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Summary

In the present paper, a 𝜇-delayed Mittag-Leffler type function is introduced as a fun-
damental function. By means of 𝜇-delayed Mittag-Leffler type function, an exact
analytical solution formula to non-homogeneous linear delayed Langevin equations
involving two distinct 𝜇-Caputo type fractional derivatives of general orders is given.
Also, a global solution of nonlinear version of delayed Langevin equations is inferred
from the findings on hand and is verified with the aid of the functional(substitutional)
operator. In terms of exponential function, we estimate 𝜇-delayed Mittag-Leffler
type function. Existence uniqueness of solutions to nonlinear delayed Langevin frac-
tional differential equations are obtained with regard to the weighted norm defined
in accordance with exponential function. The notion of stability analysis in the sense
of solutions to the described Langevin equations is discussed on the grounds of the
fixed point approach. Numerical and simulated examples are shared to exemplify the
theoretical findings. This paper provides novel results.
KEYWORDS:
𝜇-fractional Langevin equation, 𝜇-delayed Mittag-Leffler function, an explicit solution, existence unique-
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1 INTRODUCTION

As to a solution of an arbitrary differential equation, the first notion to be explored is to determine a fundamental (matrix)
function which forms the main structure(backbone) of the solution. The more complex a differential equation structure is, the
more difficult and sometimes impossible it is to determine the fundamental function. Therefore, sometimes it is more important
to identify the most convenient and usable fundamental function than to settle out the problem. Although the first foundation
of the fractional derivative was laid with Leibniz’s note to L’Hospital in 1695, fractional differential equations have become as
important as ordinary differential equations, even more important today. This also makes it difficult to identify the fundamental
functions. In this sense of finding the fundamental function for both ordinary and fractional differential equations, there are so
many of original papers1-9 which are about the fact that existence, uniqueness, distinct kinds of stabilities like Ulam-Hyers
stability, Lapunov stability, different kinds of controllabilities like relative controllability, iterative learning control, etc related
to solution with respect to a fundamental function are discussed.

The ancestor of the Langevin equations is the French physicist Paul Langevin. In the early 1900s, he gave a comprehensive
description of Brownian motion which describes the progress or motion of physical phenomena in fluctuant media. In the
progress of time, for a description of the more complex problems in complex fluctuant environments, the well-known ordinary
Langevin equations remain incapable or fall short. So, general versions of Langevin equations are need to present more physical
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phenomena18. Among them, we can count fractional Langevin type equation consisting of fractional order derivative. As far as
we know, although there are so many studies on the nonlinear Langevin differential equations consisting two distinct fractional
orders derivatives which are presented and investigated, there are very few studies on delayed Langevin fractional differential
equations. In the study3, an explicit solution to fractional Langevin time-delay equations having two different classical Riemann-
Liouville fractional derivatives by defining delayed Mittag-Leffler type function as a fundamental function. In the work9, with
the help of the same delayed Mittag-Leffler type function proposed in the reference3, an exact analytical solution to nonlinear
fractional Langevin time-delay equations having two distinct classical Caputo fractional orders derivatives.

In the recent times, the concept of a fractional derivative of a function with respect to another function22 has attracted
researchers’ attention. While it is involved in many sorts of real-world problems, simultaneously it has been developed as in the
studies10-17.

Our aim is to study the nonlinear 𝜇-Caputo type time-delay Langevin equations with two general fractional orders
{(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) − 𝜅2
(

𝐶
0+ℶ

𝛽
𝜇𝑥

)

(𝑡) − 𝜅1𝑥 (𝑡 − ℎ) = ℸ (𝑡, 𝑥(𝑡)) , 𝑡 ∈ (0, 𝑇 ] , ℎ > 0,
𝑥 (𝑡) = 𝜙 (𝑡) , −ℎ ≤ 𝑡 ≤ 0,

(1)

where 𝐶
0+ℶ

𝛼
𝜇 and 𝐶

0+ℶ
𝛽
𝜇 are 𝜇-Caputo type fractional derivatives, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 − 2 < 𝛽 ≤ 𝑛 − 1, 𝑛 ≥ 2 with 𝛼 − 𝛽 ≥ 1

and ℸ ∶ [0, 𝑇 ] × ℝ → ℝ is a nonlinear disturbance. 𝜙 ∶ [−ℎ, 0] → ℝ is an arbitrary (𝑛 − 1)-times continuously differentiable,
𝜅1, 𝜅2 ∈ ℝ, 𝑇 = 𝑙ℎ, 𝑙 ∈ ℕ which is the set of all natural numbers.

Contribution of the current paper:

• we offer the 𝜇- Caputo type fractional linear(or semi-linear) delayed Langevin differential equations involving two distinct
fractional orders

• we propose novelly 𝜇-delayed Mittag-Leffler type function as a fundamental function,
• we present an exact analytical solution to linear Langevin system and a global solution formula to the semi-linear Langevin

system with respect to the 𝜇-delayed Mittag-Leffler type function,
• we estimate 𝜇-delayed Mittag-Leffler type function and an integral of it in terms of exponential function,
• we examined the existence and uniqueness of solutions of the 𝜇-delayed Langevin differential equations’ system,
• we make an analysis of stability in the sense of solutions to the described Langevin equations on the grounds of the fixed

point approach
• we illustrate the theoretical findings with the help of numerical and simulated examples.

2 PRELIMINARIES

Let 𝑎, 𝑏 ∈ ℝ(or ℝ+) which is the set of all real numbers(or all positive real numbers). For −∞ < 𝑎 < 𝑏 < ∞, 𝐼 = [𝑎, 𝑏] is the
interval of ℝ. 𝐶 ([𝑎, 𝑏] ,ℝ) = 𝐶(𝐼) is the Banach space of continuous functions and also 𝐴𝐶 ([𝑎, 𝑏] ,ℝ) = 𝐴𝐶(𝐼) is the space of
absolutely continuous functions on [𝑎, 𝑏]. For 𝑛 ∈ {0, 1, 2, ...}, let 𝐶𝑛 ([𝑎, 𝑏] ,ℝ) = 𝐶𝑛(𝐼) and 𝐴𝐶𝑛 ([𝑎, 𝑏] ,ℝ) = 𝐴𝐶𝑛(𝐼) be the
space of complex-valued functions 𝑓 (𝑥) which have continuous derivatives up to order 𝑛 − 1 such that 𝑓 (𝑛−1) ∈ 𝐶 ([𝑎, 𝑏] ,ℝ)
and 𝑓 (𝑛−1) ∈ 𝐴𝐶 ([𝑎, 𝑏] ,ℝ), respectfully. Let 𝜇 ∈ 𝐶1 ([𝑎, 𝑏],ℝ) with 𝜇 is increasing and 𝜇′(𝑡) ≠ 0 for every 𝑡 ∈ [𝑎, 𝑏]. The
maximum norm ‖.‖∞ and the 𝜇-weighted maximum norm ‖.‖𝜇,𝜔 of the above spaces are

‖ℸ‖∞ = max
𝑡∈[𝑎,𝑏]

|ℸ (𝑡)| ,

and
‖ℸ‖𝜇,𝜔 = max

𝑡∈[𝑎,𝑏]

|

|

|

|

ℸ (𝑡)
𝑒𝜔𝜇(𝑡)

|

|

|

|

,

where |.| is an arbitrary norm on ℝ.
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Definition 1. 22 The gamma function Γ (𝛼) is defined by

Γ (𝛼) =

∞

∫
0

𝑡𝛼−1𝑒−𝑡𝑑𝑡, 𝛼 > 0.

For this function, the reduction formula
Γ (𝛼 + 1) = Γ (𝛼) ,

holds.
Definition 2. 22 The beta function 𝐵 (𝛼, 𝛽) is defined by

𝐵 (𝛼, 𝛽) =

1

∫
0

𝑡𝛼−1 (1 − 𝑡)𝛽−1 𝑑𝑡, 𝛼 > 0, 𝛽 > 0.

The Beta function is closely related to the Gamma function as noted below
𝐵 (𝛼, 𝛽) =

Γ (𝛼) Γ (𝛽)
Γ (𝛼 + 𝛽)

,

holds.
Definition 3. 22 Let ℸ be an integrable function defined on 𝐼 and 𝜇 ∈ 𝐶1(𝐼) such that 𝜇 is increasing and 𝜇′(𝑡) ≠ 0 for every
𝑡 ∈ 𝐼 . The 𝜇-Riemann Liouville type fractional integral of order 𝛼 > 0 is defined as

(

𝑅𝐿
0+ ℷ𝛼𝜇ℸ

)

(𝑡) ∶= 1
Γ(𝛼)

𝑡

∫
0

𝜇′ (𝑠) (𝜇 (𝑡) − 𝜇 (𝑠))𝛼−1 ℸ (𝑠) 𝑑𝑠,

= 1
Γ(𝛼)

𝑡

∫
0

(𝜇 (𝑡) − 𝜇 (𝑠))𝛼−1 ℸ (𝑠) 𝑑𝜇 (𝑠)

and the 𝜇-Riemann Liouville type fractional derivative of order 𝛼 > 0 is defined as
(

𝑅𝐿
0+ ℶ𝛼

𝜇ℸ
)

(𝑡) ∶= 1
Γ(𝑛 − 𝛼)

(

𝑑
𝜇′ (𝑡) 𝑑𝑡

)𝑛
𝑡

∫
0

𝜇′ (𝑠) (𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1 ℸ (𝑠) 𝑑𝑠,

= 1
Γ(𝑛 − 𝛼)

(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

(𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1 ℸ (𝑠) 𝑑𝜇 (𝑠) ,

where 𝑛 = [𝛼] + 1, [𝛼] means the integer part of 𝛼.
Definition 4. 22 Let ℸ ∈ 𝐴𝐶𝑛(𝐼) and 𝜇 ∈ 𝐶1(𝐼) such that 𝜇 is increasing and 𝜇′(𝑡) ≠ 0 for every 𝑡 ∈ 𝐼 . The 𝜇-Caputo type
fractional derivative of order 𝛼 > 0 is defined as

(

𝑅𝐿
0+ ℶ𝛼

𝜇ℸ
)

(𝑡) ∶= 1
Γ(𝑛 − 𝛼)

𝑡

∫
0

𝜇′ (𝑠) (𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1
(

𝑑
𝜇′ (𝑠) 𝑑𝑠

)𝑛

ℸ (𝑠) 𝑑𝑠,

= 1
Γ(𝑛 − 𝛼)

𝑡

∫
0

(𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1
(

𝑑
𝑑𝜇 (𝑠)

)𝑛

ℸ (𝑠) 𝑑𝜇 (𝑠) ,

where 𝑛 = [𝛼] + 1.
Remark 1. If we consider 𝜇(𝑡) = 𝑡, we obtain the classical Riemann Liouville fractional integral (𝑅𝐿0+ ℷ𝛼𝑡 ℸ

)

(𝑡), the classical
Riemann Liouville fractional derivative (𝑅𝐿

0+ ℶ𝛼
𝑡 ℸ

)

(𝑡), and the classical Caputo fractional derivative (𝐶
0+ℶ

𝛼
𝑡 ℸ

)

(𝑡). Furthermore,
we can obtain other fractional derivatives like Hadamard fractional derivative25 26, Erdélyi–Kober fractional derivative27, etc.
Theorem 1. 23 24 If ℸ ∈ 𝐴𝐶𝑛(𝐼) and 𝛼 > 0, then

(

𝐶
0+ℶ

𝛼
𝜇ℸ

)

(𝑡) =
(

𝑅𝐿
0+ ℶ𝛼

𝜇ℸ
)

[

ℸ (𝑡) −
𝑛−1
∑

𝑘=0

(𝜇 (𝑡) − 𝜇 (0))𝑘

𝑘!

(

1
𝜇′ (𝑡)

)𝑘

ℸ(𝑘) (0)

]

.
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Lemma 1. 22 Given 𝛽 ∈ ℝ. For 𝛼 > 0,

𝐶
0+ℶ

𝛼
𝜇 (𝜇(𝑡) − 𝜇(0))𝛽−1 =

⎧

⎪

⎨

⎪

⎩

Γ(𝛽)
Γ(𝛽−𝛼)

(𝜇(𝑡) − 𝜇(0))𝛽−𝛼−1 , 𝛽 > [𝛼],
0, 𝛽 = 0, 1, 2, ..., [𝛼],

undefined, otherwise.
The well-known binomial identity is

(

𝑚 + 𝑝
𝑝

)

=
(

𝑚 + 𝑝 − 1
𝑝

)

+
(

𝑚 + 𝑝 − 1
𝑝 − 1

)

, 𝑚, 𝑝 ≥ 0.

3 MAIN RESULTS

3.1 Exact analytical solutions of the linear homogeneous 𝜇-Caputo type fractional Langevin type
time-delay differential equations with general fractional orders
First of all, we shall define the following function which is a solution of the linear homogeneous 𝜇-Caputo type fractional
Langevin type time-delay differential equations. This function can be regarded as a fundamental function for the delayed
Langevin equations with two fractional orders.
Definition 5. Let 𝜇 ∈ 𝐶1(𝐼) such that 𝜇 is increasing and 𝜇′(𝑡) ≠ 0 for every 𝑡 ∈ 𝐼 . The 𝜇-Delayed version of Mittag-Leffler
function generated by 𝜆1, 𝜆2 ∈ ℝ of three parameters with respect to another function 𝜇 with two variables 𝑡, 𝑠; Eℎ,𝜇

𝛼1,𝛼2,𝛼3 ∶
ℝ ×ℝ+ ∪ {0} → ℝ is defined by

Eℎ,𝜇
𝛼1,𝛼2,𝛼3

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

=
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

) 𝜆𝑚1 𝜆
𝑝
2

Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3)
(𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼1+𝑝𝛼2+𝛼3−1  (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ)) ,

where 𝛼1 > 0, 𝛼2, 𝛼3 ∈ ℝ, ℎ > 0, and (.) ∶ ℝ → ℝ is the Heaviside function as described below
(𝑡) =

{

1, 𝑡 ≥ 0,
0, 𝑡 < 0.

For simplicity, we use the symbol 𝜇𝑡
𝑠 ∶= (𝜇(𝑡) − 𝜇(𝑠)). This is a fundamental matrix for system (1).

Remark 2. The graphs of the 𝜇-delayed M-L type function Eℎ,𝜇
𝛼1,𝛼2,𝛼3

(

𝜆1, 𝜆2; ., .
), the delayed analogue of M-L type function

generated by 𝜅1, 𝜅2 ∈ ℝ of three parameters Eℎ
𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡
) and the two-parameter M-L function E𝛼1,𝛼2 (𝑡) with certain values

or functions of the parameters can be found in Figure 1 . Depending on choosing 𝜇 under specific values of the rest of the
parameters, the graphs of different 𝜇-delayed M-L type functions are compared with each other in Figure 2 .

Remark 3. The 𝜇-Delayed Mittag-Leffler(M-L) type function Eℎ,𝜇
𝛼1,𝛼2,𝛼3

(

𝜆1, 𝜆2; ., .
) in Definition 5 is the more general function

because it includes many of known special function in the literature. Here are some of them.
1. Eℎ,𝜇

𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

= Eℎ
𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡
), where 𝜇(𝑡) = 𝑡, 𝑠 = 0, the delayed analogue of M-L type function generated

by 𝜅1, 𝜅2 ∈ ℝ of three parameters Eℎ
𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡
) is studied in the references3 9.

2. Eℎ,𝜇
𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

= E𝛿
𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2
), where 𝜇(𝑡) = 𝑡, 𝑠 = 0, ℎ = 0, 𝛿 = 1, the bivariate M-L function E𝛿

𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2
)

is considered in the reference19.
3. Eℎ,𝜇

𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

= Eℎ
𝛼1,𝛼3

(

𝜅1, 𝑡
) where 𝜇(𝑡) = 𝑡, 𝑠 = 0, 𝜅2 = 0, the delayed analogue of M-L type function of two

parameters Eℎ
𝛼1,𝛼3

(

𝜅1, 𝑡
) is researched in the references8 20 2.

4. Eℎ,𝜇
𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

= 𝑡𝛼3−1E𝛼2,𝛼3

(

𝜅2𝑡𝛼2
) where 𝜅1, the two-parameter M-L function is investigated in the reference22.

Lemma 2. Let 𝜇 ∈ 𝐶1(𝐼) such that 𝜇 is increasing and 𝜇′(𝑡) ≠ 0 for every 𝑡 ∈ 𝐼 . If 𝜆1, 𝜆2, 𝛼, 𝛼1, 𝛼2, 𝛼3, ℎ ∈ ℝ satisfying 𝛼1 > 0,
ℎ > 0, and 𝛼, 𝛼3 − 1 > [𝛼], then

𝐶
0+ℶ

𝛼
𝜇E

ℎ,𝜇
𝛼1,𝛼2,𝛼3

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

= Eℎ,𝜇
𝛼1,𝛼2,𝛼3−𝛼

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

.
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FIGURE 1 Comparison of functions 𝐸ℎ,𝜇
𝛼1,𝛼2,𝛼3(𝜅1, 𝜅2; 𝑡, 𝑠), 𝐸ℎ

𝛼1,𝛼2,𝛼3
(𝜅1, 𝜅2; 𝑡), and 𝐸𝛼1,𝛼2(𝑡) for 𝛼1 = 0.5, 𝛼2 = 0.7, 𝛼3 = 1,

𝜆1 = 2, 𝜆2 = 3, ℎ = 0.5, 𝑠 = 0, 𝜇(𝑡) = 𝑒𝑡.
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FIGURE 2 Comparison of functions 𝐸ℎ,𝜇
𝛼1,𝛼2,𝛼3(𝜅1, 𝜅2; 𝑡, 𝑠), for a few of different functions 𝜇(𝑡) = 𝑡3, 𝜇(𝑡) = 𝑡2, 𝜇(𝑡) = 𝑡 with

𝛼1 = 2, 𝛼2 = 1, 𝛼3 = 1, 𝜆1 = 2, 𝜆2 = 3, ℎ = 0.5.

Proof.
𝐶
0+ℶ

𝛼
𝜇E

ℎ,𝜇
𝛼1,𝛼2,𝛼3

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

=𝐶
0+ ℶ𝛼

𝜇

( ∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜆𝑚1 𝜆
𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼1+𝑝𝛼2+𝛼3−1

Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3)
 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))

)



6 AUTHOR ONE ET AL

=
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜆𝑚1 𝜆
𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))
Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3)

𝐶
0+ℶ

𝛼
𝜇

(

(𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼1+𝑝𝛼2+𝛼3−1
)

=
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜆𝑚1 𝜆
𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼1+𝑝𝛼2+𝛼3−𝛼−1

Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3 − 𝛼)
 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))

= Eℎ,𝜇
𝛼1,𝛼2,𝛼3−𝛼

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

.

Theorem 2. With 𝑥 belonging to the Banach space of absolutely continuously differentiable functions up to order 𝑛 on [−ℎ, 𝑇 ],

𝑥(𝑡) =
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

]

𝜙(𝑖)
0 + Eℎ,𝜇

𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

+ 𝜅1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠) (2)

where 𝜙(𝑖)
0 = 𝜙(𝑖)(0) with 𝑖 ∈ {0, 1, ..., 𝑛 − 1}, is an analytical solution of the Cauchy type problem (1) with ℸ ≡ 0.

Proof. To make this proof understandable and clearer, we separately calculate the fractional derivative of each of terms in (2).
With the help of the binomial identity and Lemma 1 , we acquire

𝐶
0+ℶ

𝛼
𝜇

(𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

]

𝜙(𝑖)
0

)

=
𝑛−2
∑

𝑖=0
𝜅1

(

𝐶
0+ℶ

𝛼
𝜇E

ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

)

𝜙(𝑖)
0

=
𝑛−2
∑

𝑖=0
𝜅1E

ℎ,𝜇
𝛼,𝛼−𝛽,𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

𝜙(𝑖)
0

=
𝑛−2
∑

𝑖=0
𝜅1

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+
∞
∑

𝑚=1

∞
∑

𝑝=0

(

𝑚 + 𝑝 − 1
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + (𝑚 + 1)ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑖

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑖 + 1) 𝜇𝑡
𝑠+(𝑚+1)ℎ

+
∞
∑

𝑚=0

∞
∑

𝑝=1

(

𝑚 + 𝑝 − 1
𝑝 − 1

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + (𝑚 + 1)ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑖

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑖 + 1) 𝜇𝑡
𝑠+(𝑚+1)ℎ

]

𝜙(𝑖)
0

= 𝜅1
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + (𝑚 + 2)ℎ))(𝑚+1)𝛼+𝑝(𝛼−𝛽)+𝑖

Γ((𝑚 + 1)𝛼 + 𝑝(𝛼 − 𝛽) + 𝑖 + 1) 𝜇𝑡
𝑠+(𝑚+2)ℎ

]

𝜙(𝑖)
0

+ 𝜅1𝜅2
𝑛−2
∑

𝑖=0

[ ∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + (𝑚 + 1)ℎ))𝑚𝛼+(𝑝+1)(𝛼−𝛽)+𝑖

Γ(𝑚𝛼 + (𝑝 + 1)(𝛼 − 𝛽) + 𝑖 + 1) 𝜇𝑡
𝑠+(𝑚+1)ℎ

]

𝜙(𝑖)
0

= 𝜅1
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, 2ℎ
)

]

𝜙(𝑖)
0 + 𝜅1𝜅2

𝑛−2
∑

𝑖=0
Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

𝜙(𝑖)
0 .
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Now, we will compute the fractional derivative of the second one in (2). Again, by using the binomial identity and Lemma 1 we
get

=𝐶
0+ ℶ𝛼

𝜇E
ℎ,𝜇
𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

=𝐶
0+ ℶ𝛼

𝜇

( ∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−1

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛) 𝜇𝑡
𝑠+𝑚ℎ

)

𝜙(𝑛−1)
0

+𝐶
0+ ℶ

𝛼
𝜇

[

𝜇𝑚−1(𝑡)
Γ(𝑚)

+
∞
∑

𝑚=1

∞
∑

𝑝=0

(

𝑚 + 𝑝 − 1
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−1

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛) 𝜇𝑡
𝑠+𝑚ℎ

+
∞
∑

𝑚=0

∞
∑

𝑝=1

(

𝑚 + 𝑝 − 1
𝑝 − 1

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−1

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛) 𝜇𝑡
𝑠+𝑚ℎ

]

𝜙(𝑛−1)
0

=
∞
∑

𝑚=1

∞
∑

𝑝=0

(

𝑚 + 𝑝 − 1
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−𝛼−1

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛 − 𝛼) 𝜇𝑡
𝑠+𝑚ℎ𝜙

(𝑛−1)
0

+
∞
∑

𝑚=0

∞
∑

𝑝=1

(

𝑚 + 𝑝 − 1
𝑝 − 1

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−𝛼−1

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛 − 𝛼) 𝜇𝑡
𝑠+𝑚ℎ𝜙

(𝑛−1)
0

= 𝜅1
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + (𝑚 + 1)ℎ))(𝑚+1)𝛼+𝑝(𝛼−𝛽)+𝑛−𝛼−1

Γ((𝑚 + 1)𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛 − 𝛼) 𝜇𝑡
𝑠+(𝑚+1)ℎ𝜙

(𝑛−1)
0

+ 𝜅2
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)𝜅𝑚
1 𝜅

𝑝
2 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼+(𝑝+1)(𝛼−𝛽)+𝑛−𝛼−1

Γ(𝑚𝛼 + (𝑝 + 1)(𝛼 − 𝛽) + 𝑛 − 𝛼) 𝜇𝑡
𝑠+𝑚ℎ𝜙

(𝑛−1)
0

= 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝑛

(

𝜅1, 𝜅2; 𝑡, ℎ
)

𝜙(𝑛−1)
0 + 𝜅2E

ℎ,𝜇
𝛼,𝛼−𝛽,𝑛−𝛽

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

In a similar manner, one easily calculate the fractional derivative of the last one in (2) by applying the binomial identity and
Lemma 1 as noted below:

𝐶
0+ℶ

𝛼
𝜇

⎛

⎜

⎜

⎝

𝜅1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠)
⎞

⎟

⎟

⎠

= 𝜅2
1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + 2ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠)

+ 𝜅1𝜅2

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼−𝛽

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠).

To sum up, the fractional derivative of solution (2) is
(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) = 𝜅1
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, 2ℎ
)

]

𝜙(𝑖)
0 + 𝜅1𝜅2

𝑛−2
∑

𝑖=0
Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

𝜙(𝑖)
0

+ 𝜅2
1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + 2ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠) + 𝜅1𝜅2

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼−𝛽

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝑛

(

𝜅1, 𝜅2; 𝑡, ℎ
)

𝜙(𝑛−1)
0 + 𝜅2E

ℎ,𝜇
𝛼,𝛼−𝛽,𝑛−𝛽

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0 . (3)
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Now, we will take the rest of expressions in (1) into consideration:

𝜅2
(

𝐶
0+ℶ

𝛽
𝜇𝑥

)

(𝑡) =𝐶
0+ ℶ𝛽

𝜇

[𝑛−2
∑

𝑖=0

(

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

)

𝜙(𝑖)
0 + Eℎ,𝜇

𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

+ 𝜅1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠)
]

= 𝜅1𝜅2
𝑛−2
∑

𝑖=0
Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼−𝛽+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

𝜙(𝑖)
0 + 𝜅2E

ℎ,𝜇
𝛼,𝛼−𝛽,𝑚−𝛽

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

+ 𝜅1𝜅2

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼−𝛽

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠), (4)

and
𝜅1𝑥(𝑡 − ℎ) = 𝜅1

𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, 2ℎ
)

]

𝜙(𝑖)
0 + 𝜅1E

ℎ,𝜇
𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 2
)

𝜙(𝑛−1)
0

+ 𝜅2
1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + 2ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠). (5)

Taking a linear combination of (3), (4), and (5) provides the desired result.

3.2 Integral representation of solutions to the linear inhomogeneous 𝜇-Caputo type fractional
Langevin type DDEs with general fractional orders
Before starting main theorem, we share a simple lemma as follows:
Lemma 3. For 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 − 2 < 𝛽 ≤ 𝑛 − 1 with 𝑛 ≥ 2 and 𝛼 − 𝛽 ≥ 1, the following equation holds true:

𝑡

∫
𝑟+𝑚ℎ

(𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1 (𝜇(𝑠) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝛼−1 𝑑𝜇 (𝑠) = (𝜇(𝑠) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−1 𝐵(𝑛 − 𝛼, 𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝛼).

Since the proof is based on the only substitution (𝜇(𝑡) − 𝜇(𝑟 + 𝑚ℎ)) 𝑦 = 𝜇(𝑡) − 𝜇(𝑠), it is enough easy to omit it.
Theorem 3. With 𝑥 belonging to the Banach space of absolutely continuously differentiable functions up to order 𝑛 on [0, 𝑇 ],

𝑥(𝑡) =

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

ℸ(𝑠)𝑑𝜇(𝑠), ℎ > 0, (6)

is a solution of the Cauchy type problem (1) with zero initial conditions 𝑥(𝑡) = 0 for 𝑡 ∈ [−ℎ, 0), and 𝑥(𝑘)(0), 0 ≤ 𝑘 ≤ 𝑛 − 1.
Proof. We will exploit the variation of constants’ approach to prove this theorem. Assume that 𝑥 is a solution of non-homogenous
system. Then it must be in the below form:

𝑥(𝑡) =

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

𝜂(𝑠)𝑑𝜇(𝑠), ℎ > 0,

where 𝜂(𝑠), 0 ≤ 𝑠 ≤ 𝑡 is an unknown differentiable function and 𝑥(0) = 0. Having Theorem 1 and the given conditions in the
statement of this theorem, we acquire

(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) =
(

𝑅𝐿
0+ ℶ𝛼

𝜇𝑥
)

(𝑡) .
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Let’s continue to finish proving in the this step or calculation.
(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) = 1
Γ(𝑛 − 𝛼)

(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

(𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1
𝑠

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑠, 𝑟
)

𝜂(𝑟)𝑑𝜇 (𝑟) 𝑑𝜇 (𝑠)

= 1
Γ(𝑛 − 𝛼)

(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

𝑡

∫
𝑟

(𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1 Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑠, 𝑟
)

𝜂(𝑟)𝑑𝜇 (𝑠) 𝑑𝜇 (𝑟)

= 1
Γ(𝑛 − 𝛼)

∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

) 𝜅𝑚
1 𝜅

𝑝
2

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝛼)

(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

𝜂(𝑟)

×
⎡

⎢

⎢

⎣

𝑡

∫
𝑟

(𝜇 (𝑡) − 𝜇 (𝑠))𝑛−𝛼−1 (𝜇(𝑠) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝛼−1 𝜇𝑠
𝑟+𝑚ℎ𝑑𝜇 (𝑠)

⎤

⎥

⎥

⎦

𝑑𝜇 (𝑟) .

By applying Lemma 3 to the inner integral in the last equation above, we get
(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) =
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)

𝜅𝑚
1 𝜅

𝑝
2

(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−1 𝜇𝑠
𝑟+𝑚ℎ

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛)
𝜂(𝑟)𝑑𝜇 (𝑟)

by utilizing the binomial identity, we obtain
(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) =
(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑟))𝑛−1 𝜇𝑠
𝑟

Γ(𝑛)
𝜂(𝑟)𝑑𝜇 (𝑟)

+
∞
∑

𝑚=1

∞
∑

𝑝=0

(

𝑚 + 𝑝 − 1
𝑝

)

𝜅𝑚
1 𝜅

𝑝
2

(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−1 𝜇𝑠
𝑟+𝑚ℎ

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛)
𝜂(𝑟)𝑑𝜇 (𝑟)

+
∞
∑

𝑚=0

∞
∑

𝑝=1

(

𝑚 + 𝑝 − 1
𝑝 − 1

)

𝜅𝑚
1 𝜅

𝑝
2

(

𝑑
𝑑𝜇 (𝑡)

)𝑛
𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)+𝑛−1 𝜇𝑠
𝑟+𝑚ℎ

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽) + 𝑛)
𝜂(𝑟)𝑑𝜇 (𝑟)

applying Leibniz rule for higher-order derivatives, we acquire
(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) = 𝜂(𝑡) +
∞
∑

𝑚=1

∞
∑

𝑝=0

(

𝑚 + 𝑝 − 1
𝑝

)

𝜅𝑚
1 𝜅

𝑝
2

𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)−1 𝜇𝑠
𝑟+𝑚ℎ

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽))
𝜂(𝑟)𝑑𝜇 (𝑟)

+
∞
∑

𝑚=0

∞
∑

𝑝=1

(

𝑚 + 𝑝 − 1
𝑝 − 1

)

𝜅𝑚
1 𝜅

𝑝
2

𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑟 + 𝑚ℎ))𝑚𝛼+𝑝(𝛼−𝛽)−1 𝜇𝑠
𝑟+𝑚ℎ

Γ(𝑚𝛼 + 𝑝(𝛼 − 𝛽))
𝜂(𝑟)𝑑𝜇 (𝑟) .

As a result, we get
(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) = 𝜂(𝑡) + 𝜅1

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜂(𝑠)𝑑𝜇(𝑠) + 𝜅2

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼−𝛽

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

𝜂(𝑠)𝑑𝜇(𝑠)

= 𝜂(𝑡) + 𝜅2
(

𝐶
0+ℶ

𝛽
𝜇𝑥

)

(𝑡) + 𝜅1𝑥 (𝑡 − ℎ) ,

which ensures that ℸ(𝑡) = 𝜂(𝑡) for ∈ [0, 𝑇 ]. This is the end of the proof.
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Theorem 4. An explicit solution 𝑥 ∈ 𝐴𝐶𝑛(𝐼) of the Cauchy type problem (1) has the below form

𝑥(𝑡) =
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

]

𝜙(𝑖)
0 + Eℎ,𝜇

𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

+ 𝜅1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠)

+

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

ℸ(𝑠)𝑑𝜇(𝑠). (7)

Proof. When theorems 2 and 3 are considered simultaneously, the proof of this theorem is clear.
Remark 4. Just as the 𝜇-Caputo type time-delay fractional Langevin differential equations (1) contain a few of fractional
differential equations, the solutions (7) contain some different ones, too.

1. For ℎ = 0, the system (1) turns into Langevin type linear inhomogeneous fractional system. Solutions (7) overlaps with
the explicit solutions of Langevin fractional system with general fractional orders by means of the bivariate M-L type
function in the reference21, as well as coinciding with the solutions with the aid of the Fox-Wright functions given in the
reference22.

2. Solutions (7) with 𝜅1 match up with the solutions of Caputo fractional differential equations with the help of two-parameter
M-L or Wiman’s functions which is considered in the reference22.

3. Solutions (7) with 𝜅2 are the general case of the solutions of fractional delayed differential system with constant coefficient
which are examined for 𝛼 ∈ (0, 1] in the references20 2.

3.3 Existence and uniqueness problem for nonlinear time-delay FLE
In this section, we introduce the nonlinear 𝜇-Caputo type time-delay fractional Langevin differential equations. To be able to
discuss the existence and uniqueness, we have to obtain its solutions. After that, we debate the existence and uniqueness of the
solutions.

In order to prove the main theorem, which will be expressed below, with a different approach, we need to talk about the known
operational process. As mentioned in the references22 29 , the generalised fractional operators like 𝐶

0+ℶ
𝛼
𝜇, 𝑅𝐿0+ ℶ𝛼

𝜇, and 𝑅𝐿
0+ ℷ𝛼𝜇 can be

expressed as the conjugation of the classical fractional operators with the help of the operation of composition with 𝜇 or 𝜇−1 :
𝑅𝐿
0+ ℷ𝛼𝜇 = 𝜇 ◦

(

𝑅𝐿
𝜇(0)+ℷ

𝛼
𝑡

)

◦ −1
𝜇 , 𝑅𝐿

0+ ℶ𝛼
𝜇 = 𝜇 ◦

(

𝑅𝐿
𝜇(0)+ℶ

𝛼
𝑡

)

◦ −1
𝜇 , 𝐶

0+ℶ
𝛼
𝜇 = 𝜇 ◦

(

𝐶
𝜇(0)+ℶ

𝛼
𝑡

)

◦ −1
𝜇 ,

where 𝜇 is the substitution operator
𝜇 (𝑥) = 𝑥 (𝜇) ,

and −1
𝜇 is its inverse operator and

(

𝑅𝐿
𝜇(0)+ℷ

𝛼
𝑡

)

,
(

𝑅𝐿
𝜇(0)+ℶ

𝛼
𝑡

)

,
(

𝐶
𝜇(0)+ℶ

𝛼
𝑡

)

are the classical Riemann-Liouville fractional integral,
Riemann-Liouville fractional derivative, Caputo fractional derivative, respectively.

It is time to state the main theorem.
Theorem 5. The solution 𝑥 ∈ 𝐴𝐶𝑛(𝐼) of the nonlinear 𝜇-Caputo type time-delay fractional Langevin differential equations

{(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) − 𝜅2
(

𝐶
0+ℶ

𝛽
𝜇𝑥

)

(𝑡) − 𝜅1𝑥 (𝑡 − ℎ) = ℸ (𝑡, 𝑥(𝑡)) , 𝑡 ∈ (0, 𝑇 ] , ℎ > 0,
𝑥 (𝑡) = 𝜙 (𝑡) , −ℎ ≤ 𝑡 ≤ 0,

(8)

where 𝐶
0+ℶ

𝛼
𝜇 and 𝐶

0+ℶ
𝛽
𝜇 are 𝜇-Caputo type fractional derivatives, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 − 2 < 𝛽 ≤ 𝑛 − 1, 𝑛 ≥ 2 with 𝛼 − 𝛽 ≥ 1

and ℸ ∶ [0, 𝑇 ] × ℝ → ℝ is a nonlinear disturbance. 𝜙 ∶ [−ℎ, 0] → ℝ is an arbitrary (𝑛 − 1)-times continuously differentiable,
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𝜅1, 𝜅2 ∈ ℝ, 𝑇 = 𝑙ℎ, 𝑛 ∈ ℕ which is the set of all natural numbers, has the following form:

𝑥(𝑡) =
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

]

𝜙(𝑖)
0 + Eℎ,𝜇

𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

+ 𝜅1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠) +

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

ℸ(𝑠, 𝑥(𝑠))𝑑𝜇(𝑠). (9)

Proof. According to Theorem 4, it is easy to see that the solution of the nonlinear 𝜇-Caputo type time-delay fractional Langevin
differential equations is as given in (9). Now, we try to obtain the same solution with a different approach.

By exploiting the identity 𝐶
0+ℶ

𝛼
𝜇 = 𝜇 ◦

(

𝐶
𝜇(0)+ℶ

𝛼
𝑡

)

◦ −1
𝜇 , the nonlinear 𝜇-Caputo type time-delay fractional Langevin

differential equations in (8) could be transformed into the nonlinear Caputo type time-delay fractional Langevin differential
equations in the reference9 as follows:

{(

𝐶
𝜇(0)+ℶ

𝛼
𝑡 𝑦
)

(𝑡) − 𝜅2
(

𝐶
𝜇(0)+ℶ

𝛽
𝑡 𝑦
)

(𝑡) − 𝜅1𝑦 (𝑡 − ℎ) = ϝ (𝑡, 𝑦(𝑡)) ,
𝑦 (𝑡) = 𝜑 (𝑡) ,

(10)
where 𝑦 = −1

𝜇 𝑥, ϝ = −1
𝜇 ℸ, and 𝜑 = −1

𝜇 𝜙. Again, in the same reference9, the solution of system (10) is given by

𝑥(𝑡) =
𝑛−2
∑

𝑖=0

[

𝑡𝑖

Γ(𝑖 + 1)
+ 𝜅1Eℎ

𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡 − ℎ
)

]

𝜙(𝑖)
0 + Eℎ

𝛼,𝛼−𝛽,𝑚
(

𝜅1, 𝜅2; 𝑡
)

𝜙(𝑛−1)
0

+ 𝜅1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡 − 𝑠 − ℎ
)

𝜙(𝑠)𝑑𝑠 +

𝑡

∫
0

Eℎ
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡 − 𝑠
)

ϝ(𝑠, 𝑥(𝑠))𝑑𝑠, (11)

where Eℎ
𝛼1,𝛼2,𝛼3

(

𝜅1, 𝜅2; 𝑡
) is the delayed Mittag-Leffler type matrix function as in the reference28. By applying −1

𝜇 to both sides
of (11), we get the solution (9) as requested. This completes the proof.
Lemma 4. The below inequalities hold true:

• |

|

|

Eℎ,𝜇
𝛼1,𝛼2,𝛼3+𝑘

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

|

|

|

≤ [𝜇(𝑡) − 𝜇(𝑠)]𝛼3+𝑘−1𝑒|𝜆1|𝜇𝛼1 (𝑡)+
|
𝜆2|𝜇𝛼2 (𝑡), for 𝑘 = 0, 1, 2, ..., 𝑛 − 1,

• ∫ 𝑡
0 (𝜇 (𝑡) − 𝜇 (𝑠))𝛼−1 𝑒𝑤𝜇(𝑠)𝑑𝜇 (𝑠) ≤ 𝑒𝑤𝜇(𝑡) Γ(𝛼)

𝑤𝛼 .
Lemma 5. Let’s start with the first item,

|

|

|

Eℎ,𝜇
𝛼1,𝛼2,𝛼3+𝑘

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

|

|

|

≤
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)

|𝜆1|𝑚|𝜆2|𝑝 (𝜇(𝑡) − 𝜇(𝑠 + 𝑚ℎ))𝑚𝛼1+𝑝𝛼2+𝛼3+𝑘−1

Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3 + 𝑘) 𝜇𝑡
𝑠+𝑚ℎ

≤
∞
∑

𝑚=0

∞
∑

𝑝=0

(

𝑚 + 𝑝
𝑝

)

|𝜆1|𝑚|𝜆2|𝑝𝜇(𝑡)𝑚𝛼1+𝑝𝛼2+𝛼3+𝑘−1

Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3 + 𝑘)

= [𝜇(𝑡) − 𝜇(𝑠)]𝛼3+𝑘−1
∞
∑

𝑚=0

∞
∑

𝑝=0

(𝑚 + 𝑝)!
𝑚!𝑝!

|𝜆1|𝑚|𝜆2|𝑝[𝜇(𝑡)]𝑚𝛼1+𝑝𝛼2
Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3 + 𝑘)

,

Since 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 − 2 < 𝛽 ≤ 𝑛 − 1 with 𝑛 ≥ 2 and 𝛼 − 𝛽 ≥ 1, we have
Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3 + 𝑘) > Γ(𝑚 + 𝑝 + 1) = (𝑚 + 𝑝)!.
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With this relation, we get
|

|

|

Eℎ,𝜇
𝛼1,𝛼2,𝛼3+𝑘

(

𝜆1, 𝜆2; 𝑡, 𝑠
)

|

|

|

≤ [𝜇(𝑡) − 𝜇(𝑠)]𝛼3+𝑘−1
∞
∑

𝑚=0

∞
∑

𝑝=0

(𝑚 + 𝑝)!
𝑚!𝑝!

|𝜆1|𝑚|𝜆2|𝑝[𝜇(𝑡)]𝑚𝛼1+𝑝𝛼2
Γ(𝑚𝛼1 + 𝑝𝛼2 + 𝛼3 + 𝑘)

= [𝜇(𝑡) − 𝜇(𝑠)]𝛼3+𝑘−1
∞
∑

𝑚=0

∞
∑

𝑝=0

(𝑚 + 𝑝)!
𝑚!𝑝!

|𝜆1|𝑚|𝜆2|𝑝[𝜇(𝑡)]𝑚𝛼1+𝑝𝛼2
(𝑚 + 𝑝)!

= [𝜇(𝑡) − 𝜇(𝑠)]𝛼3+𝑘−1
∞
∑

𝑚=0

|𝜆1|𝑚[𝜇(𝑡)]𝑚𝛼1
𝑚!

∞
∑

𝑝=0

|𝜆2|𝑝[𝜇(𝑡)]𝑝𝛼2
𝑝!

= [𝜇(𝑡) − 𝜇(𝑠)]𝛼3+𝑘−1𝑒|𝜆1|𝜇𝛼1 (𝑡)+
|
𝜆2|𝜇𝛼2 (𝑡).

With the aid of the substitution 𝑢 = 𝜇(𝑡) − 𝜇(𝑠), we get
𝑡

∫
0

(𝜇 (𝑡) − 𝜇 (𝑠))𝛼−1 𝑒𝑤𝜇(𝑠)𝑑𝜇 (𝑠) =

𝜇(𝑡)

∫
0

𝑢𝛼−1𝑒𝑤(𝜇(𝑡)−𝑢)𝑑𝑢 = 𝑒𝑤𝜇(𝑡)

𝜇(𝑡)

∫
0

𝑢𝛼−1𝑒−𝑤𝑢𝑑𝑢.

Now, again with the aid of another substitution 𝑣 = 𝑤𝑢, we get
𝑡

∫
0

(𝜇 (𝑡) − 𝜇 (𝑠))𝛼−1 𝑒𝑤𝜇(𝑠)𝑑𝜇 (𝑠) = 𝑒𝑤𝜇(𝑡)

𝑤𝜇(𝑡)

∫
0

𝑣𝛼−1

𝑤𝛼 𝑒−𝑣𝑑𝑣 ≤ 𝑒𝑤𝜇(𝑡)

∞

∫
0

𝑣𝛼−1

𝑤𝛼 𝑒−𝑣𝑑𝑣 = 𝑒𝑤𝜇(𝑡)Γ(𝛼)
𝑤𝛼 .

In order to guarantee that solution of system (8) is existent and unique, we must put two main conditions over the disturbance
ℸ(𝑡, 𝑥(𝑡)) as described below:
𝑂1 ∶ The function ℸ ∶ [0, 𝑇 ] ×ℝ → ℝ𝑛 is continuous;
𝑂2 ∶ |ℸ (𝑡, 𝑥) − ℸ (𝑡, 𝑦)| ≤ 𝐿ℸ |𝑥 − 𝑦| , 𝑡 ∈ [0, 𝑇 ] , 𝑥, 𝑦 ∈ ℝ, 𝐿𝑓 > 0.
Theorem 6. If 𝑂1 and 𝑂2 are satisfied, then system (8) has a unique global continuous solution on [0, 𝑇 ]

Proof. We will define a ball and an integral operator on it. Let 𝔇𝑟 = {𝑥 ∈ 𝐶([0, 𝑇 ],ℝ) ∶ ‖𝑦‖𝑤 ≤ 𝑟, 𝑤 > 0} with

𝑟 =
𝑤𝛼 (𝑅1 + 𝑅2

)

+
(

|𝜅1|𝑅3‖𝜙‖𝑤 + 𝑅3𝑅4
)

Γ(𝛼)
𝑤𝛼 − 𝐿ℸ𝑅3Γ(𝛼)

(12)
where

𝑅1 =
𝑛−2
∑

𝑗=0

𝜇𝑗(𝑇 )
Γ(𝑗 + 1)

|𝜙(𝑗)
0 |, 𝑅3 = 𝑒|𝜅1|𝜇𝛼(𝑇 )+

|
𝜅2|𝜇𝛼−𝛽 (𝑇 ), 𝑅4 = max

{

|ℸ(𝑡, 0)|
𝑒𝑤𝜇(𝑡)

, 0 ≤ 𝑡 ≤ 𝑇
}

,

𝑅2 =
𝑛−2
∑

𝑗=0
|𝜅1|𝜇

𝛼+𝑗(𝑇 )|𝜙(𝑗)
0 |𝑅3 + 𝜇(𝑚−1)(𝑇 )|𝜙(𝑚−1)

0 |𝑅3.

It is time to define an integral operator 𝔊 on 𝔇𝑟 as noted below:
𝔊 ∶ 𝔇𝑟 ⊂ 𝐶([0, 𝑇 ],ℝ) → 𝐶([0, 𝑇 ],ℝ)

by the following formula

𝔊𝑥(𝑡) =
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ 𝜅1E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

]

𝜙(𝑖)
0 + Eℎ,𝜇

𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 0
)

𝜙(𝑛−1)
0

+ 𝜅1

min{𝑡−ℎ,0}

∫
−ℎ

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

𝜙(𝑠)𝑑𝜇(𝑠) +

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

ℸ(𝑠, 𝑥(𝑠))𝑑𝜇(𝑠).

Because of 𝑂1, 𝔊 is well-defined. So, the existence and uniqueness of solution of the Cauchy type problem (8) in 𝐴𝐶𝑛([0, 𝑇 ],ℝ)
is equivalent to the existence and uniqueness of a fixed point of the integral operator 𝔊 on 𝔇𝑟 ⊂ 𝐶([0, 𝑇 ],ℝ). To achieve this,
we use contraction mapping principle.
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With a simple calculation, one can easily show that the norms ‖.‖∞ and ‖.‖𝑤 are equivalent. Eventually, since ‖.‖∞ and ‖.‖𝑤
are equivalent, and also (

𝐶([0, 𝑇 ],ℝ), ‖.‖∞
) is a complete metric space, (𝐶([0, 𝑇 ],ℝ), ‖.‖𝑤

) must be a complete metric space.
First of all, we will show that 𝔊 (

𝔇𝑟
)

⊂ 𝔇𝑟, that is, 𝔊𝑥 ∈ 𝔇𝑟 for all 𝑥 ∈ 𝔇𝑟. Take an arbitrary 𝑥 ∈ 𝔇𝑟.

| (𝔊𝑥) (𝑡) | ≤
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ |𝜅1||E
ℎ,𝜇
𝛼,𝛼−𝛽,𝛼+𝑖+1

(

𝜅1, 𝜅2; 𝑡, ℎ
)

|

]

|𝜙(𝑖)
0 | + |Eℎ,𝜇

𝛼,𝛼−𝛽,𝑚

(

𝜅1, 𝜅2; 𝑡, 0
)

||𝜙(𝑛−1)
0 |

+ |𝜅1|

min{𝑡−ℎ,0}

∫
−ℎ

|Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠 + ℎ
)

||𝜙(𝑠)|𝑑𝜇(𝑠)

+

𝑡

∫
0

|Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

||ℸ(𝑠, 𝑥(𝑠)) − ℸ(𝑠, 0) + ℸ(𝑠, 0)|𝑑𝜇(𝑠)

By applying 𝑂2 and Lemma 4 and dividing both sides by 𝑒𝑤𝜇(𝑡) we acquire
| (𝔊𝑥) (𝑡) |
𝑒𝑤𝜇(𝑡)

≤
𝑛−2
∑

𝑖=0

[

𝜇𝑖(𝑡)
Γ(𝑖 + 1)

+ |𝜅1||𝜇
𝛼+𝑖(𝑡)|𝑒|𝜅1|𝜇𝛼(𝑡)+

|
𝜅2|𝜇𝛼−𝛽 (𝑡)

]

|𝜙(𝑖)
0 | + |𝜇𝑚−1(𝑡)|𝑒|𝜅1|𝜇𝛼(𝑡)+

|
𝜅2|𝜇𝛼−𝛽 (𝑡)

|𝜙(𝑛−1)
0 |

+
|𝜅1|
𝑒𝑤𝜇(𝑡)

0

∫
−ℎ

(𝜇(𝑡) − 𝜇(𝑠))𝛼−1 |𝜙(𝑠)|𝑑𝜇(𝑠)𝑒|𝜅1|𝜇𝛼(𝑡)+
|
𝜅2|𝜇𝛼−𝛽 (𝑡)

+
𝐿ℸ

𝑒𝑤𝜇(𝑡)

𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑠))𝛼−1 |𝑥(𝑠)|𝑑𝜇(𝑠)𝑒|𝜅1|𝜇𝛼(𝑡)+
|
𝜅2|𝜇𝛼−𝛽 (𝑡)

+ 1
𝑒𝑤𝜇(𝑡)

𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑠))𝛼−1 |ℸ(𝑠, 0)|𝑑𝜇(𝑠)𝑒|𝜅1|𝜇𝛼(𝑡)+
|
𝜅2|𝜇𝛼−𝛽 (𝑡).

By taking the 𝜇-weighted maximum norm on the right hand side, we get
| (𝔊𝑥) (𝑡) |
𝑒𝑤𝜇(𝑡)

≤ 𝑅1 + 𝑅2 +
|𝜅1|𝑅3‖𝜙‖𝑤

𝑒𝑤𝜇(𝑡)

ℎ

∫
0

(𝜇(𝑡) − 𝜇(𝑠))𝛼−1 𝑒𝑤𝜇(𝑠)𝑑𝜇(𝑠)

+
𝐿ℸ𝑅3‖𝑥‖𝑤

𝑒𝑤𝜇(𝑡)

𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑠))𝛼−1 𝑒𝑤𝜇(𝑠)𝑑𝜇(𝑠)

+
𝑅3𝑅4

𝑒𝑤𝜇(𝑡)

𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑠))𝛼−1 𝑒𝑤𝜇(𝑠)𝑑𝜇(𝑠)

From the second item of Lemma 4, we obtain
| (𝔊𝑥) (𝑡) |
𝑒𝑤𝜇(𝑡)

≤ 𝑅1 + 𝑅2 +
(

|𝜅1|𝑅3‖𝜙‖𝑤 + 𝐿ℸ𝑅3‖𝑥‖𝑤 + 𝑅3𝑅4
) Γ(𝛼)

𝑤𝛼

Taking the 𝜇-weighted maximum norm on the left hand side and exploiting equality (12), we acquire ‖𝔊𝑥‖𝑤 ≤ 𝑟, and so
𝔊 ∶ 𝔇𝑟 → 𝔇𝑟, which means 𝔊 is well-defined on 𝔇𝑟 . Now, we prove that 𝔊 is a contraction on [0, 𝑇 ]. For 𝑥, 𝑦 ∈ [0, 𝑇 ],
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consider
| (𝔊𝑥) (𝑡) − (𝔊𝑦) (𝑡)

𝑒𝑤𝜇(𝑡)
≤ 1

𝑒𝑤𝜇(𝑡)

𝑡

∫
0

|Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

||ℸ(𝑠, 𝑥(𝑠)) − ℸ(𝑠, 𝑦(𝑠))|𝑑𝜇(𝑠)

≤
𝐿ℸ𝑅3

𝑒𝑤𝜇(𝑡)

𝑡

∫
0

(𝜇(𝑡) − 𝜇(𝑠))𝛼−1 𝑒𝑤𝜇(𝑠)𝑑𝜇(𝑠)‖𝑥 − 𝑦‖𝑤

≤
𝐿ℸ𝑅3Γ(𝛼)

𝑤𝛼 ‖𝑥 − 𝑦‖𝑤.

If we choose 𝑤 >
(

𝐿ℸ𝑅3Γ(𝛼)
)

1
𝛼 , the integral operator 𝔊 is a contraction. By using contraction mapping principle, there is a

unique fixed point of 𝔊 which is the unique global continuous solution of system (8). This completes the proof.
Remark 5. Since the existence interval [0, 𝑇 ] is independent of choices of the parameters, the interval can be extended to the
interval [0,∞) provided that 𝑂1 and 𝑂2 are satisfied by ℸ for each 𝑡 ∈ [0,∞).

3.4 Ulam-Hyers stability analysis on nonlinear time-delay FLEs
Definition 6. Let 𝜀 > 0. The system (8) is said to be Ulam-Hyers stable if for every solution 𝑦 ∈ 𝐶 ([0, 𝑇 ] ,ℝ) of inequality,

‖

‖

‖

‖

(

𝐶
0+ℶ

𝛼
𝜇𝑦
)

(𝑡) − 𝜅2
(

𝐶
0+ℶ

𝛽
𝜇𝑦
)

(𝑡) − 𝜅1𝑦 (𝑡 − ℎ) − ℸ (𝑡, 𝑦(𝑡))
‖

‖

‖

‖

≤ 𝜀, (13)
there is a solution 𝑥 ∈ 𝐶 ([0, 𝑇 ] ,ℝ) of the system (8), and 𝜎 > 0 such that

‖𝑦 − 𝑥‖𝑤 ≤ 𝜀𝜎 𝑡 ∈ [0, 𝑇 ] . (14)
Remark 6. A function 𝑦 ∈ 𝐶1 ([0, 𝑇 ] ,ℝ) is a solution of the inequality equation (13) if and only if there exists a function
𝑓 ∈ 𝐶 ([0, 𝑇 ] ,ℝ), such that

• ‖𝑓 (𝑡)‖ < 𝜀,
•

(

𝐶
0+ℶ

𝛼
𝜇𝑦
)

(𝑡) − 𝜅2
(

𝐶
0+ℶ

𝛽
𝜇𝑦
)

(𝑡) − 𝜅1𝑦 (𝑡 − ℎ) = ℸ (𝑡, 𝑦(𝑡)) + 𝑓 (𝑡) .

Theorem 7. Suppose that 𝑂1 and 𝑂2 are satisfied by ℸ. The system (8) is Ulam-Hyers stable on [0, 𝑇 ].
Proof. Let 𝑦 ∈ 𝐶 ([0, 𝑇 ] ,ℝ) which satisfies the inequality (13), and let 𝑥 ∈ 𝐶 ([0, 𝑇 ] ,ℝ) which is the unique solution to system
(8) with the initial condition 𝑥(𝑡) = 𝑦(𝑡) for 𝑡 ∈ [0, 𝑇 ]. By keeping the definition of 𝔊 and Remark 6 in mind, we can obtain

‖𝑓 (𝑡)‖ < 𝜀, 𝑦(𝑡) = (𝔊𝑦) (𝑡) +

𝑡

∫
0

Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

𝑓 (𝑠)𝑑𝜇(𝑠),

and also 𝑥 = (𝔊𝑥) (𝑡) for 𝑡 ∈ [0, 𝑇 ]. One can easily obtain

|𝑦(𝑡) − (𝔊𝑦) (𝑡)| ≤

𝑡

∫
0

|Eℎ,𝜇
𝛼,𝛼−𝛽,𝛼

(

𝜅1, 𝜅2; 𝑡, 𝑠
)

||𝑓 (𝑠)|𝑑𝜇(𝑠) ≤ 𝜇𝛼−1(𝑇 )𝑅3𝜀.

We can choose 𝑤 >
(

𝐿ℸ𝑅3Γ(𝛼)
)

1
𝛼 . We are ready to estimate ‖𝑦 − 𝑥‖𝑤 :

‖𝑦 − 𝑥‖𝑤 ≤ ‖ (𝔊𝑥) − (𝔊𝑦) ‖𝑤 + ‖ (𝔊𝑦) − 𝑦‖𝑤

≤
𝐿ℸ𝑅3Γ(𝛼)

𝑤𝛼 ‖𝑥 − 𝑦‖𝑤 + 𝜇𝛼−1(𝑇 )𝑅3𝜀,

which yields
‖𝑦 − 𝑥‖𝑤 ≤ 𝜀𝜎,

where
𝜎 =

𝑤𝛼𝜇𝛼−1(𝑇 )𝑅3

𝑤𝛼 − 𝐿ℸ𝑅3Γ(𝛼)
> 0,

which is the desired result.
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Remark 7. The result stability is valid for [0,∞) because of the same explanations as Remark 5.

3.5 Numerical and simulated examples
Example 8. In order to exemplify the linear inhomogeneous 𝜇-Caputo type time-delay fractional Langevin type differential
equations, we firstly consider the following system

{(

𝐶
0+ℶ

𝛼
𝜇𝑥

)

(𝑡) − 10
(

𝐶
0+ℶ

𝛽
𝜇𝑥

)

(𝑡) − 15𝑥 (𝑡 − 0.2) = 𝑡3, 𝑡 ∈ (0, 0.4] ,
𝑥 (𝑡) = 𝑡2 − 1, −0.2 ≤ 𝑡 ≤ 0,

(15)

where 𝛼 = 2, 𝛽 = 1, 𝜇(𝑡) = 𝑡 + 1. The exact analytical solution of system (15) is given by

𝑥(𝑡) = 1 − 15E0.2,𝑡+1
2,1,3 (15, 10; 𝑡, 0.2) + 15

min{𝑡−0.2,0}

∫
−0.2

E0.2,𝑡+1
2,1,2 (15, 10; 𝑡, 𝑠 + 0.2) (𝑠2 − 1)𝑑𝑠 +

𝑡

∫
0

E0.2,𝑡+1
2,1,2 (15, 10; 𝑡, 𝑠) 𝑠3𝑑𝑠,

which can be obtained from Theorem 4, and easily verified whether it satisfies system (15). The graph of the solution 𝑥(𝑡) can
be found in Figure 3

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

t

-1

-0.9

-0.8

-0.7

-0.6

-0.5

x(
t)

FIGURE 3 Graph of solution 𝑥(𝑡) to system (15).

Example 9. To illustrate the theoretical result of Theorem 6, we will examine the following non-linear inhomogeneous sin 𝑡-
Caputo type time-delay fractional Langevin type differential equations

{

(𝐶
0+ℶ

8.7
sin 𝑡𝑥

)

(𝑡) − 40
(𝐶
0+ℶ

7.2
sin 𝑡𝑥

)

(𝑡) − 10𝑥 (𝑡 − 0.6) = 𝑒2𝑡

25(1+𝑒2𝑡) sin (𝑥(𝑡)) , 𝑡 ∈ (0, 6] ,

𝑥 (𝑡) = 25𝑡2, −0.2 ≤ 𝑡 ≤ 0.
(16)

To ensure that the solution of system (16) is existent and unique, two conditions of Theorem 6 are confirmed for this system.
We know that composition of two continuous functions is continuous. ℸ(𝑡, 𝑥(𝑡)) = 𝑒2𝑡

25(1+𝑒2𝑡) sin (𝑥(𝑡)) since 𝑥(𝑡), sin 𝑡, 𝑒2𝑡 ∈
𝐶([−0.2, 5],ℝ). Also, ℸ satisfies the Lipschitz condition wit 𝐿ℸ = 0.4. According to Theorem 6, solutions of system (16) is
existent and unique on 𝐶([−0.2, 5],ℝ) ≅ 𝔇𝑟 with 𝑟 ≅ ∞.
Example 10. To show the validity of Theorem 7, we will take into consideration the following non-linear inhomogeneous
log 𝑡-Caputo type time-delay fractional Langevin type differential equations

{(

𝐶
0+ℶ

11.1
log 𝑡𝑥

)

(𝑡) − 1
5

(

𝐶
0+ℶ

10
log 𝑡𝑥

)

(𝑡) −
√

2
2
𝑥 (𝑡 − 0.4) = arctan 𝑥(𝑡)

𝜋
, 𝑡 ∈ (0, 2] ,

𝑥 (𝑡) = 𝜙 (𝑡) , −ℎ ≤ 𝑡 ≤ 0.
(17)
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It is obvious that ℸ(𝑡, 𝑥(𝑡)) = arctan 𝑥(𝑡)
𝜋

is continuous. For an arbitrary 𝑥, 𝑦 ∈ 𝐶([−0.4, 2],ℝ), we have
‖

‖

‖

‖

arctan 𝑥
𝜋

−
arctan 𝑦

𝜋
‖

‖

‖

‖𝑤
≤ 1

𝜋
‖𝑥 − 𝑦‖𝑤

which provides that ℸ(𝑡, 𝑥(𝑡)) = arctan 𝑥(𝑡)
𝜋

satisfies Lipschitz condition with 𝐿ℸ = 0.5. Since two conditions of Theorem 7 are
satisfied by ℸ(𝑡, 𝑥(𝑡)) = arctan 𝑥(𝑡)

𝜋
, in accordance with the result of Theorem 7, system (17) is stable in the sense of Ulam-Hyers

approach.
Remark 8. With some special cases of 𝜇, we obtain the Caputo fractional derivative29, Hadamard fractional derivative22, the
Caputo–Hadamard fractional derivative30 31 and the Caputo–Erdélyi–Kober fractional derivative32. So, if we properly change
types of fractional derivatives as noted above, then all of the findings and results are valid for them. This also makes the present
paper wealthier and more valuable.

4 CONCLUSION

In this work, we firstly present the nonlinear 𝜇-Caputo type fractional delayed Langevin differential equations involving two
distinct fractional orders. To acquire an exact analytical solution to linear Langevin system and a global solution formula to
the semilinear Langevin system, we novelly propose the 𝜇-delayed Mittag-Leffler type function which is quite different from
ones in the references3 9. We estimate 𝜇-delayed Mittag-Leffler type function on the grounds of exponential function. Existence
uniqueness and Ulam-Hyers stability of solutions to nonlinear delayed Langevin fractional differential equations are obtained
with regard to the weighted norm defined in accordance with exponential function and on the grounds of the fixed point approach.

From the viewpoint of fractional(ordinary) Langevin equations and some of their qualitative properties, this paper includes
various sorts of comprehensive works as stated in Remarks 4 and 8.

To extend this paper, there are many possibilities. For example, the solution of nonlinear delayed Langevin equations can be
found with the aid of the Laplace transform which is the most powerful tool for differential equations. Also, the next further
work can be devoted to study exponential stability, finite time stability, asymptotic stability, and also Lyapunov type stability of
the 𝜇- Caputo type fractional delayed Langevin equations. Another direction for additional studies is to investigate approximate
controllability, 𝑃 -type and 𝐷-type learning laws concepts for controlled Langevin type delayed systems with (general) fractional
orders. For ℝ𝑛, the proposed system and everything recommended on in can be reconsidered.
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