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Abstract

This paper studies the non-autonomous non-Newtonian micropolar fluids in two-dimensional
bounded domains. We first establish that the generated continuous process of the solutions
operator possesses a pullback attractor. Then we verify the existence of statistical solutions by
constructing the invariant Borel probability measures. Further, we prove that the statistical
solutions possess the degenerated regularity of Lusin’s type provided that the Grasshof number
associated to the external forces is small enough.
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1 Introduction

In the theory of fluid mechanics, the invariant measures and statistical solutions have proven to

be very useful in the understanding of turbulence (see Foias et al. [12]). Statistical solutions have

been introduced as a rigorous mathematical notion to formalize the object of ensemble average in the

conventional statistical theory of turbulence. Nowadays, invariant measures and statistical solutions

are widely used to describe certain characteristics of the fluids. There are several references concerning

invariant measures and statistical solutions (see [5–8, 13, 15, 16, 18, 19, 23, 30, 32–39,42, 43]), statistical

solutions and trajectory statistical solutions for deterministic equations, [40] for impulsive lattice

system and [41] for 2D stochastic Navier-Stokes equations.
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The asymptotic behavior of solutions for the non-Newtonian fluids and micropolar fluids has been

extensively studied, see, e.g. [1–3, 22, 25–29, 31]. Concerning statistical solutions, Zhao, Li and Sang

studied trajectory statistical solutions for 3D incompressible micropolar fluids in [36], and Zhao, Li

and  Lukaszewicz studied the statistical solutions and partial degenerate regularity for the 2D non-

autonomous magneto-micropolar fluids in [35].

In this paper we prove the existence of statistical solutions and their partial degenerate regularity

of the Lusin’s type of the following problem for the two-dimensional (2D) non-autonomous, viscous

incompressible non-Newtonian micropolar fluids, ∂tu−∇ · (2µ0(ε+ |e|2)−
α
2 e(u)− 2µ1∆e(u)) + u · ∇u+∇p = 2νr∇× ω + f(x, t),

∇ · u = 0,
∂tω − ν1∆ω + u · ∇ω + 4νrω = 2νr∇× u+ g(x, t),

(1.1)

in Ω× (τ,+∞), where Ω is a smooth and bounded domain of R2 with boundary ∂Ω, with the initial-

boundary conditions

u(x, τ) = uτ ; ω(x, τ) = ωτ , x ∈ Ω, (1.2)

u(x, t)|∂Ω = 0, ω(x, t)|∂Ω = 0; Tuijknjnk|∂Ω = 0, i, j, k = 1, 2, t > τ, (1.3)

where Tuijk = 2µ1
∂eij
∂xk

and (n1, n2) is the exterior unit normal to ∂Ω. The unknown functions u =

u(x, t) and ω = ω(x, t) denote the velocity and microrotational scalar field of the fluids, respectively,

∇ · u = 0 describes the incompressibility of the fluids, f and g are the external forces and moments,

respectively. The first two conditions in (1.3) represent the usual no-slip condition associated with

a viscous fluid, while the latter one expresses the fact that the first moments of the traction vanish

on ∂Ω. In system (1.1), the microrotational effect of the fluids are taken into consideration, the

microrotational scalar field ω is interpreted as the angular velocity of the rotation of the particles.

The expression

2µ0(ε+ |e|2)−α/2e(u)− 2µ1∆e(u) := T(u) (1.4)

in (1.1)1 is the viscous extra stress tensor, where ε, µ0, µ1 > 0 and α ∈ (0, 1) are constitutive pa-

rameters. It was introduced by O. Ladyzhenskaya in [17] to modify the Navier-Stokes equations in

such a way as to be able to deal, among other things, with the gradient |∇u| of the velocity field in

the 3D situation, thus ensuring the well posedness of the considered problem, cf. also [20]. We refer

to [17, 20] and the references therein for the detailed physical background. In addition, we have used

the notations

∇× ω =
( ∂ω
∂x2

,− ∂ω

∂x1

)
, ∇ · u =

∂u1

∂x1
+
∂u2

∂x2
, ∇× u =

∂u2

∂x1
− ∂u1

∂x2
.

The first aim of this paper is to prove the existence of statistical solutions for system (1.1). We

first establish the global well-posedness of the weak solutions for problem (1.1)-(1.3). Then we show

that the solutions operator of problem (1.1)-(1.3) forms a continuous process {U(t, τ)}t>τ in the
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phase space E and that {U(t, τ)}t>τ possesses a pullback Dσ-attractor Â(t) = {A(t) : t ∈ R} in E.

Afterwards, we prove that {U(t, τ)}t>τ meet the so-called τ -continuity in E and construct a family

of invariant Borel probability measures {mt}t∈R for {U(t, τ)}t>τ in E. Finally, we verify that this

family of invariant Borel probability measures {mt}t∈R satisfies the Liouville type theorem and is a

statistical solution of system (1.1).

The second purpose of this paper is to verify the partial degenerate regularity of the statistical

solutions for system (1.1). This issue is akin to the degeneration of attractors, which is closely related

to the question of dimensionality of the attractor. For the Navier-Stokes equations, there are several

references investigating the Grashof number which controls the dimension of the attractor, one can

refer to [9–11]. We will use the following form of generalized Grashof number

〈‖F‖2〉6t := lim sup
γ→−∞

1

t− γ

∫ t

γ

‖F (θ)‖2dθ, where F (t) = (f(t), g(t)), (1.5)

to discuss the partial degenerate regularity of the statistical solution {mt}t∈R for system (1.1). The

partial regularity of {mt}t∈R means that it is supported on a set in which all weak solutions are

partial strong solutions. From the construction of the statistical solution {mt}t∈R it follows that for

each t ∈ R, the support of mt is contained in A(t). The pullback attractor Â(t) = {A(t) : t ∈ R}

itself consists of weak, bounded and complete trajectories of system (1.1).

We will prove that if 〈‖F‖2〉6t given by (1.5) is small enough then {mt}t∈R possesses partial

degenerate regularity of the Lusin type in the following sense: ∀ ε > 0 and ∀ ς ∈ R, there is a subset

E(ε, ς) ⊂ [ς, ς + σ−1] with Lebesgue measure mes (E(ε, ς)) < ε, such that the statistical solution

{mt}t∈R is regular for t ∈ [ς + σ−1] \ E(ε, ς), where σ is a fixed and positive constant that will be

specified later.

The rest of this paper is organized as follows. In the next section we show that problem (1.1)-(1.3)

is globally well-posed and the associated solutions operator forms a continuous process {U(t, τ)}t>τ
in the phase space E. In Section 3, we prove that {U(t, τ)}t>τ possesses a pullback Dσ-attractor

Â(t) = {A(t) : t ∈ R} by establishing that {U(t, τ)}t>τ has a bounded pullback Dσ-absorbing set

and is pullback Dσ-asymptotically compact in E. In Section 4, we prove that {U(t, τ)}t>τ satisfies the

so-called τ -continuity in E and construct a family of invariant Borel probability measures {mt}t∈R for

{U(t, τ)}t>τ on E. Then we verify that {mt}t∈R meets the Liouville type theorem and is a statistical

solution of system (1.1), and in Section 5 we prove the partial degenerate regularity of {mt}t∈R.

2 Global well-posedness

In this section we first introduce the mathematical settings for problem (1.1)-(1.3) and then prove

the global well-posedness of the latter.

As usual, Lp(Ω) and Wm,p(Ω) stand for the scalar Lebesgue space and Sobolev space with norms

‖ · ‖p and ‖ · ‖m,p, respectively. We denote by Wm,p
0 (Ω) the closure of {ϕ|ϕ ∈ C∞0 (Ω)} in Wm,p(Ω)

with norm ‖ · ‖m,p. When p = 2, we write Wm,p(Ω) = Hm(Ω), Wm,p
0 (Ω) = Hm

0 (Ω) and ‖ · ‖2 = ‖ · ‖.
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We also use the following vector spaces

V = {ϕ = (ϕ1, ϕ2) ∈ (C∞0 (Ω))2 : ∇ · ϕ = 0},

H = the closure of V in (L2(Ω))2 with norm ‖ · ‖H = ‖ · ‖ and inner product (·, ·),

V = the closure of V in (H2(Ω))2 with norm ‖ · ‖V = ‖ · ‖2,2,

H = H × L2(Ω) with the inner product (·, ·) and norm ‖ · ‖H = ‖ · ‖ defined as

(Φ,Ψ) = (ϕ,ψ) + (φ, ξ), Φ = (ϕ, φ), Ψ = (ψ, ξ) ∈ H,

‖Φ‖ = (‖ϕ‖2 + ‖φ‖2)1/2, Φ = (ϕ, φ) ∈ H,

V = V ×H1
0 (Ω) with the norm ‖ · ‖V defined as

‖Φ‖V = (‖ϕ‖2V + ‖φ‖21,2)1/2, Φ = (ϕ, φ) ∈ V.

In addition, we use H∗, V ∗, H∗ = H∗ × L2(Ω) and V∗ = V ∗ ×H−1(Ω) to denote the dual spaces of

H, V , H and V, respectively, where L2(Ω)∗ = L2(Ω) and H−1(Ω) is the dual space of H1
0 (Ω). Then

we have V ↪→ H = H∗ ↪→ V ∗, V ↪→ H = H∗ ↪→ V∗ and these embeddings are compact. Note that

we have used the same notations (·, ·) to denote the inner product in the spaces L2(Ω), H and H. We

will also use the same notations 〈·, ·〉 to denote the dual pairing between the spaces V and V ∗, V and

V∗, Hm
0 (Ω) and H−1(Ω) provided that there is no confusion.

Next, we introduce some operators. First, we define a(u, v) via

a(u, v) =

2∑
i,j,k=1

∫
Ω

∂eij(u)

∂xk

∂eij(v)

∂xk
dx, ∀u, v ∈ V. (2.1)

Then there exists a positive constant c1(< 1/4) such that (cf. [28, Lemma 2.1])

c1‖u‖2V 6 a(u, u) 6 ‖u‖2V , ∀u ∈ V, (2.2)

and (2.1) and (2.2) imply that a(·, ·) defines a positive, symmetric bilinear form on V . By Lax-

Milgram’s lemma, we see that there is a linear and bounded operator A1 : V 7→ V ∗ such that

〈A1u, v〉 = a(u, v), ∀u, v ∈ V.

It is not difficult to check that A1 = P∆2, where P is the Leray projector from (L2(Ω))2 into H. In

fact, D(A1) = {ϕ ∈ V : A1ϕ ∈ H} = (H4(Ω))2 ∩ V is a Hilbert space which is compactly and densely

injected into V . Similarly, we define A2 : H1
0 (Ω) 7→ H−1(Ω) as

〈A2ω, ξ〉 = (∇ω,∇ξ), ∀ω, ξ ∈ H1
0 (Ω).

We can also check that A2 = −∆, and D(A2) = H2(Ω) ∩ H1
0 (Ω) is compactly and densely injected

into H1
0 (Ω). Secondly, we define the following trilinear forms b1(·, ·, ·) and b2(·, ·, ·) by

b1(u, v, w) =

2∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx, ∀u, v, w ∈ (H1
0 (Ω))2,

b2(u, ω, ξ) =

2∑
i=1

∫
Ω

ui
∂ω

∂xi
ξdx, ∀u ∈ (H1

0 (Ω))2, ω, ξ ∈ H1
0 (Ω).
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Since V is a closed subspace of (H1
0 (Ω))2, we can check that the trilinear forms b1(·, ·, ·) and b2(·, ·, ·)

are continuous on V × V × V and V ×H1
0 (Ω)×H1

0 (Ω), respectively. By some simple computations,

we have {
b1(u, v, w) = −b1(u,w, v), b1(u, v, v) = 0, ∀u, v, w ∈ V,
b2(u, ω, ξ) = −b2(u, ξ, ω), b2(u, ω, ω) = 0, ∀u ∈ V, ω, ξ ∈ H1

0 (Ω).
(2.3)

For every u, v ∈ V , the operator B1(u, v) : V × V 7→ V ∗ defined as

〈B1(u, v), w〉 = b1(u, v, w), ∀w ∈ V,

is continuous. Similarly, for every u ∈ V and ω ∈ H1
0 (Ω), the operator B2(u, ω) : V ×H1

0 (Ω) 7→ H−1(Ω)

defined via

〈B2(u, ω), ξ〉 = b2(u, ω, ξ), ∀ ξ ∈ H1
0 (Ω),

is continuous. Thirdly, for every u ∈ V , we define N1(u) : V 7→ V ∗ by

〈N1(u), v〉 =

2∑
i,j=1

∫
Ω

µ(u)eij(u)eij(v)dx, ∀v ∈ V,

with µ(u) = µ0(ε+ |e(u)|2)−α/2. We can also check that N1(u) : V 7→ V ∗ is continuous.

Now, for any ϕ ∈ V and φ ∈ H1
0 (Ω), the weak form of system (1.1) can be written as

(du

dt
, ϕ
)

+ 2µ1〈A1u, ϕ〉+ 〈B1(u, u), ϕ〉+ 〈N1(u), ϕ〉 = 2νr(∇× ω, ϕ) + (f, ϕ),(dω

dt
, φ
)

+ ν1〈A2ω, φ〉+ 〈B2(u, ω), φ〉+ 4νr(ω, φ) = 2νr(∇× u, φ) + (g, φ).
(2.4)

Further, for any z = (u, ω) ∈ V we define the following vector-valued operators
Az =

(
2µ1A1u, ν1A2ω

)
,

Bz =
(
B1(u, u), B2(u, ω)

)
,

Nz =
(
N1(u), 0

)
,

Rz =
(
− 2νr∇× ω, 4νrω − 2νr∇× u

)
.

(2.5)

Using the above notations and setting F (t) = (f(t), g(t)), we can write the weak form of problem

(1.1)-(1.3) as

dz(t)

dt
+Az(t) +Bz(t) +Rz(t) +Nz(t) = F (t), in D′((τ,+∞),V∗), (2.6)

z(τ) = zτ = (uτ , ωτ ), τ ∈ R. (2.7)

Definition 2.1. Let zτ ∈ H, and let z = (u, ω) ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V) for any T > τ , with

z|t=τ = zτ . Then z is called a global weak solution of problem (2.6)-(2.7), if for any T > τ and

t ∈ [τ, T ],

〈dz(t)

dt
,Φ
〉

+ 〈Az(t),Φ〉+ 〈Bz(t),Φ〉+ 〈Nz(t),Φ〉+ 〈Rz(t),Φ〉 = 〈F (t),Φ〉, ∀Φ ∈ V,

holds in the sense of distributions in D′(τ, T ). A weak solution z = (u, ω) belonging to L∞(τ, T ;V) ∩

L2(τ, T ;D(A)) for all T > τ is called a strong solution of problem (2.6)-(2.7).
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We denote by λ1 the first eigenvalue of the operator −∆ with Dirichlet boundary conditions, so

that the following Poincaré’s inequality

λ1‖ξ‖2 6 ‖∇ξ‖2, ∀ξ ∈ H1
0 (Ω) (2.8)

holds. Besides the parameters appearing in system (1.1), c1 in inequality (2.2) and λ1 in (2.8), we

define the following constants,

δ1 = min{2µ1c1 −
νr
λ1
,
ν1

2
,
ν1λ1

2
}, δ2 = 2µ1 + ν1 + 8νr +

12νr
λ1

, σ = λ1δ1. (2.9)

We prove the global well-posedness of problem (2.6)-(2.7) under the following assumptions,

(H1) The parameters µ1, νr, c1 and λ1 satisfy 2c1µ1λ1 > νr.

(H2) F = (f, g) is in L2
loc(−∞,+∞;H) and∫ t

−∞
eσs‖F (s)‖2ds < +∞, for each t ∈ R. (2.10)

We have the following lemma.

Lemma 2.1. For the constants δ1 and δ2 given in (2.9) there holds

δ1‖z‖2V 6 〈Az, z〉+ 〈Rz, z〉 6 δ2‖z‖2V, ∀z ∈ V. (2.11)

Proof. First, for any u ∈ V , we have by direct computations that

∇× (∇× u) = ∇(∇ · u)−∆u = −∆u,

which means that ‖∇×u‖2 = ‖∇u‖2, ∀u ∈ V . Integrating by parts and using Cauchy’s inequality we

obtain

2νr

∫
Ω

∇× ω · udx = 2νr

∫
Ω

(∇× u)ωdx 6 2νr‖ω‖2 +
νr
2
‖∇u‖2, z = (u, ω) ∈ V. (2.12)

Now, using (2.2) and the definition of operators A and R, we have for z = (u, ω) ∈ V that

〈Az, z〉 =2µ1〈A1u, u〉+ ν1(∇ω,∇ω) > 2µ1c1‖u‖2V + ν1‖∇ω‖2, (2.13)

〈Rz, z〉 =− 4νr(∇× u, ω) + 4νr‖ω‖2 > −νr‖∇u‖2. (2.14)

It then follows from (2.2), (2.8) and (2.13)-(2.14) that

〈Az, z〉+ 〈Rz, z〉 >2µ1c1‖u‖2V − νr‖∇u‖2 + ν1‖∇ω‖2

>
1

2
(ν1‖∇ω‖2 + ν1λ1‖ω‖2) + (2µ1c1 −

νr
λ1

)‖u‖2V > δ1‖z‖2V.
(2.15)

Finally, using Cauchy’s and Poincaré’s inequalities we obtain the second inequality of the lemma.

The following theorem is the main result of this section.

Theorem 2.1. Suppose that assumptions (H1)-(H2) hold. Then for every τ ∈ R and any zτ ∈ H,

there corresponds a unique global weak solution z(t) = z(t, τ ; zτ ) to problem (2.6)-(2.7) satisfying

z(·) ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V) ∩ C([τ, T ];H), ∀T > τ. (2.16)

Moreover, the solution z(t, τ ; zτ ) depends continuously on the initial value zτ .
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Proof. The proof of the existence of weak solutions is standard. We first prove the local existence

of the Galerkin approximate solutions, and then establish some a priori estimates of the Galerkin

approximate solutions. Afterwards, we prove that the limit function of the Galerkin approximate

solutions is a weak solution of problem (2.6)-(2.7) which satisfies (2.16). These are the usual procedures

for proving the existence of weak solution via the Galerkin method. We omit these details here and

only prove the continuously dependence of the solution on the initial value.

Let z1(t, τ ; z1τ ) = (u1(t, τ ;u1τ ), ω1(t, τ ;ω1τ )) and z2(t, τ ; z2τ ) = (u2(t, τ ;u2τ ), ω2(t, τ ;ω2τ )) be two

weak solutions of problem (2.6)-(2.7) corresponding the initial values z1τ = (u1τ , ω1τ ) and z2τ =

(u2τ , ω2τ ), respectively. Set z̃ = z̃(t) = z1(t) − z2(t) = (u1(t) − u2(t), ω1(t) − ω2(t)). Then z̃ is a

solution of the following problem

dz̃(t)

dt
+Az̃(t) +Bz1(t)−Bz2(t) +Rz̃(t) +N(z1(t))−N(z2(t)) = 0, in D′((τ,+∞),V∗), (2.17)

z̃(τ) = z1τ − z2τ = (u1τ − u2τ , ω1τ − ω2τ ). (2.18)

Using z̃ to take duality with (2.17) and then using (2.11), we obtain

1

2

d

dt
‖z̃‖2 + δ1‖z̃‖2V + 〈Bz1 −Bz2, z̃〉+ 〈Nz1 −Nz2, z̃〉 6 0. (2.19)

We next estimate the nonlinear terms 〈Bz1 −Bz2, z̃〉 and 〈Nz1 −Nz2, z̃〉. In fact, by (2.3) we have

〈Bz1 −Bz2, z̃〉 =〈B1(u1, u1)−B1(u2, u2), u1 − u2〉+ 〈B2(u1, ω1)−B2(u2, ω2), ω1 − ω2〉

=b1(u1 − u2, u2, u1 − u2) + b2(u1 − u2, ω2, ω1 − ω2).
(2.20)

Now, from a classical estimation (see [12, (A.46d)]) we conclude that there is a positive constant c2

such that {
|b1(u1 − u2, u2, u1 − u2)| 6 c2‖u1 − u2‖2V ‖u2‖V ,
|b2(u1 − u2, ω2, ω1 − ω2)| 6 c2‖u1 − u2‖V ‖ω2‖1,2‖ω1 − ω2‖1,2.

(2.21)

We thus obtain from (2.20) and (2.21) that

|〈Bz1 −B(z2), z̃〉| 6 c2(‖u2‖V + ‖ω2‖1,2)‖z̃‖2V. (2.22)

At the same time, by [4, (3.5)] we have

〈Nz1 −Nz2, z̃〉 = 〈N1(u1)−N1(u2), u1 − u2〉 > 0. (2.23)

It then follows from (2.19) and (2.22)-(2.23) that

1

2

d

dt
‖z̃‖2 6

(
c2(‖u2‖V + ‖ω2‖1,2)− δ1

)
‖z̃‖2V. (2.24)

Applying Gronwall’s inequality to (2.24) and then using (2.18), we arrive at

‖z̃(t)‖2 6 ‖z1τ − z2τ‖2 exp

∫ t

τ

(
c2(‖u2(s)‖V + ‖ω2(s)‖1,2)− δ1

)
ds. (2.25)

The continuous dependence of the solution z(t, τ ; zτ ) on its initial value zτ is deduced from (2.16) and

(2.25). The proof is complete.
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Theorem 2.1 implies that the maps of solutions operator

U(t, τ) : zτ = (uτ , ωτ ) ∈ H 7−→ z(x, t) = (u(x, t), ω(x, t)) ∈ H, ∀t > τ, (2.26)

form a continuous process in space H. In the next section, we will prove the existence of the pullback

Dσ-attractor for {U(t, τ)}t>τ in H.

3 Existence of the pullback Dσ-attractor

In the sequel, we denote by 2H the collection of all subsets of H and consider families of non-empty

sets D̂ = {D(t) : t ∈ R} ⊂ 2H which is parameterized by time t. Especially, we use Dσ to denote the

class of families D̂ = {D(t) : t ∈ R} ⊆ 2H such that

lim
τ→−∞

(eστ sup
w∈D(τ)

‖w‖2) = 0. (3.1)

In addition, we will use the notation a . b (also a & b ) to mean that a 6 cb (also a > cb) for a

universal constant c > 0 that only depends on the parameters coming from the problem.

We first recall some definitions concerning the pullback Dσ-attractor.

Definition 3.1.

(1) A family of sets D̂0 = {D0(s) : s ∈ R} ⊆ 2H, with D0(s) ⊂ H bounded for every s ∈ R, is called

a bounded pullback Dσ-absorbing set for the process {U(t, τ)}t>τ in H if, for each t ∈ R and

any D̂ = {D(s) : s ∈ R} ∈ Dσ there exists a τ0(t, D̂) 6 t such that U(t, τ)D(τ) ⊆ D0(t) for all

τ 6 τ0(t, D̂).

(2) The process {U(t, τ)}t>τ is said to be pullback Dσ-asymptotically compact in H if, for each

given t ∈ R, any D̂ = {D(s) : s ∈ R} ∈ Dσ and any sequence {τn}n>1 in (−∞, t] with τn →

−∞ as n → ∞, the sequence {U(t, τn)w(τn)} with any w(τn) ∈ D(τn) possesses a convergent

subsequence.

(3) A family of sets Â = {A(t) : t ∈ R} ⊆ 2H is said to be a pullback Dσ-attractor for the process

{U(t, τ)}t>τ in H if it satisfies the following properties

(a) Compactness: for any t ∈ R, A(t) is a nonempty compact subset of H;

(b) Invariance: U(t, τ)A(τ) = A(t), ∀ τ 6 t;

(c) Pullback attraction: Â is pullback Dσ-attracting in the following sense

lim
τ→−∞

distH(U(t, τ)D(τ),A(t)) = 0, ∀ D̂ = {D(t) : t ∈ R} ∈ Dσ, t ∈ R,

where distH(·, ·) denotes the Hausdorff semidistance in H.
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Lemma 3.1. Suppose that assumptions (H1)-(H2) hold. Then for any zτ ∈ H, the corresponding

solution z = z(t; τ, zτ ) of problem (2.6)-(2.7) satisfies

‖z(t; τ, zτ )‖2 6 e−σ(t−τ)‖zτ‖2 +
e−σt

σ

∫ t

τ

eσs‖F (s)‖2ds, ∀t > τ. (3.2)

Proof. Let z = z(t; τ, zτ ) be the solution of problem (2.6)-(2.7) corresponding to the initial value zτ .

Taking the dual pairing between z and (2.6) yields

1

2

d

dt
‖z‖2 + 〈Az, z〉+ 〈Bz, z〉+ 〈Rz, z〉+ 〈Nz, z〉 = 〈F (t), z〉.

Now, using (2.11), (2.23), the fact that 〈Bz, z〉 = 0, and Cauchy’s and Poincaré’s inequalities we

obtain {
d
dt‖z(t)‖

2 + σ‖z(t)‖2 6 ‖F (t)‖2
σ ,

d
dt‖z(t)‖

2 + δ1‖z(t)‖2V 6 ‖F (t)‖2
σ ,

(3.3)

Then, applying Gronwall’s inequality to (3.3)1 we obtain (3.2). This ends the proof.

From Lemma 3.1, we have

Lemma 3.2. Let assumptions (H1)-(H2) hold. Then the process {U(t, τ)}t>τ possesses a bounded

pullback Dσ-absorbing set in H.

Proof. For each t ∈ R, we define

r0(t) = 1 +
e−σt

σ

∫ t

−∞
eσs‖F (s)‖2ds.

Then from (3.1) and (3.2) we deduce that B̂0 = {B(0,
√
r0(t)) : t ∈ R} is a bounded pullback Dσ-

absorbing set for {U(t, τ)}t>τ in H, where B(0, r
1/2
σ (t)) is the ball in H which is centered at zero with

radius
√
r0(t).

To establish that {U(t, τ)}t>τ is pullback Dσ-asymptotically compact in H, we need some more

estimates of the solutions.

Lemma 3.3. Let assumptions (H1)-(H2) hold. Then for any t ∈ R and D̂ = {D(t) : t ∈ R} ∈ Dσ,

there exists some τ1(D̂, t) < t such that for any τ 6 τ1(D̂, t) and zτ ∈ D(τ) the corresponding solution

z(·; τ, zτ ) satisfies

‖z(r; τ, zτ )‖2 .η1(t) := 1 + e−σt
∫ t

−∞
eσs‖F (s)‖2ds, ∀r ∈ [t− 2, t], (3.4)∫ r

r−1

‖z(s; τ, zτ )‖2Vds .η2(t) := max
θ∈[t−2,t]

η1(θ) +

∫ t

t−2

‖F (s)‖2ds, ∀r ∈ [t− 1, t], (3.5)∫ r

r−1

‖dz(s; τ, zτ )

ds
‖2V∗ds .η3(t) :=

(
1 + max

θ∈[t−2,t]
η1(θ)

)
η2(t) +

∫ t

t−2

‖F (s)‖2ds, ∀r ∈ [t− 1, t]. (3.6)

Proof. The estimation (3.4) is directly deduced from (3.1) and (3.2). Now from (3.3)2 we can derive

‖z(r)‖2 + δ1

∫ r

r−1

‖z(s)‖2Vds . ‖z(r − 1)‖2 +

∫ r

r−1

‖F (s)‖2ds,

9



which gives (3.5). In order to prove (3.6), we need to estimate the terms ‖Az‖V∗ , ‖Bz‖V∗ , ‖Rz‖V∗

and ‖Nz‖V∗ . In fact, for any solution z(·; τ, zτ ) satisfying (2.16), we have by (2.5)1 and (2.1) that for

any Φ = (ϕ, φ) ∈ V,

|〈Az,Φ〉| 6 |〈2µ1A1u, ϕ〉+ 〈ν1A2ω, φ〉| . ‖u‖V ‖ϕ‖V + ‖ω‖1,2‖φ‖1,2 . ‖z‖V‖Φ‖V. (3.7)

By (2.5)2 and [12, (A.26d), (A.26e)], we deduce

|〈Bz,Φ〉| 6 |〈B1(u, u), ϕ〉+ 〈B2(u, ω), φ〉| . ‖u‖(‖u‖V ‖ϕ‖V + ‖ω‖1,2‖φ‖1,2) . ‖z‖‖z‖V‖Φ‖V. (3.8)

From (2.5)3 and the definition of N1(·) we obtain

|〈Nz,Φ〉| = |〈N1(u), ϕ〉| . ‖u‖V ‖ϕ‖V . ‖z‖V‖Φ‖V, (3.9)

and from (2.5)4,

|〈Rz,Φ〉| 6 |〈∇ × ω, ϕ〉|+ |〈ω, φ〉|+ |〈∇ × u, φ〉| . ‖z‖V‖Φ‖V. (3.10)

It then follows from (3.7)-(3.10) that
‖Az‖V∗ . ‖z‖V,
‖Bz‖V∗ . ‖z‖‖z‖V,
‖Nz‖V∗ . ‖z‖V,
‖Rz‖V∗ . ‖z‖V.

(3.11)

Since V∗ ↪→ H, (2.6) and (3.11) imply that

‖dz(θ)

dt
‖V∗ .‖Az(θ)‖V∗ + ‖Bz(θ)‖V∗ + ‖Rz(θ)‖V∗ + ‖Nz(θ)‖V∗ + ‖F (θ)‖V∗

.‖z(θ)‖V + ‖z(θ)‖‖z(θ)‖V + ‖F (θ)‖,

which gives

‖dz(θ)

dt
‖2V∗ .‖z(θ)‖2V + ‖z(θ)‖2‖z(θ)‖2V + ‖F (θ)‖2. (3.12)

Using (3.4) and (3.5), we obtain (3.6) by integrating (3.12) over [r− 1, r]. The proof is complete.

Lemma 3.4. Let assumptions (H1)-(H2) hold. Then the process {U(t, τ)}t>τ is pullback Dσ-asymp-

totically compact in H.

Proof. Consider given t ∈ R, D̂ = {D(t) : t ∈ R} ∈ Dσ, {τn} ⊂ (−∞, t] with τn → −∞ as n → ∞,

and {zτn} ⊂ H with zτn ∈ D(τn) for each n. Set z(n) = z(n)(·) = z(n)(·, τn; zτn). We shall prove that

the sequence {z(n)(t)} possesses a convergent subsequence in H.

Indeed, from Lemma 3.3, we see that there exists a τ1(D̂, t) < t − 2 such that the sequence

{z(n)(·) : τn 6 τ1(D̂, t)} is uniformly bounded in L∞(t − 2, t;H) ∩ L2(t − 2, t;V), and { d

ds
z(n)(s)}

is uniformly bounded in L2(t − 2, t;V∗). By the Aubin-Lions compactness lemma (see [17]), there
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exists an element z(·) ∈ L∞(t− 2, t;H) ∩ L2(t− 2, t;V), with
dz(s)

ds
∈ L2(t− 2, t;V∗), such that for a

subsequence of z(n)(·) we have the following convergent relations:
z(n)(·) ⇀∗ z(·) in L∞(t− 2, t;V),
z(n)(·) ⇀ z(·) in L2(t− 2, t;V),
d
dsz

(n)(s) ⇀ d
dsz(s) in L2(t− 2, t;V∗),

z(n)(·)→ z(·) in L2(t− 2, t;V),
z(n)(s)→ z(s) in V, a.e. s ∈ [t− 2, t].

(3.13)

Now, from (3.13) and the embedding theorems [10, P32, Theorem 1.5; P33, Theorem 1.8] we conclude

that  z(n)(·)→ z(·) in C([t− 2, t];V∗),
z(n)(·) is uniformly bounded in C([t− 2, t];V),
z(·) ∈ C([t− 2, t];V).

(3.14)

Now, (3.14) implies

z(n)(sn) ⇀ z(s∗) in V, ∀{sn} ⊂ [t− 2, t] with sn → s∗. (3.15)

We next establish that

z(n)(·)→ z(·) in C([t− 2, t];V), as n→∞. (3.16)

Indeed, if (3.16) does not hold, then there exist an ε0 > 0 and a sequence {tn} ⊂ [t− 2, t] converging

to some t∗ ∈ [t− 2, t] such that

‖z(n)(tn)− z(t∗)‖ > ε0, n > 1. (3.17)

Since H is a Hilbert space, (3.17) will contradict with ‖z(t∗)‖ 6 lim inf
n→∞

‖z(n)(tn)‖,
‖z(t∗)‖ > lim sup

n→∞
‖z(n)(tn)‖. (3.18)

Now, the first inequality in (3.18) is deduced from the lower semi-continuity of the norm and (3.15).

So we just need to prove the second one. From (3.13)-(3.14) we see that z(·) satisfies (2.6) and (3.3)2

on any subinterval of [t− 2, t]. For s1, s2 ∈ [t− 2, t] with s1 6 s2, we integrate (3.3)2 over [s1, s2], for

z(n)(·) and z(·) respectively, and deduce
‖z(n)(s2)‖2 + δ1

∫ s2

s1

‖z(n)(s)‖2Vds 6
1

σ

∫ s2

s1

‖F (s)‖2ds+ ‖z(n)(s1)‖2,

‖z(s2)‖2 + δ1

∫ s2

s1

‖z(s)‖2Vds 6
1

σ

∫ s2

s1

‖F (s)‖2ds+ ‖z(s1)‖2.
(3.19)

Set 
Jn(s) = ‖z(n)(s)‖2 − 1

σ

∫ s

t−2

‖F (θ)‖2dθ,

J(s) = ‖z(s)‖2 − 1

σ

∫ s

t−2

‖F (θ)‖2dθ.
(3.20)
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Then Jn(s) and J(s) are obviously continuous on [t− 2, t] and (3.19) implies
Jn(s2)− Jn(s1) = ‖z(n)(s2)‖2 − ‖z(n)(s1)‖2 − 1

σ

∫ s2

s1

‖F (s)‖2ds 6 −δ1
∫ s2

s1

‖z(n)(s)‖2V 6 0,

J(s2)− J(s1) = ‖z(s2)‖2 − ‖z(s1)‖2 − 1

σ

∫ s2

s1

‖F (s)‖2ds 6 −δ1
∫ s2

s1

‖z(s)‖2V 6 0,

which means that both Jn(·) and J(·) are non-increasing functions on [t− 2, t]. Now, (3.13)5 gives

Jn(s)→ J(s), a.e. s ∈ [t− 2, t].

Thus, there exists a sequence {t∗j} ⊂ [t− 2, t∗] satisfying t∗j → t∗ as j →∞, which yields

lim
n→∞

Jn(t∗j ) = J(t∗j ), for each j.

Note that J(·) is continuous on [t − 2, t]. For any κ > 0, there exists some positive integer Nκ such

that

J(t∗j )− J(t∗) <
κ

2
, ∀j > Nκ. (3.21)

For above Nκ, we pick j > Nκ large enough such that

tj > t∗Nκ and |Jj(t∗Nκ)− J(t∗Nκ)| < κ

2
. (3.22)

Then, from (3.21)-(3.22) and the fact that Jj(·) is non-increasing for each j we arrive at

Jj(tj)− J(t∗) 6Jj(t
∗
Nκ)− J(t∗) 6 |Jj(t∗Nκ)− J(t∗)|

6|Jj(t∗Nκ)− J(t∗Nκ)|+ |J(t∗Nκ)− J(t∗)| < κ, ∀j > Nκ,

which, together with the arbitrariness of κ, means that

lim
j→∞

Jj(tj) 6 J(t∗). (3.23)

The second inequality in (3.18) is deduced from (3.20) and (3.23). The proof is complete.

Now, we combine Lemma 3.2, Lemma 3.4 and Theorem 3.11 in [14] to obtain the main result of

this section.

Theorem 3.1. Let assumptions (H1)-(H2) hold. Then the continuous process {U(t, τ)}t>τ possesses

a pullback Dσ-attractor Â = {A(t) : t ∈ R} in H.

4 Existence of invariant measures and statistical solutions

In this section, we will first prove that the process {U(t, τ)}t>τ possesses a family of invariant

Borel probability measures {mt}t∈R in H, and then establish that {mt}t∈R meets the Liouville-type

theorem and is indeed a statistical solution for the non-Newtonian micropolar fluids equations.

We first establish that the H-valued function τ 7−→ U(t∗, τ)z∗ satisfies the so-called τ -continuity,

that is, τ 7−→ U(t∗, τ)z∗ is continuous and bounded on (−∞, t∗] for each t∗ ∈ R and z∗ ∈ H. We next

establish the following lemma.
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Lemma 4.1. Let assumptions (H1)-(H2) hold, and z∗ and t∗ be given. Then for any ε > 0, there

exists ρ = ρ(ε, z∗, t∗) > 0 such that

‖U(t∗, s)z∗ − z∗‖2 < ε, ∀s ∈ (t∗ − ρ, t∗). (4.1)

Proof. Let z∗ and t∗ be fixed. Then for any s ∈ (t∗ − 1, t∗), we deduce from (3.3)2 that∫ t∗

s

d

dθ
‖U(θ, s)z∗‖2dθ + δ1

∫ t∗

s

‖U(θ, s)z∗‖2Vdθ 6
1

σ

∫ t∗

s

‖F (θ)‖2dθ, (4.2)

which gives that 

∫ t∗

s

d

dθ
‖U(θ, s)z∗‖2dθ 6

1

σ

∫ t∗

t∗−1

‖F (θ)‖2dθ := c3,

‖U(t∗, s)z∗‖2 6
1

σ

∫ t∗

t∗−1

‖F (θ)‖2dθ + ‖z∗‖2 := c4,∫ t∗

s

‖U(θ, s)z∗‖2Vdθ 6
1

σδ1

∫ t∗

t∗−1

‖F (θ)‖2dθ +
1

δ1
‖z∗‖2 := c5,

(4.3)

and obviously all the constants c3, c4 and c5 are independent of s. Now we observe that

‖U(t∗, s)z∗ − z∗‖2 =
(
U(t∗, s)z∗ − z∗, U(t∗, s)z∗ − z∗

)
=

∫ t∗

s

d

dθ
‖U(θ, s)z∗‖2dθ − 2(U(t∗, s)z∗ − z∗, z∗).

(4.4)

By (H2), F (·) ∈ L2
loc(−∞,+∞;H). Hence, for any ε > 0 we deduce from (4.2) that there exists

ρ1 = ρ1(ε, t∗) such that∫ t∗

s

d

dθ
‖U(θ, s)z∗‖2dθ 6

1

σ

∫ t∗

s

‖F (θ)‖2dθ 6
1

σ

∫ t∗

t∗−ρ1
‖F (θ)‖2dθ 6

ε

2
, ∀s ∈ (t∗ − ρ1, t∗). (4.5)

At the same time, V is dense in H. Thus, for above ε > 0 there exists a z̃ ∈ V yielding

‖z∗ − z̃‖ 6
ε

8(c4 + ‖z∗‖)
.

Therefore, we have

| − (U(t∗, s)z∗ − z∗, z∗)| 6|(U(t∗, s)z∗ − z∗, z∗ − z̃)|+ |〈U(t∗, s)z∗ − z∗, z̃〉|

6(‖U(t∗, s)z∗‖+ ‖z∗‖)‖z∗ − z̃‖+ |〈U(t∗, s)z∗ − z∗, z̃〉|

6(c4 + ‖z∗‖)‖z∗ − z̃‖+ |〈U(t∗, s)z∗ − z∗, z̃〉|

6|〈U(t∗, s)z∗ − z∗, z̃〉|+
ε

8
.

(4.6)

We also observe that∣∣〈U(t∗, s)z∗ − z∗, z̃
〉∣∣ =

∣∣〈 ∫ t∗

s

dU(θ, s)z∗
dθ

dθ, z̃
〉∣∣ 6 ‖z̃‖V ∥∥∫ t∗

s

dU(θ, s)z∗
dθ

dθ
∥∥
V∗

6‖z̃‖V
∫ t∗

s

∥∥dU(θ, s)z∗
dθ

∥∥
V∗dθ

6‖z̃‖V(t∗ − s)
1
2

( ∫ t∗

s

∥∥dU(θ, s)z∗
dθ

∥∥2

V∗dθ
) 1

2 .

(4.7)

13



(3.12) and (4.3) imply that( ∫ t∗

s

∥∥dU(θ, s)z∗
dθ

∥∥2

V∗dθ
)1/2

6(

∫ t∗

s

[(1 + c4)‖U(θ, s)z∗‖2V + 2‖F (θ)‖2]dθ)1/2

6
(
(1 + c4)c4 + 2σc3

)1/2
.

(4.8)

Inserting (4.8) into (4.7) yields∣∣〈U(t∗, s)z∗ − z∗, z̃
〉∣∣ 6 ((1 + c4)c4 + 2σc3)1/2‖z̃‖V(t∗ − s)1/2. (4.9)

Therefore, for above ε > 0, we have∣∣〈U(t∗, s)z∗ − z∗, z̃
〉∣∣ 6 ε

8
, ∀s ∈ (t∗ − ρ2, t∗) (4.10)

with ρ2 = ε2

8((1+c4)c4+2σc3)‖z̃‖2V)
being independent of s. We obtain (4.1) from (4.4)-(4.6) and (4.10) by

choosing ρ = min{ρ1, ρ2}. The proof of Lemma 4.1 is complete.

Lemma 4.2. Let assumptions (H1)-(H2) hold. Then for any given z∗ ∈ H and any t∗ ∈ R, the

H-valued mapping τ 7−→ U(t∗, τ)z∗ is bounded and continuous on (−∞, t∗].

Proof. Let z∗ ∈ H and t∗ ∈ R be fixed. Then (3.2) gives

‖U(t∗, τ)z∗‖2 6 ‖z∗‖2 +
e−σt∗

σ

∫ t∗

−∞
e−σθ‖F (θ)‖2dθ, ∀τ ∈ (−∞, t∗]. (4.11)

The right-hand side of (4.11) is a bounded quantity which is independent of τ , and therefore the

mapping τ 7−→ U(t∗, τ)z∗ is bounded on (−∞, t∗]. Next we prove that the mapping τ 7−→ U(t∗, τ)z∗

is both left-continuous and right-continuous at each s∗ ∈ (−∞, t∗].

Firstly, we prove the right-continuity. Let s∗ + 1 > s > s∗ and s < t∗. By the invariance property

of the process and (2.25), we have

‖U(t∗, s)z∗ − U(t∗, s∗)z∗‖2 =‖U(t∗, s)U(s∗, s∗)z∗ − U(t∗, s)U(s, s∗)z∗‖2

6‖U(s, s∗)z∗ − z∗‖2 exp
{

(2c2

∫ t∗

s

‖U(θ, s∗)z∗‖V − δ1)dθ
}

.‖U(s, s∗)z∗ − z∗‖2,

(4.12)

where we have also used the fact that max
s∈[s∗−1,s∗]

exp
{

(2c2

∫ t∗

s

‖U(θ, s∗)z∗‖V − δ1)dθ
}

is a bounded

quantity which is independent of s. Now (2.16) shows that U(·, s∗)z∗ ∈ C([s∗, t∗]; Ĥ). Therefore,

(4.12) implies that U(t∗, ·)z∗ is right-continuous at s∗.

Secondly, we establish the left-continuity. Let s∗ − 1 < s < s∗ < t∗. Again, by using (2.25) and

the invariance property of the process, we have

‖U(t∗, s)z∗ − U(t∗, s∗)z∗‖2 =‖U(t∗, s∗)U(s∗, s)z∗ − U(t∗, s∗)U(s, s)z∗‖2

6‖U(s∗, s)z∗ − z∗‖2 exp
{

(2c2

∫ t∗

s∗

‖U(θ, s∗)z∗‖V − δ1)dθ
}

.‖U(s∗, s)z∗ − z∗‖2,

(4.13)

where we have also used the fact that exp
{

(2c2

∫ t∗

s∗

‖U(θ, s∗)z∗‖V − δ1)dθ
}

is a bounded quantity

which does not depend on s. Lemma 4.1 and (4.13) show that U(t∗, ·)z∗ is left-continuous at s∗. The

proof of Lemma 4.2 is complete.
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We next reformulate the definition of generalized Banach limit (cf. [12, 19]) such that it can be

used directly in our investigations.

Definition 4.1. A generalized Banach limit is any linear functional, denoted by LIMt→−∞, defined

on the space of all bounded real-valued functions on (−∞,+∞) and satisfying

(1) LIMt→−∞h(t) > 0 for nonnegative functions h(·) on (−∞,+∞);

(2) LIMt→−∞h(t) = lim
t→−∞

h(t) if the usual limit lim
t→−∞

h(t) exists.

Combining Theorems 2.1 and 3.1, together with Lemma 4.2 and [19, Theorem 3.1], we obtain

Theorem 4.1. Suppose assumptions (H1)-(H2) hold. Let {U(t, τ)}t>τ be the process defined via

(2.26) and Â = {A(t) : t ∈ R} be the pullback Dσ-attractor obtained in Theorem 3.1. Then for a given

generalized Banach limit LIMt→−∞ and a continuous map ζ(·) : R 7→ H with ζ(·) ∈ Dσ, there exists

a unique family of Borel probability measures {mt}t∈R in H such that the support of the measure mt

is contained in A(t) and

LIMs→−∞
1

t− s

∫ t

s

Υ
(
U(t, θ)ζ(θ)

)
dθ =

∫
A(t)

Υ(z)dmt(z) =

∫
H

Υ(z)dmt(z) (4.14)

=LIMs→−∞
1

t− s

∫ t

s

∫
H

Υ
(
U(t, θ)z

)
dmθ(z)dθ, (4.15)

for any Υ(·) ∈ C(H) (the set of all real-valued continuous functions defined on H). Furthermore, mt

is invariant in the sense that∫
A(t)

Υ(z)dmt(z) =

∫
A(s)

Υ
(
U(t, s)z

)
dms(z), t > s. (4.16)

To formulate the definition of statistical solution, we first introduce the concept of the class T of

test functions. We write equation (2.6) as

dz

dt
= H(z, t) = F (t)−Az(t)−Bz(t)−Rz(t)−Nz(t). (4.17)

Observe that H(z, t) : V× R 7−→ V∗.

Definition 4.2. (cf. [34, Definition 3.3]) The class T of test functions is the set of real-valued func-

tionals Γ = Γ(·) defined on H that are bounded on bounded subset of H and satisfy

(a) For any z ∈ V, the Fréchet derivative Γ′(z) exists, that is, for each z ∈ V there exists an element

Γ′(z) such that

|Γ(z + w)− Γ(z)− (Γ′(z), w)|
‖w‖

−→ 0 as ‖w‖V → 0, w ∈ V;

(b) Γ′(z) ∈ V for all z ∈ V, and the mapping z 7−→ Γ′(z) is continuous and bounded as a function

from V to V;
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(c) Every global weak solution z(t) of equation (2.6) satisfies

d

dt
Γ(z(t)) = 〈Γ′(z(t)),H(z(t), t)〉. (4.18)

Now we can prove the following theorem.

Theorem 4.2. Let assumptions (H1)-(H2) hold. Then the family of Borel probability measures

{mt}t∈R obtained in Theorem 4.1 is a statistical solution of equation (2.6) in the following sense:

(a) For every Υ ∈ C(H), the mapping t 7→
∫
H

Υ(z)dmt(z) is continuous;

(b) For almost t ∈ R, the mapping z 7→
〈
y,H(z, t)

〉
is mt-integrable for every y ∈ V. Moreover, the

map t 7→
∫
H

〈
y,H(z, t)

〉
dmt(z) belongs to L1

loc(R) for every y ∈ V;

(c) Any test function Γ ∈ T satisfies∫
H

Γ(z)dmt(z)−
∫
H

Γ(z)dms(z) =

∫ t

s

∫
H

〈
Γ′(z),H(z, θ)

〉
dmθ(z)dθ, ∀ t > s.

Proof. We first prove item (a). Let s∗ ∈ R and Υ ∈ C(H) be given. We need to prove that
lim
s→s+∗

∫
H

Υ(z)dms(z) =

∫
H

Υ(z)dms∗(z),

lim
s→s−∗

∫
H

Υ(z)dms(z) =

∫
H

Υ(z)dms∗(z).
(4.19)

By (4.14) and (4.16) we have
∫
H

Υ(z)dms(z)−
∫
H

Υ(z)dms∗(z) =

∫
A(s∗)

(
Υ(U(s, s∗)z)−Υ(z)

)
dms∗(z), s > s∗,∫

H
Υ(z)dms∗(z)−

∫
H

Υ(z)dms(z) =

∫
A(s)

(
Υ(U(s∗, s)z)−Υ(z)

)
dms(z), s < s∗.

(4.20)

Form (2.16) and Lemma 4.1 we see that{
U(s, s∗)z → z strongly in H as s→ s+

∗ ,
U(s∗, s)z → z strongly in H as s→ s−∗ ,

(4.21)

which, together with the facts that A(·) is compact in H and Υ ∈ C(H), gives (4.19).

We next establish item (b). For every y = (yu, yω) ∈ V, we define

Υy(w) =
〈
y,H(w, s)

〉
, ∀w = (u, ω) ∈ V. (4.22)

We claim that Υy(·) ∈ C(V). Indeed, let w∗ = (u∗, ω∗) ∈ V be fixed and consider w = (u, ω) ∈ V with

‖w∗ − w‖V 6 1. By (3.11) we have

∣∣Υy(w∗)−Υy(w)
∣∣ =

∣∣〈y,H(w∗, s)−H(w, s)
〉∣∣

6
∣∣〈y,A(w∗ − w) +R(w∗ − w)

〉∣∣+ |
〈
y,Bw∗ −Bw +Nw∗ −Nw

〉∣∣
. ‖y‖V‖w∗ − w‖V + |

〈
y,Bw∗ −Bw

〉∣∣+ |
〈
y,Nw∗ −Nw

〉∣∣. (4.23)
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We shall estimate the last two terms on the right-hand side of (4.23). By (2.3), [12, A.26e] and the

definitions of the operators B1(·, ·) and B2(·, ·), we obtain

|
〈
y,Bw∗ −Bw

〉∣∣ 6|b1(u∗, yu, u∗ − u)|+ |b1(u∗ − u, yu, u)|+ |b2(ω∗, yω, ω∗ − ω)|+ |b2(ω∗ − ω, yω, ω)|

.(‖u∗‖V + ‖u‖V )‖yu‖V ‖u∗ − u‖V + (‖ω∗‖1,2 + ‖ω‖1,2)‖yω‖1,2‖ω∗ − ω‖1,2

.(‖w∗‖V + ‖w‖V)‖y‖V‖w∗ − w‖V . (1 + 2‖w∗‖V)‖y‖V‖w∗ − w‖V. (4.24)

To estimate the term |
〈
y,Nw∗ −Nw

〉∣∣, we set

G(S) = 2µ0(ε+ |S|2)−α/2S, S =

(
s1 s2

s3 s4

)
∈M2×2

where M2×2 is the set of matrixes with order 2× 2 and

|S|2 =

4∑
i=1

s2
i , si ∈ R, i = 1, 2, 3, 4.

Then the first order Fréchet derivative of G(S) is

DG(S) = 2µ0

(
ε+ |S|2

)−α/2


1− αs21
ε+|S|2 − αs1s2

ε+|S|2 − αs1s3
ε+|S|2 − αs1s4

ε+|S|2

− αs1s2
ε+|S|2 1− αs22

ε+|S|2 − αs2s3
ε+|S|2 − αs2s4

ε+|S|2

− αs1s3
ε+|S|2 − αs2s3

ε+|S|2 1− αs23
ε+|S|2 − αs3s4

ε+|S|2

− αs1s4
ε+|S|2 − αs2s4

ε+|S|2 − αs3s4
ε+|S|2 1− αs24

ε+|S|2


.

Obviously, the norm of the Fréchet derivative of G(s) satisfies

‖DG(S)‖ 6 2µ0(ε+ |S|2)−α/2
√

4 +
12

ε2
. 2µ0ε

−α/2
√

4 +
12

ε2
:= c6, ∀S ∈M2×2. (4.25)

For any S1, S2 ∈M2×2, we have

G(S2)−G(S1) =

∫ 1

0

DG(S1 + θ(S2 − S1))(S2 − S1) dθ. (4.26)

Using (4.25) and (4.26), we arrive at

|
〈
y,Nw∗ −Nw

〉∣∣ =|
〈
yu, N1(u∗)−N1(u)

〉∣∣
=|
〈
yu, G(e(u∗))−G(e(u))

〉∣∣ =
∣∣∣〈yu,∫ 1

0

DG(e(u∗) + θe(u∗ − u))e(u∗ − u) dθ
〉∣∣∣

.‖DG(e(u∗) + θe(u∗ − u)‖‖∇(u∗ − u)‖‖yu‖V

.‖u∗ − u‖V ‖yu‖V . ‖w∗ − w‖V‖y‖V. (4.27)

Inserting (4.24) and (4.27) into (4.23) yields

∣∣Υy(w∗)−Υy(w)
∣∣ . ‖w∗ − w‖V‖y‖V(3 + 2‖w∗‖V),

which means that the functional Υy(·) ∈ C(V) for each y ∈ V. Consequently, (4.14) implies that the

mapping z 7→ 〈y,H(z(t), t)〉 = Υ(z) is mt-integrable for every y ∈ V, and the result of item (a) shows

that t 7→
∫
H

〈
y,H(z, t)

〉
dmt(z) =

∫
H

Υ(z)dmt(z) ∈ Lloc(R).
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Lastly, we establish item (c). For any Γ ∈ T , we have from (4.18) that

Γ(z(t))− Γ(z(s)) =

∫ t

s

〈
Γ′(z(θ)),H(z(θ), θ)

〉
dθ, ∀ t > s. (4.28)

For τ 6 s 6 t, we let z∗ ∈ V and z(θ) = U(θ, τ)z∗ for θ ∈ [τ, s]. Then from (4.28) we have

Γ(U(t, τ)z∗)− Γ(U(s, τ)z∗) =

∫ t

τ

〈
Γ′(U(θ, τ)z∗),H(U(θ, τ)z∗, θ)

〉
dθ. (4.29)

Using (4.15), (4.29), Fubini’s Theorem and a series of calculations, we derive∫
H

Γ(z)dmt(z)−
∫
H

Γ(z)dms(z) =

∫
A(t)

Γ(z)dmt(z)−
∫
A(s)

Γ(z)dms(z)

=LIMγ→−∞
1

s− γ

∫ s

γ

∫ t

s

∫
H

〈
Γ′(U(θ, τ)z∗),H(U(θ, τ)z∗, θ)

〉
dmτ (z∗)dθdτ. (4.30)

By (4.15) and the invariance property of the process, we have∫
H

〈
Γ′(U(θ, τ)z∗),H(U(θ, τ)z∗, θ)

〉
dmτ (z∗)

=

∫
H

〈
Γ′(U(θ, s)U(s, τ)z∗),H(U(θ, s)U(s, τ)z∗, θ)

〉
dmτ (z∗)

=

∫
H

〈
Γ′(U(θ, s)z∗),H(U(θ, s)z∗, θ)

〉
dms(z∗). (4.31)

Note that the right-hand side of (4.31) is independent of τ . Inserting (4.31) into (4.30) gives∫
H

Γ(z)dmt(z)−
∫
H

Γ(z)dms(z) =

∫ t

s

∫
H

〈
Γ′(U(θ, s)z∗),H(U(θ, s)z∗, θ)

〉
dms(z∗)dθ

=

∫ t

s

∫
H

〈
Γ′(z),H(z(τ), τ)

〉
dmτ (z)dτ.

The proof of Theorem 4.2 is complete.

5 Lusin’s type degenerate regularity of the statistical solution

In the theory of real and complex analysis ( [21, P55, Lusin’s Theorem]), Lusin’s Theorem de-

scribes the interesting relations between measurable functions and continuous function. In this section,

we first prove that the pullback attractor Â = {A(t) : t ∈ R} consists of weak and complete tra-

jectories of equation (2.6), and that all elements z(t) within Â are uniformly bounded with respect

to t ∈ R (see Lemma 5.1) and possess Lusin’s type regularity (see Lemma 5.2), provided that the

external force F = (f, g) is translationally bounded in L2
loc(R;H). Afterwards, we establish that the

pullback attractor Â = {A(t) : t ∈ R} degenerates to a single complete trajectory if the Grashof

number of F is small enough. From this degeneration of the pullback attractor and the Lusin’s type

regularity of the solution, we conclude that the the statistical solution {mt}t∈R possesses Lusin’s type

degenerate regularity.

Definition 5.1. A function F (·) ∈ L2
loc(R;H) is called translationally bounded in L2

loc(R;H) if for

some a > 0 there holds

‖F‖2L2
H(a) := sup

t∈R

1

a

∫ t+a

t

‖F (θ)‖2dθ < +∞. (5.1)
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Let L2
b(H) be the set of functions that are translationally bounded in L2

loc(R;H). By [11, Lemma

2.10] we know that for any F ∈ L2
b(H), the norms ‖F‖2

L2
H(a1)

and ‖F‖2
L2

H(a2)
are equivalent for any

given a1 > 0 and a2 > 0.

We shall show that the pullback attractor Â = {A(t) : t ∈ R} consists of weak and complete

trajectories of equation (2.6), and that all elements z(t) within Â are uniformly bounded with respect

to t ∈ R and possess Lusin’s type regularity.

Lemma 5.1. Let assumptions (H1)-(H2) hold and F (·) ∈ L2
b(H). Then the pullback attractor Â

obtained in Theorem 3.1 satisfies

Â = {z(t) : z(t) is a complete and weak solution to equation (2.6) and ‖z(t)‖2 6 c7, ∀t ∈ R}, (5.2)

where c7 :=
2‖F‖2

L2(σ−1)

σ(1−e−1) . Moreover, for any ς ∈ R and any {z(·)} ∈ Â, the measure of the set

{θ ∈ [ς, ς + σ−1] : ‖z(θ)‖2V 6 c7k} satisfies

mes {θ ∈ [ς, ς + σ−1] : ‖z(θ)‖2V 6 c7k} > (1− 1

k
)σ−1, k = 2, 3, · · · . (5.3)

Proof. Let z(·) be a complete and weak solution to equation (2.6). Then, by Lemma 3.1 and (5.1),

we deduce

‖z(t; ς, z(ς)‖2 6e−σ(t−ς)‖z(ς)‖2 +
1

σ

∫ t

ς

e−σ(t−s)‖F (s)‖2ds

6e−σ(t−ς)‖z(ς)‖2 +
1

σ

( ∫ t

t−σ−1

+

∫ t−σ−1

t−2σ−1

+

∫ t−2σ−1

t−3σ−1

+ · · ·
)
e−σ(t−s)‖F (s)‖2ds

6e−σ(t−ς)‖z(ς)‖2 +
‖F‖2L2(σ−1)

σ(1− e−1)
, ∀t > ς, ς ∈ R.

(5.4)

Now (3.1) and (5.4) imply that all elements z(·) within the pullback attractor Â are bounded uniformly

with respect to t ∈ R, with ‖z(t)‖2 6 c7 :=
2‖F‖2

L2(σ−1)

σ(1−e−1) . The fact that the pullback attractor Â consists

of all complete and weak solutions of equation (2.6) has been proved in [11, Theorem 2.11]. Therefore,

(5.2) is proved.

We next prove (5.3). Let {z(·)} ∈ Â. Then (3.3) and (5.2) imply

‖z(t)‖2 + σ

∫ t

ς

‖z(θ)‖2Vdθ 6 ‖z(ς)‖2 +
1

σ

∫ t

ς

‖F (θ)‖2dθ 6 c7 +
1

σ

∫ t

ς

‖F (θ)‖2dθ, ∀ t > ς, (5.5)

whence

σ

∫ t

ς

‖z(θ)‖2Vdθ 6 ‖z(ς)‖2 +
1

σ

∫ t

ς

‖F (θ)‖2dθ 6 c7 +
1

σ

∫ t

ς

‖F (θ)‖2dθ, ∀ t > ς. (5.6)

Picking t = ς + σ−1, we obtain from (5.1) and (5.6) that∫ ς+σ−1

ς

‖z(θ)‖2Vdθ 6
c7
σ

+
‖F‖2

L2
H(σ−1)

σ3
:=

c8
σ
. (5.7)

Inequality (5.7) implies that the measure of the set {θ ∈ [ς, ς + σ−1] : ‖z(θ)‖2V > c8k} satisfies

mes {θ ∈ [ς, ς + σ−1] : ‖z(θ)‖2V > c8k} 6
1

c8k

c8
σ

=
1

σk
, k = 1, 2, · · · . (5.8)
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Obviously,

mes {θ ∈ [ς, ς + σ−1] : ‖z(θ)‖2V 6 c8k} = σ−1 −mes{θ ∈ [ς, ς + σ−1] : ‖z(θ)‖2V > c8k} > (1− 1

k
)σ−1.

This completes the proof.

From (5.3) we can deduce that each weak solution z(·) within Â is “nearly” regular on [ς, ς + σ−1]

for each ς ∈ R. But we cannot say that each z(·) within Â is a.e. regular on [ς, ς + σ−1]. This is

much like in the Lusin Theorem describing the relations between measurable functions and continuous

functions: each measurable function on a interval I is “nearly” continuous on I. This “nearly” regular

result of the elements within Â is stated as follows.

Lemma 5.2. Let ς be any real number. Then, for any ε > 0 and {z(·)} ∈ Â there corresponds a set

E(ε, z, ς) ⊂ [ς, ς + σ−1] and a positive constant cε such that the measure of the set E(ε, z, ς) satisfies

mes(E(ε, z, ς)) < ε and ‖z(θ)‖2V 6 cε, ∀θ ∈ [ς, ς + σ−1] \ E(ε, z, ς).

Proof. For any ε > 0 there exists a positive integer kε such that 1
σkε

< ε. Let ς be any real number.

For each {z(·)} ∈ Â and above ε we denote, E(ε, z, ς) = {θ ∈ [ς, ς+σ−1] : ‖z(θ)‖2V > c8kε}. Then from

(5.3) we deduce

mes (E(ε, z, ς)) =σ−1 −mes({θ ∈ [ς, ς + σ−1] : ‖z(θ)‖2V 6 c8kε})

6σ−1 − (1− 1

kε
)σ−1 =

1

σkε
< ε. (5.9)

Clearly, ‖z(θ)‖2V 6 c8kε := cε, ∀θ ∈ [ς, ς + σ−1] \ E(ε, z, ς). This ends the proof.

Lemma 5.2 shows that the set E(ε, z, ς) depends on ε, {z(·)} ∈ Â and ς. Thus, for fixed ε and ς,

different elements z(·) within Â will correspond to different sets E(ε, z, ς). We next prove that if the

(generalized) Grashof number 〈‖F‖2〉6t defined in (1.5) is small enough, then the pullback attractor

Â degenerates to a single complete trajectory.

Lemma 5.3. Let assumptions (H1)-(H2) hold and let F (·) ∈ L2
b(H). Then the pullback attractor

obtained in Theorem 3.1 degenerates to a single trajectory,

Â = {z̃(t) : z̃(t) is the unique complete and bounded weak solution to equation (2.6)} (5.10)

provided that the generalized Grashof number is small enough, namely

〈‖F‖2〉6t < c−2
2 λ3

1δ
4
1 . (5.11)

Proof. Let z1(t, τ ; z1τ ) = (u1(t, τ ;u1τ ), ω1(t, τ ;ω1τ ) and z2(t, τ ; z2τ ) = (u2(t, τ ;u2τ ), ω2(t, τ ;ω2τ ) be

two weak solutions of problem (2.6)-(2.7) corresponding the initial values z1τ = (u1τ , ω1τ ) and z2τ =

(u2τ , ω2τ ), respectively. Set z̃ = z̃(t) = z1(t) − z2(t) = (u1(t) − u2(t), ω1(t) − ω2(t)). Then z̃ is a

solution of the problem

dz̃(t)

dt
+Az̃(t) +Bz1(t)−Bz2(t) +Rz̃(t) +Nz1(t)−Nz2(t) = 0, in D′((τ,+∞),V∗), (5.12)

z̃(τ) = z1τ − z2τ = (u1τ − u2τ , ω1τ − ω2τ ). (5.13)
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Taking the dual pairing of z̃(t) with (5.12), then using (2.11), (2.20) and (2.23), we arrive at

1

2

d

dt
‖z̃(t)‖2 + δ1‖z̃(t)‖2V 6 |b1(u1 − u2, u2, u1 − u2)|+ |b2(u1 − u2, ω2, ω1 − ω2)|. (5.14)

Now, by a classical estimate (see [12, (A.46d)]) we have{
|b1(u1 − u2, u2, u1 − u2)| 6 c2‖u1 − u2‖‖u1 − u2‖V ‖u2‖V 6 c22

4δ1
‖z̃‖2‖z2‖2V + δ1

4 ‖z̃‖
2
V,

|b2(u1 − u2, ω2, ω1 − ω2)| 6 c2‖z̃‖‖z̃‖V‖ω2‖1,2 6 c22
4δ1
‖z̃‖2‖z2‖2V + δ1

4 ‖z̃‖
2
V.

(5.15)

Inserting (5.15) into (5.14) gives

d

dt
‖z̃(t)‖2 + δ1‖z̃(t)‖2V 6

c22
δ1
‖z̃(t)‖2‖z2(t)‖2V. (5.16)

Integrating (5.16) over [τ, t] and then using Poincaré’s inequality, we obtain

‖z̃(t)‖2 6 ‖z̃(τ)‖2 +

∫ t

τ

(
c22
δ1
‖z2(θ)‖2V − σ)‖z̃(θ)‖2dθ. (5.17)

Note that (5.5) implies

‖z2(θ)‖2V 6 lim sup
γ→−∞

1

t− γ

∫ t

γ

‖z2(s)‖2Vds 6
〈‖F‖2〉6t

σ2
, ∀θ 6 t,

and if (5.11) holds true, then

c22
δ1
‖z2(θ)‖2V − σ 6

c22〈‖F‖2〉6t
σ2δ1

− σ := c9 < 0, ∀ θ 6 t, (5.18)

Taking into account (5.17)-(5.18) and using Gronwall’s inequality, we arrive at

‖z̃(t)‖2 6 ‖z̃(τ)‖e−c9(t−τ), ∀ t > τ,

which implies that z̃(θ) = 0 for θ ∈ (−∞, t], that is, z1(θ) = z2(θ) for θ ∈ (−∞, t]. The proof of

Lemma 5.3 if complete.

Recall that the (partial) regularity of the statistical solution refers to that it is supported on a set

in which all weak solutions are (partially) strong solutions. Combining Lemma 5.2 and Lemma 5.3, we

conclude that the statistical solution {m}t∈R is “nearly” regular (but not a.e regular) on each interval

[ς, ς + σ−1], ς ∈ R. This Lusin type degenerate regular result of the statistical solution {mt}t∈R is

stated as follows.

Theorem 5.1. Let assumptions (H1)-(H2) and (5.11) hold, and let F (·) ∈ L2
b(H). Then the statistical

solution {mt}t∈R obtained in Theorem 4.2 possesses the following degenerate regularity: for each ς ∈ R

and for any ε > 0, there exists a subset E(ε, ς) ⊂ [ς, ς + σ−1] such that mes (E(ε, ς)) < ε and {mt}t∈R
is regular for t ∈ [ς, ς + σ−1] \ E(ε, ς).

Proof. Theorem 4.1 shows that the support of mt is contained in A(t) for each t ∈ R. Then the result

follows directly from lemmas 5.2 and 5.3.
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