
[39] Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, J.
Meng, Crystal structures and elastic properties of superhard and from
first principles, Phys. Rev. B 76 (2007) 054115.
[40] J. Haines, J. M. Leger, G. Boequillon, Synthesis and Design of
Superhard Materials, Annu. Rev. Matter. Res. 31 (2001) 1.
[41] S. Q. Feng, J. L. Zhao, Y. Yang, W. B. Zhang, J. Y. Li, X. L.
Cheng, X. R. Cheng, First Principle Study on Electronic, Thermophysical
and Optical Properties of ScAl3C3 and
UAl3C3 under high pressure, J.
Mater. Res. Technol. 8 (2019) 5774.
[42] S. Q. Feng, F. Guo, F. Miao, Z. Wang, C. S. Yuan, K. Yang,
Nb-based double transition metal silicides MAX-phase: a first-principle
study, Chem. Phys. 551 (2021) 111321.