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Abstract

The low Mach number limit of the nonisentropic compressible Hookean elastodynamic equa-
tions is rigorously proved with respect to well-prepared initial data. We introduce certain
suitable seminorms to obtain the uniform estimate of solutions, for which the critical point is
to cancel the higher order derivate terms caused by the coupling of velocity and deformation
gradient.
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1 Introduction

1.1 The model

We consider the equations of the nonisentropic compressible inviscid flows in elastodynamics(see

[2])

O(pu) +V - (pu@u)=V- T,
WE+V - (Eu)=V - (Tu),
8.F +u-VF = VuF,

(1.1)

where p denotes the density, u € R¥(d = 2,3) is the velocity, T is the Cauchy stress, F} is the
j-th column of the deformation gradient F' = (F;;) € M%*? and E is the total energy. For the
neo-Hookean elastodynamics, the total energy takes the form

AL 2
E:pE+§p|u| , E= Zl SFi +e(p, ),
0.

where e(p, S) is the thermodynamic energy and S is the entropy. The Cauchy stress T' and the
pressure p are given by

de(p, S
T =pFF" —pl,, pzp(p,5)=p2(gp), p=p(,9S),



where I is the d x d identity matrix, p, > 0 for p > 0 and p, > 0 for p > 0. We also impose the
divergence constraints on the deformation gradient

V-(pF;)) =0, j=1,---,d. (1.2)

This will not make the system (1.1) be over-determined because we only require it holds for the
initial data and it automatically propagates to any time (cf. [25, Proposition 2.1]). Considering
the physical explanation of the incompressible limit, we introduce the dimensionless parameter &,
the Mach number, and make the following changes of variables:

p(z,t) =p(z,et), S(z,t) =5%(z,et), wu(xz,t)=cu(v,et), Fj(z,t)=cl}(x,ct).

The system (1.1) can be transformed into the following equations:

a(S%,p%) (O +u®-Vp*)+ V- -u® =0,

d
p(S%,97) (O +u° - Vul) + 72 VpF = p(5°,p%) Y Fy - VF,
j=1

(1.3)
OFF +us - VFE = FF Vs, j=1,---,d,
0:S° +u - VS =0,
where a = %g—p. Using the transformation p = 1 + eq yields
1
a(5876q5) (atqs + us - VQE) + gv ‘Ut = Oa
1 d
p(S%,20°) (" + u® - Vul) + -V = p($%,2°) Y F} - VS, (1.4)
j=1
OFS +us - VFS =F5 - Vus, j=1,---.d,
0:S° +u® - VS =0.
Obviously, if we set V& = (¢°,u®, S, Ff,--- , FJ), we can reformulate (1.4) into the following
compact form
d
1
Ao(VE,eVE)RVE + Y A(VE,eVE)RVE + ~Z(0:)V° =0, (1.5)
k=1
where Ay = diag(a, pla, 1, plg2),
auy, 0 0 0 0
0  puily 0 —pFgy —pFE I,
0 V- 0 0 0 us, 0 0
ZL0y)=(V 0 0], Ac=]| 0 —pFI, 0 ,
pPL14a
0 0 O .
: By
0 —pFiI; 0

and Bk = puilgp.



1.2 Previous results

More discussions on the physical background and equations of elastodynamics can be found in
the book of Dafermos [2]. The mathematical theory of both compressible and incompressible
elastodynamics have been studied extensively in the last few decades, for example, [1, 3, 4, 6, 8, 12,
13, 14, 19, 24] and references therein. In this paper, we will focus mainly on the low Mach number
limit of (1.5).

For the inviscid flows in elastodynamics, Schochet [20] rigorously justified the incompressible
limit in nonlinear elasticity for local solution in the whole space by applying the energy methods
of Klainerman and Majda [10, 11] originating in the study of the equations of fluid dynamics, and
Sideris and Thomases [23] proved the limit for global small smooth solutions. Recently, Liu and
Xu [16] studied the incompressible limit in a bounded domain for well-prepared initial data, and
Zhang [27] proved the local well-posedness and incompressible limit of the free-boundary problem
in the compressible elastodynamic equations.

However, to our best knowledge, there are no results on the low Mach number limit to the
nonisentropic elastodynamic equations. We supplement the system (1.4) with initial data

(SE, qea uea Flsv e ’F§)|t:O = (ng QSa u(e)a Flg,Oa T 7F§7O)' (16)

We shall study the low Mach number limit of nonisentropic equations (1.4) with (1.6) in the torus
T and the whole space R,

1.3 Notations

We shall give some notations used throughout the present paper. We denote by C(-) the continuous
nondecreasing functions on [0, c0), which may vary from line to line. LP(2) (1 < p < 00) denotes
the space of measurable fuctions whose p-powers are integrable with the norm |- |,, and L>(Q) is
the space of bounded measurable functions with the norm |- |.. We also donote | - |2 by || - [|o-
We denote by (,-)o the standard inner product in L?(2) with norm ||u||2 = (u,u)o, and by H* the
usual Sobolev space W*2(Q) with norm |- ||x. The notation ||(Ay, - - , Ax)||o means the summation
of ||4i]lo (=1, - ,k), and it also applies to other norms. For a multi-index a = (e, -+ , g), we
define 0% = 9g} ---0g¢ and |a| = || + - + |ag|. We also simply denote d,; by ;. We use the
symbols K to denote generic positive constants. In this paper, we consider (2 is the torus T¢ or the
whole space R?.
Before starting our main results, we introduce the following weighted norms:

Definition 1.1 Given u € N, we set
”w
XH([0,7] x Q) := (1) C*([0, 7], H**(Q)).
k=0

We define the weighted norms

I

2 2 k—1qk 2
[w®)l,e = llw®Il, + ; [EATI G .
[wE)lper == sup [lw(t)]y,e-

t€[0,T]



Next, we introduce seminorms || - |, and || - || g,-

Definition 1.2 For V = (S,W) and W = (q,u, Fy,--- , Fy),

s
_ 2
IVIE, =Y [l orw]fy + W2+ 15112, (1.7)
k=1
s—1
Vile, =2 (IIEk_laqulskl H[|E* Y g1+ | TIOEV X s
k=1

d
+y Ek_lafVFelskl) (1.8)

{=1

One can easily check that ||V || g, + ||V g, is equivalent to |V ||s e.

1.4 Main results

We first state the uniform exitence of the local solutions with respect to ¢.

Theorem 1.1 (Uniform existence) Let s > d/2+ 1 be an integer. Suppose that the initial data
Vi are well-prepared, i.e.,

(3 1 € g
IVolls + = (VG5 lls—1 + V- uglls—1) < Mo, (1.9)

for some constant My > 0. Then there exist constants T > 0 and g € (0,1) such that for any
e € (0,g0] the initial value problem (1.4) and (1.6) has a unique solution V¢ € C([0,T], H*(Q)),
and there exists a positive constant N, depending only on T, €9 and My, such that

”VEHS,E,T < N. (1.10)

Remark 1.1 The well-prepared initial data condition (1.9) yields that |0;VE(t = 0)|s has a uni-
form bound independent of € through (1.4), which implies there is no oscillation produced by the
initial data.

Theorem 1.2 (Low Mach number limit) Let Q = T?. Suppose that the assumption in Theo-
rem 1.1 holds with s > d/2+ 1. We assume further that the initial data

Ve = Ve = (5040, u, FLo, -+ . Fqg) in H*(T?) as e — 0.

Then there is VO = (S°,¢°,u" FP,--- | F9) € C([O,T];Hs/(Td)) for any s’ < s, such that the
solution of (1.4), (1.6) satisfies

Ve =~ VO weakly-* in L°°([0, T]; H*(T4)),
Ve = VO strongly in C([0,T); H* (T%)) Vs’ < s,



as € — 0. Moreover, (S°,u®, F0,--- | F9) € C([0,T); H*(T%)) solves the following incompressible
nonisentropic Hookean elastodynamic equations:

V-u’ =0,

d
p(S°,0) (O + u’ - Vul) + Vi = p(5°,0) Y F) - VFY,
=t (1.11)
1, e ’d’

WF) +u’ - VF) = F) -V, j=
V- (p(S8%0)F)) =0, j=1,---,d,
0:8° +u’-vS® =0,

with the initial data (S°,u®, F{,- -, F{)|i=0 = (S, ud, F{g, -+, F,). Here m € C([0,T]; H*(T%)).

Remark 1.2 If Q = R?, we can obtain the same convergence result as Theorem 1.2. The only
difference is the solutions converge strongly in C([0,T]; Hy (R?)) rather than C([0,T]; H® (RY)).

Remark 1.3 Setting p = p(S°,0), we can rewrite (1.11) as the following incompressible inhomo-
geneous Hookean elastodynamic equations

V-u’ =0,
oip+u’-Vp=0,

d
p (0’ +u - Vu') + Vr=p» F)-VF),
Jj=1
HF) +u°-VF) =F) - Vu°, j=1,--- 4,
— 0 _ s

Recalling the system (1.5), we note that the matrix Ay depends on (S5¢,¢%). As Métivier and
Schochet stated in [18], the reason why the low Mach number limit is more difficult to analyse in
the nonisentropic case is that the matrix multiplying the time derivatives then depends strongly
on the dependent variables. More precisely, for the isentropic case, when establishing the energy
estimates for solutions and their derivatives, we can factor out € in 0% Aq to balance the weighted
norms because Ay depends only on eVe(see [16, 22] for example), which does not work for the
nonisentropic case. To surmount this difficulty, they developed an quasi-linearization method.
For the nonisentropic Hookean elastodynamic equations, because of the strong intertwist between
velocity and deformation gradient, one order higher spatial derivatives arise for the deformation
gradient when we use the quasi-linearization method developed by [18]. Based on the above analysis,
we do not expect to control these troublesome “terms of highest order derivatives”. Hence, we should
find new relationships to cancel these troublesome terms.

In Theorem 1.1 we obtain the uniform existence of smooth solutions to the nonisentropic com-
pressible Hookean elastodynamic equations in T¢ and R?. Inspired by [21] we introduce suitable
seminorms, and similar applications can also refer to [9, 15, 16, 22]. The key point inspired by
[15] in the derivation of this estimate is to cancel the higher order derivate terms caused by the
coupling of velocity and deformation gradient. Once the uniform estimate (1.10) is established,
we can show the convergence of the solutions by using the Aubin-Lions Lemma and obtain the
limitting equations.



This paper is arranged as follows. The uniform existence of solutions(Theorem 1.1) is proved in
Section 2; the low Mach number limit(Theorem 1.2) is proved in Section 3. We recall some basic
results in the appendix.

2 Uniform existence

Throughout this section, (S¢,¢%,u®, Ff, -+, F5) will be denoted by (S,q,u, F1,---,Fy), and the
corresponding superscript € used in other notations is omitted for simplicity of presentation.

In view of the classical local existence result for the symmetric hyperbolic system in [17], we
have

Theorem 2.1 (see [17]) For fized e > 0 there is T. > 0 such that for initial data satisfying (1.9),
the initial value problem (1.5) and (1.6) has a unique solution on C([0,T;); H*(2)).

The key point in the proof of Theorem 1.1 is to establish the uniform estimate (1.10).

Remark 2.1 Suppose that the assumption in Theroem 1.1 holds with s > d/2 + 1. According to
the local existence theory, for allt € [0,T.), there exists a constant m > 1 such that

m~ <a,p<m. (2.1)

Lemma 2.1 Suppose that the assumption in Theroem 1.1 holds with s > d/2 + 1, we have

2 < C(IV]se). (2.2)

s, =

d
FrAG
Proof. Taking 9F0“ (0 < k + |a| < s) of (1.4)4, we have
TS +u - VOFO™S = €, (2.3)

where
Cs = —[858“,11 - V]S.
In the case of kK = 0 we have

(O +u-V)0*S = €5 = —[0%,u- V]S. (2.4)

The force term €5 is a sum of terms 9°ud?S with |3| +|y| < s+1, 3> 0 and v > 0. By using the
estimate (4.1) in appendix we get
[€sllo < C(IV

The usual L? energy estimate for the transport equation (2.4) implies that

[5.0)-

d 2
—||0% < Vise).

Taking summation with respect to « yields (2.2).
In the case of k > 0, multiplying (2.3) by 52(’“*1)@’“80‘5’, integrating the result over €2 and using
integration by parts give

1d

5&/0 "o 0% S|P de < K|V - uloo||e"10F0™S |3 + || Cs o]l 0F 0™ S0,



where

d k
ERZIE=Cd 3D DD DI U2 AN A OR ]

J=1p=1|B|+|v|<|e

d k
S D) DD DI Ear 2 N B ] NN

J=1p=1|8]+[v|<]e

<C([IVls.e)-
We put the estimates together and take summation with respect to k and « to yield (2.2). o

Lemma 2.2 Suppose that the assumption in Theroem 1.1 holds with s > d/2+1 with s > d/2+1,
we have

d
d
" (nwnzl 19 -2y + IV xulZy + > (V- Bl + IV Fenil)) < C(IV]se):
{=1
(2.5)

Proof. Applying the operator V to (1.4);, applying the operator V- to (1.4)s and (1.4)3, and
applying the operator VX to (1.4)y and (1.4)3, we can get the equations of

%::(Vq,V'u7VX’LL,V'F17"',V'Fd,VXFl,"',VXFd)

as follows 1
(G +u-V)Vg+ -V(V-u) = ~[V,a(d +u- Vg,

d
1
pOr+u- V)V ut —Ag = > V- (pF-VF) = [V, p(0 +u- V)],
=1
d (2.6)
PO +u- V)V xu=Y Vx(pF,-VF;) = [Vx,p(0 +u-V)]u,

=1
p(Or+u-V)V-Fy =V (pF;-Vu) — [V, p(0: +u- V)| Fy,
p(0r+u-V)V X Fy =V X (pFy-Vu) — [VX,p(0; +u- V)| Fp.
For |a| < s — 1, we take 0% of (2.6) to obtain that

a(0 +u-V)Voq + EV(V - 0%) = 61,

d
1
POy +u- V)V - 0% + RACAE > V- (pF; - VO“Fy) + %,
/=1
d (2.7)
p(0s +u- V)V x 9% =YV x (pF, - VO Fy) + 63,
=1
p(@t +u- V)V -0%F, =V - (sz . Vao‘u) + Gy,
p(0r+u-V)V X 0%Fy =V X (pFy - VO*u) + G-



where the commutators 471, 62, €3, G40 and %5y are given by

¢ =—[0"V,a(0; +u-V)]q,

M=

G =—[0"V,p0r +u -V)u+ Y [0%V - (pFy-V)|Fy,

~

G =~ [0°Vx, p(0 +u- V)lu+ Y [0%,V x (pF; - V)],

=1
d
[
(=1
%4@ :[8"‘, V. (,OFg : V)]u,
%5@ :[GQ,V X (ng : V)]u

Multiplying (2.7) by %%, integrating the result over {2 and using integration by parts give

d
1d
S [ alVOuqP +p [ IV-0%ul> + |V x 0%ul* + Y (IV-0°F* + |V x 0°F*) | dz
2dt Jq

(=1

d
:%/ 0,a|VO%q|® + 0;p <|v -0%ul? + |V x 0%ul® + Z(\v C0°Fy? + |V x aaFgF)) dx
Q (=1

1

—|—*/V-(au)|vaaq|2
2 Ja

+ V- (pu) <|v S0%ul? + |V x 0%ul? + zd:(w COCF P 4|V x 8O‘Fg|2)> dx
=1
- é (YO, V(Y - 8°u))o + (V - 9%u, AD%q)o)
- Zdj <<v 0%,V - (pFy - VO“Fy))o + (V x 8%u, V x (pFy - VO“Fy))o
=1
+(V-0%F,V - (pF; - VO“u))o + (V x 0F;,V x (pFy - vaau»o)

+(V0%q,€1)o + (V- 0%u, €2)0 + (V x 0%u, €3)0
d
+ 3 (V- 0Fy, Gar)o + (V x 0°Fy, Cs4)o) - (2.8)

(=1

Here the singular terms with the factor % are cancelled. We claim that all |«| + 2 order derivative
terms in (2.8) cancel each other out. The key is to simplify the following:

(V- 0%,V - (pFy - VOF,))o + (V x 8%,V x (pFy - VOF,))o

2.9
1V - 0YF, YV - (pFy - VOu))o + (V x 8 F,, V x (pFy - VO“u))o. 29)

Recall the vector analysis formula

VxVxv=VV-v—Av.



For (2.9), using integration by parts, Lemma 4.6 in the appendix and above formulas, we see that

(V- 0%,V - (pFy - VO“Fy))o + (V x 0%,V x (pFy - VO*Fy))o

+ (V- 0"F, V- (pF; - VO*u))o + (V x 0°F;, V x (pFs - VO“u))o
=(=VV 0%, pF; - VO“Fy)o + (V x V x 0%, pFy - VO Fy)o

4 (=YY 87 F, pFy - V3% u)o + (V X V x 8% Fy, pFy - VO u)o
=(=A0%u, pFy - VO Fp)g + (—AO*Fy, pFy - VO“u)g
=(VO%u,V(pF; - VO*Fy))o + (VO“Fy, V(pFy - VO“u))o

:/ 8j8°‘ui8j(pFM6k8"‘Fig) +8j8°‘F156j(kag8k8°‘ui)das
Q

:/ P (8j6auiFk48jk8°‘Fiz + 8j8‘“Fing48jk8°‘ui) + C(@‘“'“V)dx
Q
<C([IV1]s)-

Based on the above analysis, we get from (2.8) that

d

1d

S— [ alVorqP +p [ IV-0%ul +|V x 0%ul’ + > (IV-0°F* + |V x 0°Fy*) | da
2dt Jo et

<K|(8sa,8:p,V - (au),V - (pu))|oo|0°% ||*

+1IVO«qllol[%illo + IV - 0%ullol|C2llo + [[V x 8%ullo]| %3]0

d
+ > (IV - 0" Feloll€acllo + IV x 0% Eullol|€sello) (2.10)
{=1

Next, we shall get the estimates of the commutators. On account of their forms, 47, %», %3,
%1 and G5y, we study the general comutators

Com(G1)m :=[07, G10¢]m, lo] < s,
Com(Ga)n2 :=[07, G20;]12, lo|<s, j=1,---,d,
Com(G1)ns 1:[3a73C(G38j)]773» o <s—1, [¢|=1, j=1,---,d,

where
Gl S {a‘ap}7 G? :pu]a G3 :ijZ7 m,mn2 S {q,u}, 73 S {uaFZ}-
We use Moser-type inequalities Lemma 4.4 in the appendix to give

ICom(G1)mllo < K (IVGilool|0° ™ Oemillo + |0emsc0°G1llo) < C(I[V]s.e),
ICom(G2)nzllo < K (IVGalecl|0° ™ 0j112]l0 + 1011210 10" G2ll0) < C(I[V/]

se)

and by some direct calculation we have

ICom(Gs)msllo < K Y [10°G30"msllo < K| Gsllsllmslls < CUIVls.c).

|BI<s,[vI<s



These get the estimates of 1, 62, €3, G and G5, as
161, €2, €3, Cae, Coello < C([|[V]s.e)-
Since a and p are smooth functions of (.9, eq), using Sobolev’s inequality, we have
[(0ra, Oep)loe < C(|(g, 85044, 0:S)|oc) <C([V][s.e),
[(V - (aw), V- (pu))|oc <C([[V]lse)-
Recalling the definition of 0*% and one can see that
o~z ||§ < KIIVz.
Thus, the first term on the right-hand side of (2.10) can be bounded by
|(0ra, 3:p, V - (aw), V - (pu))|oc [0°% || < C([V [|s,e)-
Then we get from (2.10) that
d
d
5 [ avora 4o <|V 0% |V x 0%’ + ) (IV- 0" Fuf* + |V x 3O‘Fé|2)> dz
Q (=1
<C([[Vlls.e)- (2.11)
Using (2.1) we have

d
d
&/ VO q* + |V - 0%ul* + |V x 0%ul> + > (IV - 0°Fo* + |V x 0°Fy*)de < C(|[V]]s.0)-
Q (=1

Then summing up above inequality for all || < s — 1, we obtain (2.5). m
Next, we give the L?-estimate and the time derivatives estimates of W = (q,u, Fy, -+ , Fy).

Lemma 2.3 Suppose that the assumption in Theroem 1.1 holds with s > d/2 + 1, we have

d
7 IWI5 < CUIVllse), (2.12)
and
d < _ 2
g2 oW < CIVse)- (2.13)
k=1
Proof. Multiplying (1.4)1-(1.4)5 by W, integrating over 2, and integrating by parts yield
1d d 1 d
f—/ algl® + plul® + ) p|Fj|? :7/ ralq)® + Orplul® + > Oip| F|?
2dt Jg = 2 Ja =
1 d
3 [V @l V-l + 30V - (]

J=1

d d
+/ pY Fj-VFj-u+py F;j-Vu-F
Q

Jj=1 j=1
1211 —|— IQ + 13.

10



Recalling that
(81, Orp) oo + [(V - (aw), V - (pu))eo < C([[V]lsc)-

Then we obtain
I+ 1 <C(|Vls,e)-

Next, using the divergence constrains of (1.2), and integrating by parts, we have

d d
13:/ Zv (PFj)(Fy-u) =Y p(Fy - Vyu-Fj+ Y p(Fy-V)u-F; | =0,
@ Jj=1 j=1 j=1
thus
d d
T algl* + plul* + > plFj|* | de < C(|V]s.),
j=1

which implies (2.12) by (2.1).
Taking 0f with 1 < ¢ < s to (1.4)1-(1.4)3, we have

a (0 +u-V)oq+ %v - Ofu =6,

d
1
p(Ortu-V)Ou+ —VOiq=p) F; VO[F;+%,
j=1
(O +u-V)OfF; =F; - Voju+Cp,, j=1,---.d,

where the commutators are

Cy = — [0}, aldvq — [0}, a(u- V)]q,
d
@, = — [0F, pldyu — [0, p( Zaf, (Fj- V)]

G, == [0, (w-V)IF; + [0}, (F - V)W

(2.14)

Multiplying (2.14) by 2=V (q,u), 2~ pdf F;, integrating over (2, integrating by parts give

2= ¢ ‘12 012 - 0 (2
a a|8tq| +P‘3tu| + P|8tFj|
2 dt ), jzzl
£2(6-1) , , d ,
—5— [ | 2welota’ + ousloful? + 3 auplof By
Q /
j=1

2(¢4—1) d
/Q V- (aw)|lg? + - (pu)|otul + 3V - (ou) 0L F 2

2 J=1
d
+52(£—1)/ cgq.@fq+<gu.afu+pz<gpj - OfF;
Q

Jj=1
I=I4 + 15 —|— 16-

11

(2.15)



Note that the estimates of I, and I5 can be given in a similar fashion as I; and I, so we have
L+ I < C([|[Vls,e)- (2.16)

In order to get the estimate of I, we need to consider ||e/~1%,||o. From the expression of €, we
have

¢ ¢ d
NG, = =Y CFofadi T g — Y0 T CFof (aui)of 04g.
k=1 k=1 i=1
The product estimate (4.2) yields

P ¢ d
et <et 1S [okadl * gl + 1 Y Y ool aul),
k=1 k=1 11=1

‘
SEZ*IKZ 0Fall,_, Haf_kH(Z||s—(€—k)—1
k=1
¢ d
+ sf_lKZ Z ||3f(aui)’|g_k ||5f*'“3qus_<e_k>_1
k=1 i=1
<C(I[V]ls,e)-

The estimates of |71, [lo and ||e*~ %}, [|o are similar. After a straightforward calculation, we
find that

d
I = 2D [ Gy Ola+ G- Outp - OF; | <OV, (2.17)
2

j=1

Thus, subsituting (2.16) and (2.17) into (2.15) yield

d
nd
208 [\ alotal + poful? + o plof B | < COVIL),

j=1
which implies (2.13) by (2.1). m|

Remark 2.2 (2.5) and (2.12) imply that the following estimates of spatial derivatives hold:
d 2
WL = ClVis.e)- (2.18)

Lemma 2.4 Suppose that the assumption in Theroem 1.1 holds with s > d/2 + 1, we have

s—1
D T Vs k1 < C(IV2,) +€C([V s e)- (2.19)
k=1

Proof. In the case of k = 1, we need to estimate ||0;V Fy||s—2. Taking 0%V of (1.4)3 with |a] < s—2
yields
0,0V F, = 0%V (—u -VF,+ Fy- VU) .

12



Noting that the term 0%V (—u - VF; 4+ Fy - Vu) is a sum of terms
—0%u;070,F; + 0P Fj,0"0;u
with 1 < |8+ |y] <s—1and j=1,---,d. Thus
10:VEells—2 < C(IVIs) < C(IV][21)-
In the case of 1 < k < s — 1, taking e*~ 19719V of (1.4)3 with |a| < s — k — 2 to obtain
F L9k 9V, = ¥ 10F 109V (—u - VF, + Fy - Vu) .
From the following analysis we get an estimate of ||e¥~10F 10V (u - VF,)|o.

I 10y~ 0V (u - VFy) o

k—1 d

<KeF 1Y > > 00 w0 979 Fillo
P=01<|Bl | <s—k—1 =1
k—1 d

_ k—p—
<Ky > D 1020wl a—pya1 10577710705 Fill s (h—p—1)— 711

p=01<|B]+|v[<s—k—1j=1

<eC([[Vlls.e),

where we have used (4.2). The estimate of ||e¥~19F 10V (F, - Vu)||o can be given in a similar
fashion, so we have
¥ 188V Eyllo < eC([IV |ls.)-

The proof is completed by putting the estimates together. O
Lemma 2.5 Suppose that the assumption in Theroem 1.1 holds with s > d/2 + 1, we have

s—1 s
D IOV X ulf o1 < (1 + |5k13tk(q,u)||o> ClVIs) +eC(IVls,e),  (2.20)

k=1 k=1
s—1 s
S IR (Ve V- u)lemp < (1 + Ifk_laf(qm)llo) C(IVIls) +eC([[Vs.e)-  (2:21)
k=1 k=1
Proof. Set

MV, s,€) = (1 + |I€klaf(q,U)llo> CV1s) +eCUVls.e)-

k=1
If we obtain
|5 108V X ulls ko <A (V;5,0),
||Ek—1a£€(vq7 V- U)Hs—k—l S%(‘/’ S, 5)7

for k=1,---,s—1, the proof is completed. Next, let’s prove the case of k =s—1, k= s — 2 and
k = s — 3, respectively. Applying Vx to (1.4)2, we have
d
OV xu=—p 'Vpxdu—p 'V x (pu-Vu) + Zp_lv X (pFy - VFy). (2.22)
=1

13



We rewrite the equations of ¢ and u as

V- -u=—ca(dq+u-Vyq),

d 2.23
qup(@tu+u'VuZFg~VFg>. (2:23)

{=1

In the case of k = s — 1, we need to estimate ||e5720; 7'V x ul|o and [|e5720; 1 (Vq, V - u)||o.
Applying " 197! to (2.22) with 1 < n < s — 1 and taking L? norm yield

€109 % ullo <[ 1O ulaCIV ) +2C(IV ) < A (V;5,2), (224
which implies that
e57205 71V X ullg < A (V,s,€).

Taking " =107 of (2.23) with 1 < n < s — 1 and taking the L? norm of both sides of the results
yield

™17 (Va, V- w)llo <" 07 (g, w)lloC(IV [ls) + eC(I|V]

se) S MV, s,¢€), (2.25)
which implies that
e5720; "1 (Vq,V - u)|o <A (V,s,¢).

In the case of k = s — 2, we need to estimate ||5730 2V x u||; and [|e5730;2(Vq, V - u)||;.
Using (2.24) and (2.25) we have

||es—36;—2v X ullo <A (V,s,¢),
1e5730;72(Vq, V - u)|lo <A (V, 5,¢).

So we focus on e 739; 29V x ullo and ||e¥730720;(Vq,V - u)|lo with 1 < i < d. Applying
e 1P 10, to (2.22) with 1 <n < s—2,1<i < d and taking L? norm yield

1e" 107 0;V x ul|o
< (le" opullo + €717V - ullo + 1”07V x ullo) C(IV [ls) +C IV ls.e)
<A (V,s,¢), (2.26)

where we have used estimates in the case of k = s — 1, which implies
5730520,V x ul|o <A (V,5,¢).

Taking e"~1970; of (2.23) with 1 <n < s—2,1 <i < d and taking the L? norm of both sides of
the results yield

I€" 107 0:(Va, V - u)llo <[|le"07 T (Vq, V- u, V x w)[[o C(I[V]]s) + £C(||Vs.c)
<M (V,s,¢), (2.27)

14



where we have used estimates in the case of k = s — 1, which implies
5730 720;(Vq, V - u)||lo <A (V, 5,¢).

In the case of k = s — 3, we need to estimate |50 3V x u|o and [|5740; 3 (Vq, V - u)||2.
Using (2.24), (2.25), (2.26) and (2.27) we have

e°740; 72V X ullo <A (V,s,¢),
1075 (Vg V - u)llo <A (V,5,¢),
||6874ats_38iv X ’LL”() S%(V, 8,5),

(V. s,e)

5740 730;(Vq, V - u)|lo <A (V, s,¢),

where 1 < i < d. So we focus on |59 7392V x ul|g and ||e5749;720%(Vq, V - u)||o with |a| = 2.
Applying " 719/ 19* to (2.22) with 1 <n < s — 3, |a| = 2 and taking L? norm yields

|e" 1070V x ullo

<(sn-lafu|o T 0RY ullo + €102V x ulo

e Op OV - ullo + €T OV UI|0> CVIls) +eCUVls.e)
<A (V,s,¢),
where we have used estimates in the case of K = s — 1 and k = s — 2, which implies
|e5710; 20V x o <A (V,s,¢).

Taking e" 1970 of (2.23) with 1 <n < s—3, |a| = 2 and taking the L? norm of both sides of the
results yield

le"~10r0%(Va, V - u)llo <[|e"0; " 0:(Vg, V- u, V x w) [oC(IV [ls) + eC([Vs.e)
S%(Vasvg)a

where we have used estimates in the case of £ = s — 2, which implies
540, 720%(Vq, V - u) o <M (V5. €).

In fact, the remaining proof is standard. If we have got the estimates in the case of 1 < k < m for
some 1 <m < s — 1, we can use standard methods to get estimates in the case of k = m + 1. The
proof is completed. O

Lemma 2.6 Suppose that the assumption in Theroem 1.1 holds with s > d/2 + 1, we have
d 2
1V, =CUIVIs.e), (2.28)

Ve, <CIVIE) +eC([V]s.e)- (2.29)

Proof. The inequality (2.28) comes from Lemma 2.1, Lemma 2.3 and Remark 2.2. The inequality
(2.29) comes from Lemma 2.4 and Lemma 2.5. a
Finally, we prove the following lemma, which can deduce the main Theorem 1.1.

15



Lemma 2.7 Suppose that the assumption in Theroem 1.1 holds with s > d/2 + 1, then there are
constants T > 0 and 0 < g9 < 1, such that for all e € (0, ],

HVHS,E,T <M. (2.30)

Proof. First, it is obvious that |V||g, + ||V &, is equivalent to ||V||s e, and there are ¢1,¢2 > 0
such that
a(lVile + IVIe) < Vise < c(VIie +1VIEz)-

Then (2.29) returns to
Ve, < CUIVIe,) +eCUVE,)-

Choosing €y € (0, 1) such that
Ve <CUVle,), Ve e (0,20

Thus, we can replace |V]|s.c in (2.28), i.e.

< se) SC(IVle +IVIe) < C(VIEe,), Ve e (0. (2.31)

d
FIVIE < cdvi

It is easy to get |V (t = 0)||g, < K(Mp) by (1.9). Then (2.31) deduces

V)l e, SK(MO)+/O CIV(s)| g, )ds.

Choosing a T' > 0 small enough, we get
WVt)e < K(My,T), tel0,T]. (2.32)

The proof is completed. o

3 Low Mach number limit
The uniform estimate (1.10) and Lemma 4.7 imply, after extracting a subsequence, the following
limit:

Ve = VO weakly-* in L>([0,T); H*(T%)),

Ve — VO strongly in C([0,T); H* (T%)) Vs’ < s,
as € — 0, where VO = (8°,¢%, u®, F? .. | F9) € C([0,T); H* (T%)) for any s’ < s. Thus, according
to (1.4), we can easily bound the singular terms as follows

sup ([|Vgl[s—1 + IV - ul[s—1) < Ke.
t€[0,T]

Applying the Leray projection & to (1.4)s, multiplying (1.4); by € and then taking e — 0, we find

that
V-ul =0,

d
P | p(S°,0) | O’ + 0 Vul =Y FY-VFY | | =0,
j=1

OF) +u’-VF) =F) -V, j=1,--- 4,
0,8° +u’-VS® =0,
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Thus, we obtain (1.11) for some function 7. The uniqueness of the solution of (1.11) with initial
data (83, u, Fo, -, Fg,) € H® (T?) implies the convergence holds as ¢ — 0 without restricting
to a subsequence. Hence, the proof of Theorem 1.2 is completed.

4 Appendix

Lemma 4.1 (see [5]) Foralla = (a1, - ,aq), |a| =k, 0 >0, and f,g € H*T7(Q), it holds that

I1f,0%gllo < K ([[fllwroe llgllotr—1 + 1 Fllosrllgllzee) - (4.1)

Lemma 4.2 (see [5]) Fork>0,1>0, k+1 <o, and o > d/2, the product maps continuously
H=k(Q) x H*=YQ) to H*~*1(Q), and

[uv]lg—k—1 < Kl|ullo—rl|v]lo—i- (4.2)

Lemma 4.3 (see [5]) F is a smooth function such that F(0) =0, and u € H?(Q) with o > d/2,
then F(u) € H°(Q?) and
1F(u)lle < Clullo)llullo- (4.3)

Moreover, suppose v € H™(Q), with m € {0,--- ,0}, then F(u)v € H™(Q) and

[E(u)v]lm < (IFO)] + C(l[ullo)[v]lm- (4.4)

Lemma 4.4 (Moser-type Calculus Inequalities, see [17]) Let s > 1 ba an integer,
(a) For f,g€ H*°N L™ and |a| < s
10%(F9)llo < K (Ifleoll0°gllo + lgloo10° fllo) -
(b) For f€ H5, Vfe€L>®, g€ H*"'NL>® and |a|] < s

10%(f9) = F0%gllo < K (IV£1cll0" " gllo + lglc10° fllo) -

(c) Assume g(u) is a smooth vector-valued function on G, u(x) is a continuous function with
u(z) € G1, G1 CC G, andw € L N H?®. Then

Jg

s <
10°g(w)lo < K, |

[ul 310" ullo-
8—1,61

Here |- |, 5, is the C" morm on the set G.
Lemma 4.5 (see [15, 26]) For any smooth vector function v € H*(2), we have
Vollo <[V -vllo + [V x vffo.
Moreover, if v e H*(Q) (s > 1), we have

IVolls—1 <[V - vlls—1 + IV X 0|51
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Lemma 4.6 (see [7, 15]) Assume that g and h are smooth vector functions on Q. Then the
following formula holds

/Q(VXQ)'hdl‘:/g-(Vxh)dx.

Q

Lemma 4.7 (Aubin-Lions compactness Lemma, see [17]) Let {v°} be a sequence of func-
tions satisfying
v® € C([0,T); H*(Q)) N C*([0, T]; H~1(9)),

and there exists a constant M independent of €, such that
[0%[ls + 100" [|s—1 < M.
Then, by passing to a subsequence, there exists a function v° such that
v® — v® weakly-* in L>([0, T); H*(Q)),
v — 00 strongly in C([0,T); H* () Vs' < s,
v — 9p° weakly-* in L>°([0,T); H¥~1(Q)),

as € — 0. Moreover,
v € Co ([0, T]; H*(Q)) N Lip([0, T]; H*~(9)).
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