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Abstract

Polynomial graph invariants have been confirmed to have important applications
in quantum chemistry and biological information. One of the famous polynomial
graph invariants is the Tutte polynomial which gives multifarious interesting in-
formation about the graph structure. In this paper, we first give a simpler and
more efficient method to get the Tutte polynomials of alternating polycyclic chains.
Then we obtain the explicit expressions for the Tutte polynomials and the number
of spanning trees of phenylene systems with given number of branching hexagon-
s. Moreover, we determine the extremal values of the number of spanning trees
among the phenylene systems with given one or two branching hexagons, and the
corresponding extremal phenylene systems are characterized, respectively.
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1 Introduction

Let G = (V (G), E(G)) be a graph with a finite vertex set V (G) and a finite edge set

E(G). Let G−e and G/e denote the graphs obtained from G by deleting and contracting

the edge e, respectively. The Tutte polynomial, introduced by Tutte [17] in 1954 as a

generalization of the chromatic polynomial, can be defined by the following deletion and

contraction reduction formula.

T (G;x, y) =


1 if E(G) = ∅,
xT (G/e;x, y) if e is a cut edge,

yT (G− e;x, y) if e is a loop,

T (G− e;x, y) + T (G/e;x, y) otherwise,

It is generally known that the Tutte polynomial contains various interesting information

about the structure and properties of graphs. If x, y ∈ {0, 1, 2}, then one can use T (G;x, y)

to get the number of certain graph invariant of graph G. For example, (i) T (G; 1, 0)

equals to the number of acyclic root-connected orientations of G; (ii) T (G; 1, 1) = t(G),
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i.e., the number of spanning trees of G; (iii) T (G; 1, 2) equals to the number of spanning

connected subgraphs of G; (iv) T (G; 2, 0) equals to the number of acyclic orientations of

G; (v) T (G; 2, 1) equals to the number of forests of G.

Although the Tutte polynomial have found various interesting applications in organic

chemistry, biology and statistic physics [2], computing the Tutte polynomial of a graph

is still a very challenging issue. In the general case, it is #P-hard for computing the

Tutte polynomial of a graph [14, 15]. Thus, many work in this area is just focused on

exploiting the structure of some specific classes of important graphs in order to derive

closed-form formulas for computing their Tutte polynomials. In the recent years, the

Tutte polynomials of some classes of chemical polycyclic graphs have been studied. Fath-

Tabar, Gholam-Rezaei and Ashrafi [10] got the Tutte polynomial of benzenoid chains.

Došlić [9] obtained the Tutte polynomials of several particular planar polycyclic graphs.

Gong, Jin and Zhang [11] computed the Tutte polynomial of benzenoid systems with one

branching hexagon by means of the relationship for Tutte polynomial of a graph and its

dual graph. Dobrynin and Vesnin [6] given a general calculating scheme of polynomials

based on deletion-contraction operations for uniform polycyclic chains. Chen and Guo

[3] obtained the Tutte polynomials of some alternating polycyclic chains which contain

phenylene chains as a special case. In [4], the author presented a splitting formula for the

Tutte polynomial of a class of special compound graphs, and as an application the Tutte

polynomials of catacondensed benzenoid systems with given number branching hexagons

are also determined.

The phenylene system is known as a very important family of chemical molecular

networks in which the carbon atoms form six-membered cycles and four-membered cycles.

In particular, any two six-membered cycles (hexagons) are not adjacent, and every four-

membered cycle (square) is adjacent to a pair of nonadjacent hexagons. If each hexagon

of phenylene system is adjacent only to two squares, then the obtained chain is called the

phenylene chain. If a hexagon in a phenylene system adjacent to three squares such that

the three common edges are disjoint, then the hexagon will be named branching hexagon.

Nowadays, plenty of researches were focused on the phenylene system. The anti-

Kekulé number and anti-forcing number of cata-condensed phenylenes are studied in [19]

by Zhang, Bian and Vumar. Trantnik [16] characterized the extremal phenylene system

with respect to the Wiener polarity index. A method for computing the edge-Wiener



index and the edge-hyper-Wiener index of phenylenes is presented by Žigert [18], and the

author further obtained closed formulas of the edge-Wiener index and the edge-hyper-

Wiener index for linear phenylenes. The PI index for phenylene systems were studied

in [8] and [12] respectively. Deng [7] talked about the phenylene systems with the third-

order Randić index. Very recently, the first several extremal values of the Mostar indices

for phenylene chains and tree-like phenylenes were obtained in [5] and [13].

In this paper, we mainly consider the Tutte polynomials for phenylene systems and

determine the extremal values of the number of spanning trees for phenylene systems with

given small number of branching hexagons.

2 Preliminaries

In this section, following the textbook on graph theory [1], we recall some basic known

results and related properties linked to the enumeration of the Tutte polynomial.

Let Cr be a simple cycle with r vertices. Then the Tutte polynomial of Cr is given by

T (Cr;x, y) = y +
r−1∑
i=1

xi = y − 1 +
xr − 1

x− 1
=
xy − x− y + xr

x− 1
.

Proposition 2.1 Let H ·F be the graph obtained from the union of two subgraphs H and

F such that H and F share only a common vertex, then we have

T (H · F ;x, y) = T (H;x, y)T (F ;x, y).

And, if G contains s cut edges, t loops and no other edges, then we have T (G;x, y) =

xsyt. Let G be a graph obtained from H by adding s cut edges and t loops, then

T (G;x, y) = xsytT (H;x, y).

A planar graph is a graph that can be drawn on the plane so that their edges do

not cross each other. Any such a drawing is called as a plane drawing. We use the

abbreviation plane graph for a plane drawing of a planar graph. For a connected plane

graph G, its dual graph D(G) is a graph that has a vertex corresponding to each face

of G, and an edge linking the vertices corresponding to neighboring faces for each edge

of G. The following relation on the Tutte polynomial of a graph and its dual graph is

well-known [1].



Proposition 2.2 Let G be a connected plane graph and D(G) the dual planar graph of

G. Then it holds that T (G;x, y) = T (D(G); y, x).

Proposition 2.2 shows that if the dual graphs of two arbitrary plane graphs are isomorphic,

then they possess the same Tutte polynomial.

The following splitting formula on Tutte polynomial is taken form [4].

Proposition 2.3 Let G|H be the graph obtained from G and H such that E(G)∪E(H) =

E(G|H) and E(G) ∩ E(H) = {e}, then

T (G|H;x, y) =
(xy − y − 1)TGTH − y(x− 1)(TGTH−e + TG−eTH) + xyTG−eTH−e

xy − x− y
.

As a matter of convenience, some times we will use TG or T (G) in this article for the

Tutte polynomial of a graph G and write T (G;x, y) if we want to draw attention to the

discussion.

3 The Tutte polynomials of alternating polycyclic

chains

An alternating polycyclic chain is a graph formed by two types cycles Cr and Cs in which

the induced Crs and Css are arranged alternatively. Two adjacent cycles Cr and Cs in an

alternating polycyclic chain share exactly an edge and each induced cycle of an alternating

polycyclic chain has at most two common edges. Let Gr,sn be the family of all alternating

polycyclic chains with n copies of Crs and n− 1 copies of Css. Let Zr,s
n be the family of

alternating polycyclic chains with n copies of Crs and n copies of Css. An arbitrary chain

of Gr,sn (resp. Zr,s
n ) will be denoted by Gr,s

n (resp. Zr,s
n ), i.e., Gr,s

n ∈ Gr,sn and Zr,s
n ∈ Zr,s

n .

Some particular alternating polycyclic chains are shown in Figure 1.

Chen and Guo [3] obtained the Tutte polynomials of alternating polycyclic chains by

applying a deletion-contraction-based scheme. In this section, we give a simper and more

efficient method to get the Tutte polynomials of alternating polycyclic chains.

Lemma 3.1 For any Gr,s
n and Zr,s

n , we have

T (Gr,s
n ;x, y) =(y + xr−1−1

x−1 )T (Zr,s
n−1;x, y)− xs−2yT (Gr,s

n−1;x, y), (1)

T (Zr,s
n ;x, y) =(y + xs−1−1

x−1 )T (Gr,s
n ;x, y)− xr−2yT (Zr,s

n−1;x, y). (2)



Proof. We first note that an alternating polycyclic chain Gr,s
n can be constructed by

the way of Gr,s
n = Zr,s

n−1|Cr and let e be the common edge of the induced subgraph-

s Zr,s
n−1 and Cr. It is not hard to get that T (Zr,s

n−1 − e;x, y) = xs−2T (Gr,s
n−1;x, y) and

T (Cr − e;x, y) = xr−1, then by the use of Proposition 2.3 we obtain (1). Similarly, one

can see that Zr,s
n = Gr,s

n |Cs and assume that e′ is the common edge of Gr,s
n and Cs. Then

we can easily obtain that T (Gr,s
n −e′;x, y) = xr−2T (Zr,s

n−1;x, y) and T (Cs−e′;x, y) = xs−1.

Thus, by Proposition 2.3 and some basic simplifications we get (2). Therefore, we com-

plete the proof. �

Lemma 3.2 For any Gr,s
n and Zr,s

n , we have

T (Gr,s
n ;x, y) =[(y + xs−1−1

x−1 )(y + xr−1−1
x−1 )− y(xs−2 + xr−2)]T (Gr,s

n−1;x, y)

− xr+s−4y2T (Gr,s
n−2;x, y), (3)

T (Zr,s
n ;x, y) =[(y + xs−1−1

x−1 )(y + xr−1−1
x−1 )− y(xs−2 + xr−2)]T (Zr,s

n−1;x, y)

− xr+s−4y2T (Zr,s
n−2;x, y). (4)

Proof. For convenience we let ϕ1(x, y) = y + xr−1−1
x−1 , ϕ2(x, y) = −xs−2y, ψ1(x, y) =

y + xs−1−1
x−1 and ψ2(x, y) = −xr−2y. Then from (1) we have

T (Zr,s
n−1;x, y) =

1

ϕ1(x, y)
T (Gr,s

n ;x, y)− ϕ2(x, y)

ϕ1(x, y)
T (Gr,s

n−1;x, y) (5)

and

T (Zr,s
n ;x, y) =

1

ϕ1(x, y)
T (Gr,s

n+1;x, y)− ϕ2(x, y)

ϕ1(x, y)
T (Gr,s

n ;x, y). (6)

Plugging (5) and (6) into (2) we get

T (Gr,s
n ;x, y) =[ϕ1(x, y)ψ1(x, y) + ϕ2(x, y) + ψ2(x, y)]T (Gr,s

n−1;x, y)

− ϕ2(x, y)ψ2(x, y)T (Gr,s
n−2;x, y)

=[(y + xs−1−1
x−1 )(y + xr−1−1

x−1 )− y(xs−2 + xr−2)]T (Gr,s
n−1;x, y)

− xr+s−4y2T (Gr,s
n−2;x, y).

On the other hand, in terms of (2) we have

T (Gr,s
n ;x, y) =

1

ψ1(x, y)
T (Zr,s

n ;x, y)− ψ2(x, y)

ψ1(x, y)
T (Zr,s

n−1;x, y) (7)



and

T (Gr,s
n−1;x, y) =

1

ψ1(x, y)
T (Zr,s

n−1;x, y)− ψ2(x, y)

ψ1(x, y)
T (Zr,s

n−2;x, y). (8)

If we substitute (7) and (8) into (1), then we get

T (Zr,s
n ;x, y) =[ψ1(x, y)ϕ1(x, y) + ψ2(x, y) + ϕ2(x, y)]T (Zr,s

n−1;x, y)

− ψ2(x, y)ϕ2(x, y)T (Zr,s
n−2;x, y)

=[(y + xs−1−1
x−1 )(y + xr−1−1

x−1 )− y(xs−2 + xr−2)]T (Zr,s
n−1;x, y)

− xr+s−4y2T (Zr,s
n−2;x, y).

Thus the proof is completed. �

In order to make the calculations more convenient, we let Gr,s
1 = Cr and Zr,s

0 = K2.

Then we have Gr,s
2 = (Cr|Cs)|Cr and Zr,s

1 = Cr|Cs. It is easy to obtain the initial

conditions:

T (Gr,s
1 ;x, y) =T (Cr;x, y) = xy−x−y+xr

x−1 , (9)

T (Gr,s
2 ;x, y) =xy−x−y+x2r−2

x−1 + (xs−2−1)(xy−x−y+xr)2

(x−1)3 + (1+y)(xy−x−y+xr−1)2

(x−1)2 , (10)

T (Zr,s
0 ;x, y) =T (K2;x, y) = x, (11)

T (Zr,s
1 ;x, y) =T (Cr|Cs;x, y) = xy−x−y+xr+s−2

x−1 + (xy−x−y+xr−1)(xy−x−y+xs−1)
(x−1)2 . (12)

Therefore, by combining the characteristic equatrion of (3) and the initial condition (9)

and (10), we can get an explicit expression of the Tutte polynomial of Gr,s
n .

Theorem 3.3 For any alternating polycyclic chain Gr,s
n ∈ Gr,sn , we have

T (Gr,s
n ;x, y) =

2ω − γ(α−
√

∆)

∆ + α
√

∆

(α +
√

∆

2

)n
+

2ω − γ(α +
√

∆)

∆− α
√

∆

(α−√∆

2

)n
,

where ∆ = ∆(x, y) = α(x, y)2 + 4β(x, y), α = α(x, y) = (y + xs−1−1
x−1 )(y + xr−1−1

x−1 ) −

y(xs−2 + xr−2), β = β(x, y) = −xr+s−4y2, γ = γ(x, y) = xy−x−y+xr

x−1 and ω = ω(x, y) =

xy−x−y+x2r−2

x−1 + (xs−2−1)(xy−x−y+xr)2

(x−1)3 + (1+y)(xy−x−y+xr−1)2

(x−1)2 .

Analogously, combining the characteristic equatrion of (4) and the initial condition (11)

and (12), the Tutte polynomial of Zr,s
n can also be obtained.

Theorem 3.4 For any alternating polycyclic chain Zr,s
n ∈ Zr,s

n , we have

T (Zr,s
n ;x, y) =

2η − x(α−
√

∆)

∆ + α
√

∆

(α +
√

∆

2

)n+1

+
2η − x(α +

√
∆)

∆− α
√

∆

(α−√∆

2

)n+1

,



where ∆ = α(x, y)2 + 4β(x, y), α = α(x, y) = (y + xs−1−1
x−1 )(y + xr−1−1

x−1 ) − y(xs−2 + xr−2),

β = β(x, y) = −xr+s−4y2 and η = η(x, y) = xy−x−y+xr+s−2

x−1 + (xy−x−y+xr−1)(xy−x−y+xs−1)
(x−1)2 .

If we set r = 6, s = 4 in Gr,sn , then it is clearly that G6,4n contains all the molecular

graphs of phenylene chains with n hexagons and n − 1 squares. In the following we use

PHn to denote a phenylene chain with n hexagons and n − 1 squares, i.e., PHn ∈ G6,4n .

Thus, by theorem 3.4, we have the following result.

Corollary 3.5 [3] Let PHn be a phenylene chain with n hexagons and n − 1 squares,

then the Tutte polynomial of PHn is given by

T (PHn;x, y) =
2ω − γ(α−

√
∆)

∆ + α
√

∆

(α +
√

∆

2

)n
+

2ω − γ(α +
√

∆)

∆− α
√

∆

(α−√∆

2

)n
,

where ∆ = α2+4β, α = x6+2x5+3x4+x3y+3x3+x2y+3x2+2xy+2x+y2+2y+1, β =

−x6y2, γ = y + x + x2 + x3 + x4 + x5 and ω = x11 + 3x10 + 6x9 + x8y + 9x8 + 2x7y +

12x7 + 5x6y + 13x6 + 8x5y + 12x5 + 2x4y2 + 9x4y + 9x4 + 2x3y2 + 8x3y + 6x3 + 2x2y2 +

7x2y + 3x2 + 3xy2 + 4xy + x+ y3 + 2y2 + y.

Let t(G) = T (G; 1, 1) be the number of spanning trees of a graph G. Then by Corollary

3.5, we get the number of spanning trees of PHn.

Corollary 3.6 [3] Let PHn be a phenylene chain with n hexagons and n − 1 squares,

then the number of spanning trees of PHn is given by

t(PHn) =
(33 + 6

√
30)(11 + 2

√
30)n

120 + 22
√

30
+

(33− 6
√

30)(11− 2
√

30)n

120− 22
√

30
.

PH5 PH̃5 PĤ5

Figure 1. Some particular (modificatory) phenylene chains PH5, PH̃5 and PĤ5.

Setting r = 4, s = 6 in Gr,sn , then G4,6n contains all the molecular graphs of the

modificatory phenylene chains with n − 1 hexagons and n squares. We let PH̃n be the

modificatory phenylene chain with n− 1 hexagons and n squares, i.e., PH̃n ∈ G4,6n . Thus,

by theorem 3.4, we have the following result.



Corollary 3.7 [3] Let PH̃n be a modificatory phenylene chain with n− 1 hexagons and

n squares. Then

T (PH̃n;x, y) =
2ω − γ(α−

√
∆)

∆ + α
√

∆

(α +
√

∆

2

)n
+

2ω − γ(α +
√

∆)

∆− α
√

∆

(α−√∆

2

)n
,

where ∆ = α2+4β, α = x6+2x5+3x4+x3y+3x3+x2y+3x2+2xy+2x+y2+2y+1, β =

−x6y2, γ = y+ x+ x2 + x3, ω = x9 + 3x8 + 6x7 + 2x6y+ 8x6 + 4x5y+ 9x5 + 7x4y+ 8x4 +

x3y2 + 8x3y + 6x3 + 3x2y2 + 7x2y + 3x2 + 3xy2 + 4xy + x+ y3 + 2y2 + y.

Since t(PH̃n) = T (PH̃n; 1, 1), then by Corollary 3.7 we can get t(PH̃n).

Corollary 3.8 [3] The number of spanning trees of PH̃n is given by

t(PH̃n) =
(22 + 4

√
30)(11 + 2

√
30)n

120 + 22
√

30
+

(22− 4
√

30)(11− 2
√

30)n

120− 22
√

30
.

By setting r = 6 and s = 4 in Zr,s
n , then Z6,4

n contains all the modificatory phenylene

chains (phenylene derivatives) with n hexagons and n squares. See Figure 1 for some

particular (modificatory) phenylene chains.

By Theorem 3.4, we have the following result.

Corollary 3.9 Let PĤn be a modificatory phenylene chain with n hexagons and n squares,

then we have

T (PĤn;x, y) =
2η − x(α−

√
∆)

∆ + α
√

∆

(α +
√

∆

2

)n
+

2η − x(α +
√

∆)

∆− α
√

∆

(α−√∆

2

)n
,

where ∆ = α2 + 4β, α = x6 + 2x5 + 3x4 + x3y+ 3x3 + x2y+ 3x2 + 2xy+ 2x+ y2 + 2y+ 1,

β = −x6y2 and η = x7 + 2x6 + 3x5 +x4y+ 3x4 +x3y+ 3x3 + 2x2y+ 2x2 + 2xy+x+y2 +y.

Therefore, by Corollary 3.9 we can get the number of spanning trees of PĤn.

Corollary 3.10 The number of spanning trees of PĤn is given by

t(PĤn) =
(6 +

√
30)(11 + 2

√
30)n+1

120 + 22
√

30
+

(6−
√

30)(11− 2
√

30)n+1

120− 22
√

30
.

4 The Tutte polynomial of phenylene systems with

exactly one branching hexagon

A hexagon in a phenylene system is called branching hexagon if the induced hexagon has

three pair-wise disjoint common edges with different squares. Let PSl,m,n be a phenylene



PS2,3,2 PS ′2,3,2

Figure 2. Two particular (decorated) phenylene systems PS2,3,2 and PS′2,3,2.

system with one branching hexagon and the three phenylene induced sub-chains of the

phenylene system meeting at the branching hexagon have number of hexagons l, m and

n respectively. A particular phenylene system PS2,3,2 is shown in Figure 2.

As a matter of convenience, we will denote T (PHn;x, y) by Tn, denote T (PH̃n;x, y)

by T̃n, denote T (PĤn;x, y) by T̂n and denote T (PSl,m,n;x, y) by Tl,m,n, respectively.

Theorem 4.1 The Tutte polynomial of a phenylene system PSl,m,n can be given by

Tl,m,n =
(xy − y − 1)Tl+m+1T̂n − x2y(x− 1)Tl+m+1Tn − x3y(x− 1)T̂lT̂mT̂n + x6yT̂lT̂mTn

xy − x− y
.

Proof. We find that the graph PSl,m,n can be constructed by the way of that PSl,m,n =

PHl+m+1|PĤn. If e is the common edge of PHl+m+1 and PĤn, then it is not difficult to

obtain that T (PHl+m+1 − e;x, y) = x3T (PĤl;x, y)T (PĤm;x, y) and T (PĤn − e;x, y) =

x2T (PHn;x, y). Thus, by Proposition 2.3, we immediately get the desired result. �

In addition, we also find that the phenylene system PSl,m,n can be constructed by

the ways of PSl,m,n = PHl+n+1|Zm and PSl,m,n = PHm+n+1|Zl, then similarly the Tutte

polynomial of PSl,m,n can be given by

Tl,m,n =
(xy − y − 1)Tl+n+1T̂m − x2y(x− 1)Tl+n+1Tm − x3y(x− 1)T̂lT̂nT̂m + x6yT̂lT̂nTm

xy − x− y

and

Tl,m,n =
(xy − y − 1)Tm+n+1T̂l − x2y(x− 1)Tn+m+1Tl − x3y(x− 1)T̂nT̂mT̂l + x6yT̂nT̂mTl

xy − x− y
,

respectively.

Corollary 4.2 The number of spanning trees of PSl,m,n can be given by

t(PSl,m,n) = t(PHl+m+1)t(PĤn)− t(PĤl)t(PĤm)t(PHn). (13)



Analogously, the number of spanning trees of PSl,m,n can also be expressed as

t(PSl,m,n) = t(PHl+n+1)t(PĤm)− t(PĤl)t(PĤn)t(PHm) (14)

and

t(PSl,m,n) = t(PHm+n+1)t(PĤl)− t(PĤm)t(PĤn)t(PHl), (15)

respectively.

In the subsequent discussion, we let p = 11 + 2
√

30, q = 11 − 2
√

30, A = 6+
√
30

120+22
√
30

,

B = 6−
√
30

120−22
√
30

, C = 22+4
√
30

120+22
√
30

, D = 22−4
√
30

120−22
√
30

, J = 33+6
√
30

120+22
√
30

and Q = 33−6
√
30

120−22
√
30

, then it is

easy to see that p−q = 4
√

30 > 0, AB < 0, t(PĤn) = Apn+1+Bqn+1, t(PH̃n) = Cpn+Dqn

and t(PHn) = Jpn +Qqn.

Let PS1,h be the set of all phenylene systems with h hexagons in which there is exactly

one branching hexagon. Next, we consider the extremal values of the number of spanning

trees among all phenylene systems with one branching hexagon.

Lemma 4.3 Let PSl,m,n ∈ PS1,h, where l + m + n = h − 1. Without loss of generality

we may assume that l ≤ m ≤ n. (i) If l ≥ 2, then we have t(PSl−1,m,n+1) > t(PSl,m,n).

(ii) If m ≥ 2, then we have t(PSl,m−1,n+1) > t(PSl,m,n). (iii) If l + 2 ≤ m, then we have

t(PSl+1,m−1,n) < t(PSl,m,n). (iv) If l + 2 ≤ n, then we have t(PSl+1,m,n−1) < t(PSl,m,n).

Proof. (i) If l ≥ 2, then by (14) we have

t(PSl−1,m,n+1) = t(PHl+n+1)t(PĤm)− t(PĤl−1)t(PĤn+1)t(PHm). (16)

From (16) and (14), we get

t(PSl−1,m,n+1)− t(PSl,m,n) =t(PHm)[t(PĤl)t(PĤn)− t(PĤl−1)t(PĤn+1)]

=t(PHm)AB[pl+1qn+1 + pn+1ql+1 − plqn+2 − pn+2ql]

=t(PHm)AB[plqn+1(p− q) + pn+1ql(q − p)]

=t(PHm)AB(p− q)plql(qn−l+1 − pn−l+1)

>0,

which means that t(PHl−1,m,n+1) > t(PHl,m,n).

(ii) If m ≥ 2, then by (15) we have

t(PSl,m−1,n+1) = t(PHl+n+1)t(PĤl)− t(PĤm−1)t(PĤn+1)t(PHl).



Then we can get that

t(PSl,m−1,n+1)− t(PSl,m,n) =t(PHl)[t(PĤm)t(PĤn)− t(PĤm−1)t(PĤn+1)]

=t(PHl)AB[pm+1qn+1 + pn+1qm+1 − pmqn+2 − pn+2qm]

=t(PHl)AB[pmqn+1(p− q) + pn+1qm(q − p)]

=t(PHl)AB(p− q)pmqm(qn−m+1 − pn−m+1)

>0,

which means t(PSl,m−1,n+1) > t(PSl,m,n).

(iii) If l + 2 ≤ m, then by (13) we can get

t(PSl+1,m,n−1) = t(PHl+m+1)t(PĤn)− t(PĤl+1)t(PĤm−1)t(PHn)

and

t(PSl+1,m−1,n)− t(PSl,m,n) =t(PHn)[t(PĤl)t(PĤm)− t(PĤl+1)t(PĤm−1)]

=t(PHn)AB[plqm + pmql − pl+1qm−1 − pm−1ql+1]

=t(PHn)AB[plqm−1(q − p) + pm−1ql(p− q)]

=t(PHn)AB(p− q)plql(pm−l−1 − qm−l−1)

<0,

which means t(PSl+1,m−1,n) < t(PSl,m,n).

(iv) If l + 2 ≤ n, then by (14) we can get

t(PSl+1,m,n−1) = t(PHl+n+1)t(PĤm)− t(PĤl+1)t(PĤn−1)t(PHm)

and

t(PSl+1,m,n−1)− t(PSl,m,n) =t(PHm)[t(PĤl)t(PĤn)− t(PĤl+1)t(PĤn−1)]

=t(PHm)[ABplqn + ABpnql − ABpl+1qn−1 − ABpn−1ql+1]

=t(PHm)[ABplqn−1(q − p) + ABpn−1ql(p− q)]

=t(PHm)AB(p− q)plql(pn−l−1 − qn−l−1)

<0.

Thus, we get t(PSl+1,m,n−1) < t(PSl,m,n). �

From Lemma 4.3 we immediately have the following result.



Theorem 4.4 For any PSl,m,n ∈ PS1,h, l ≤ m ≤ n and l +m+ n = h− 1, we have

t(PS1,1,h−3) ≥ t(PSl,m,n) ≥


t(PSh−1

3
,h−1

3
,h−1

3
), if h− 1 ≡ 0 (mod 3);

t(PSh−2
3

,h−2
3

,h+1
3

), if h− 1 ≡ 1 (mod 3);

t(PSh−3
3

,h
3
,h
3
), if h− 1 ≡ 2 (mod 3).

In the following we further consider the Tutte polynomial of a decorated phenylene

system PS ′a,b,k witch is obtained from PSa,b,k by joining a square to the pendent phenylene

induced sub-chain having k hexagons. A decorated phenylene system PS ′2,3,2 is depicted

in Figure 2.

Theorem 4.5 Let T ′a,b,k = T (PS ′a,b,k;x, y). Then we have that

T ′a,b,k =
[(xy − y − 1)Ta+b+1 + y(x− 1)x3T̂aT̂b]T̃k+1 − [yx2(x− 1)Ta+b+1 − x6yT̂aT̂b]T̂k

xy − x− y
.

Proof. According the structure of the decorated phenylene system PS ′a,b,k, we find it can

be constructed by the way of that PS ′a,b,k = PHa+b+1|PH̃k+1. If e is the common edge

of the induced PHa+b+1 and PH̃k+1, then it can be got that T (PHa+b+1 − e;x, y) =

x3T (PĤa;x, y)T (PĤb;x, y) and T (PH̃k+1 − e;x, y) = x2T (PĤk;x, y). Thus, the desired

result can be obtained by applying Proposition 2.3. �

By Theorem 4.5 and t(PS ′a,b,k) = T (PS ′a,b,k; 1, 1), we have

Corollary 4.6 The number of spanning trees of PS ′a,b,k can be given by

t(PS ′a,b,k) = t(PHa+b+1)t(PH̃k+1)− t(PĤa)t(PĤb)t(PĤk).

5 The Tutte polynomial of phenylene systems with

exactly two branching hexagons

Let PSk
a,b;c,d be a phenylene system with exactly two branching hexagons in which one

branching hexagon attached by two pendent phenylene sub-chains PĤa and PĤb re-

spectively, the other branching hexagon attached by two pendent phenylene sub-chains

PĤc and PĤd respectively, and there is a phenylene sub-chain PH̃k+1 connecting the

two branching hexagons. A particular phenylene system PS2
2,3;4,3 is depicted in Figure 3.

Obviously, if k = 0, then there is only a square between the two branching hexagons of

PS0
a,b;c,d.



If we consider the linking orientations of the four induced pendent sub-chains meeting

at the two branching hexagons, a 6= b and c 6= d, then PSk
a,b;c,d 6∼= PSk

a,b;d,c. But they

have the same Tutte polynomial, i.e., T (PSk
a,b;c,d;x, y) = T (PSk

a,b;d,c;x, y), since the dual

graphs of them are isomorphic. So, in the following we will use PSk
a,b;c,d to denote a graph

taking from {PSk
a,b;c,d, PS

k
a,b;d,c, PS

k
b,a;c,d, PS

k
b,a;d,c}, indiscriminatedly.

Figure 3. A phenylene system PS2
2,3;4,3.

Theorem 5.1 For the phenylene system PS0
a,b;c,d, we have

T (PS0
a,b;c,d;x, y) = φ1 · Ta+b+1Tc+d+1 − φ2 · (Ta+b+1T̂cT̂d + Tc+d+1T̂aT̂b) + φ3 · T̂aT̂bT̂cT̂d,

where φ1 = x2y−x2+xy2−x−y2−2y−1
xy−x−y , φ2 = x3y(xy−y−1)

xy−x−y and φ3 = x6y2(x−1)
xy−x−y .

Proof. We can see that PS0
a,b;c,d = (PHa+b+1|C4)|PHc+d+1. Let e be the common edge of

PHa+b+1 and C4, then it is easy to get T (PHa+b+1−e;x, y) = x3T (PĤa;x, y)T (PĤb;x, y)

and T (C4 − e;x, y) = x3. Thus by Proposition 2.3 and some basic calculations we get

T (PHa+b+1|C4;x, y) = (x2 + x+ y + 1)Ta+b+1 − x3yT̂aT̂b. (17)

Let e′ be the common edge of PHa+b+1|C4 and PHc+d+1. Then it is not difficultly to

obtain that T (PHa+b+1|C4 − e′;x, y) = x2T (PHa+b+1;x, y) and T (PHc+d+1 − e′;x, y) =

x3T (PĤc;x, y)T (PĤd;x, y). Combining Proposition 2.3 and (17) one can obtain the re-

quired result. �

By setting x = y = 1 in Theorem 5.1, we find that

Corollary 5.2 The number of spanning trees of PS0
a,b;c,d is given by

t(PS0
a,b;c,d) = t(PHc+d+1)[4t(PHa+b+1)− t(PĤa)t(PĤb)]− t(PHa+b+1)t(PĤc)t(PĤd).

Now, we consider the Tutte polynomial of PSk
a,b;c,d with k ≥ 1.



Theorem 5.3 For the phenylene system PSk
a,b;c,d, k ≥ 1, we have

T (PSk
a,b;c,d) =

[(xy − y − 1)T̂d − x2y(x− 1)Td]Ta,b,k+c+1 + [x6yT̂cTd − x3y(x− 1)T̂c]T
′
a,b,k

xy − x− y
.

Proof. We first note that PSk
a,b;c,d = PSa,b,k+c+1|PĤd and let e be the common edge of

the induced subgraphs PSa,b,k+c+1 and PĤd. And we can get T (PSa,b,k+c+1 − e;x, y) =

x3T (PS ′a,b,k;x, y)T̂c and T (PĤd − e;x, y) = x2T (PHd;x, y). Thus, by applying Proposi-

tion 2.3 we obtain the required result. �

Corollary 5.4 The number of spanning trees of PSk
a,b;c,d is given by

t(PSk
a,b;c,d) = t(PĤd)t(PSa,b,k+c+1)− t(PĤc)t(PHd)t(PS

′
a,b,k).

From Corollary 4.6 and Corollary 5.4, the number of spanning tees of PSk
a,b;c,d can also

be written as t(PSk
a,b;c,d) = t(PĤd)[t(PHa+b+1)t(PĤk+c+1)− t(PĤa)t(PĤb)t(PHk+c+1)]−

t(PĤc)t(PHd)[t(PHa+b+1)t(PH̃k+1)− t(PĤa)t(PĤb)t(PĤc)].

Let PS2,h be the set of all phenylene systems with h hexagons in which there is

exactly two branching hexagons. The next we consider the extremal values of the number

of spanning trees among PS2,h.

Lemma 5.5 Let PSk
a,b;c,d ∈ PS2,h, where a+b+c+d+k+2 = h. (i) If a ≥ 2, then it holds

that t(PSk+1
a−1,b;c,d) > t(PSk

a,b;c,d). (ii) If b ≥ 2, then it holds that t(PSk+1
a,b−1;c,d) > t(PSk

a,b;c,d).

(iii) If c ≥ 2, then it holds that t(PSk+1
a,b;c−1,d) > t(PSk

a,b;c,d). (iv) If d ≥ 2, then it holds

that t(PSk+1
a,b;c,d−1) > t(PSk

a,b;c,d).

Proof. Here we just give the proof of (iii) since the statements (i), (ii) and (iv) can be

proved by a similar way. Bearing in mind that A = 6+
√
30

120+22
√
30

and B = 6−
√
30

120−22
√
30

and let

C = 22+4
√
30

120+22
√
30
> 0, D = 22−4

√
30

120−22
√
30
< 0, then we can get

t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2) =(Apc+1 +Bqc+1)(Cpk+1 +Dqk+1)

− (Apc +Bqc)(Cpk+2 +Dqk+2)

=AD(pc+1qk+1 − pcqk+2) +BC(pk+1qc+1 − pk+2qc)

and

t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk) =(Apc +Bqc)(Cpk+2 +Dqk+2)



− (Apc+1 +Bqc+1)(Cpk+1 +Dqk+1)

=AB(q − p)(pcqk+1 − pk+1qc).

Case 1. c ≥ 2 and k = c− 1. In this case, we first can show that

t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2) =AD(pc+1qk+1 − pcqk+2) +BC(pk+1qc+1 − pk+2qc)

=AD(pc+1qc − pcqc+1) +BC(pcqc+1 − pc+1qc)

=pcqc(p− q)(AD −BC) > 0

and

t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk) = AB(q − p)(pcqk+1 − pk+1qc) = 0.

So, we have

t(PSk+1
a,b;c−1,d)− t(PS

k
a,b;c,d) =t(PĤc)t(PHd)t(PS

′
a,b,k)− t(PĤc−1)t(PHd)t(PS

′
a,b,k+1)

=t(PHd)[t(PĤc)t(PS
′
a,b,k)− t(PĤc−1)t(PS

′
a,b,k+1)]

=t(PHd)
[
t(PHa+b+1)

(
t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2)

)
+ t(PĤa)t(PĤb)

(
t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk)

)]
=pcqc(p− q)(AD −BC)t(PHd)t(PHa+b+1) > 0.

Case 2. c ≥ 2 and k > c− 1. In this case, we have

t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2) =(Apc+1 +Bqc+1)(Cpk+1 +Dqk+1)

− (Apc +Bqc)(Cpk+2 +Dqk+2)

=AD(pc+1qk+1 − pcqk+2) +BC(pk+1qc+1 − pk+2qc)

=ADpcqk+1(p− q) +BCpk+1qc(q − p)

=pcqc(p− q)(qk−c+1AD − pk−c+1BC) > 0

and

t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk) =(Apc +Bqc)(Apk+2 +Bqk+2)

− (Apc+1 +Bqc+1)(Apk+1 +Bqk+1)

=AB(q − p)(pcqk+1 − pk+1qc)

=AB(q − p)pcqc(qk−c+1 − pk−c+1) < 0.



Note that t(PHd)t(PHa+b+1) > t(PHd)t(PĤa)t(PĤb), then we can obtain that

t(PSk+1
a,b;c−1,d)− t(PS

k
a,b;c,d) =t(PHd)t(PHa+b+1)[t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2)]

+t(PHd)t(PĤa)t(PĤb)[t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk)]

>t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2)

+ t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk)

=t(PĤc)[t(PH̃k+1)− t(PĤk)]

+ t(PĤc−1)[t(PĤk+1)− t(PH̃k+2)]

=(Apc+1 +Bqc+1)(Cpk+1 +Dqk+1 − Apk+1 −Bqk+1)

+ (Apc +Bqc+1)(Apk+2 +Bqk+2 − Cpk+2 −Dqk+2)

=A(B −D)pcqk+1(q − p) +B(A− C)pk+1qc(p− q)

=pcqc(p− q)[B(A− C)pk−c+1 − A(B −D)qk−c+1] > 0.

Case 3. c ≥ 2 and k < c− 1. We have

t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2) =ADpcqk+1(p− q) +BCpk+1qc(q − p)

=pk+1qk+1(p− q)(qc−k−1AD − pc−k−1BC) > 0

and

t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk) =AB(q − p)(pcqk+1 − pk+1qc)

=AB(q − p)pk+1qk+1(qc−k−1 − pc−k−1) < 0.

Since t(PHd)t(PHa+b+1) > t(PHd)t(PĤa)t(PĤb), then we have

t(PSk+1
a,b;c−1,d)− t(PS

k
a,b;c,d) =t(PHd)t(PHa+b+1)[t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2)]

+t(PHd)t(PĤa)t(PĤb)[t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk)]

>t(PĤc)t(PH̃k+1)− t(PĤc−1)t(PH̃k+2)

+ t(PĤc−1)t(PĤk+1)− t(PĤc)t(PĤk)

=t(PĤc)[t(PH̃k+1)− t(PĤk)]

+ t(PĤc−1)[t(PĤk+1)− t(PH̃k+2)]

=A(B −D)pcqk+1(q − p) +B(A− C)pk+1qc(p− q)

=pk+1qk+1(p− q)[B(A− C)pc−k−1 − A(B −D)qc−k−1] > 0.

Therefore, we obtain that t(PSk+1
a,b;c−1,d) > t(PSk

a,b;c,d) for c ≥ 2. �



Lemma 5.6 Let PS0
a,b;c,d be a phenylene system with two branching hexagons. (i) If

a ≥ b + 2, then it holds that t(PS0
a,b;c,d) > t(PS0

a−1,b+1;c,d). (ii) If b ≥ a + 2, then it

holds that t(PS0
a,b;c,d) > t(PS0

a+1,b−1;c,d). (iii) If c ≤ d+ 2, then it holds that t(PS0
a,b;c,d) >

t(PS0
a,b;c−1,d+1). (iv) If d ≤ c+ 2, then it holds that t(PS0

a,b;c,d) > t(PS0
a,b;c+1,d−1).

Proof. (i) The number of spanning trees of PS0
a,b;c,d and PS0

a−1,b+1;c,d can be respectively

written as

t(PS0
a,b;c,d) =t(PHa+b+1)(t(PĤd)t(PĤc+1)− 4t(PHd)t(PĤc))

+ t(PĤa)t(PĤb)(t(PĤc)− t(PHc+1))

and

t(PS0
a−1,b+1;c,d) =t(PHa+b+1)(t(PĤd)t(PĤc+1)− 4t(PHd)t(PĤc))

+ t(PĤa−1)t(PĤb+1)(t(PĤc)− t(PHc+1)).

Then we have

t(PS0
a−1,b+1;c,d)− t(PS0

a,b;c,d) =(t(PĤc)− t(PHc+1))[t(PĤa−1)t(PĤb+1)− t(PĤa)t(PĤb)]

=(t(PĤc)− t(PHc+1))[(Cp
a−1 +Dqa−1)(Cpb+1 +Dqb+1)

− (Cpa +Dqa)(Cpb +Dqb)]

=(t(PĤc)− t(PHc+1))CD[(pa−1qb+1 − paqb)

+ (pb+1qa−1 − pbqa)]

=(t(PĤc)− t(PHc+1))CDp
bqb(qa−b−1 − pa−b−1) < 0.

Thus, we get t(PS0
a,b;c,d) > t(PS0

a−1,b+1;c,d) for a ≥ b + 2. The statements (ii)-(iv) can be

proved similarly, we omit the proof here. �

Lemma 5.7 For the number of spanning trees of the phenylene systems PS0
k,k+1;k,k+1 and

PS0
k+1,k+1;k,k, we have t(PS0

k,k+1;k,k+1) > t(PS0
k+1,k+1;k,k).

Proof. From Corollary 5.2, we have

t(PS0
k,k+1;k,k+1) =4t(PH2k+2)

2 − 2t(PH2k+2)t(PĤk)t(PĤk+1),

t(PS0
k+1,k+1;k,k) =4t(PH2k+3)t(PH2k+1)− t(PH2k+1)t(PĤk+1)t(PĤk+1)



− t(PH2k+3)t(PĤk)t(PĤk).

Then, bearing in mind that t(PĤn) = Apn+1 +Bqn+1 and t(PHn) = Jpn +Qqn, one can

get

t(PS0
k,k+1;k,k+1)− t(PS0

k,k;k+1,k+1) =p1+2k(p− q)2(B2qJ + A2pQ− 4JQ)

= 3
10
p1+2k(p− q)2 > 0.

Thus, we obtain the result t(PS0
k,k+1;k,k+1) > t(PS0

k+1,k+1;k,k). �

From Lemma 5.5, Lemma 5.6 and Lemma 5.7 we immediately get the following result.

Theorem 5.8 For PSk
a,b;c,d ∈ PS2,h, where a+ b+ c+ d = h− k − 2, we have

t(PSh−6
1,1;1,1) ≥ t(PSk

a,b;c,d) ≥



t(PS0
h−2
4

,h−2
4

;h−2
4

,h−2
4

), if h− 2 ≡ 0 (mod 4);

t(PS0
h−3
4

,h−3
4

;h−3
4

,h+1
4

), if h− 2 ≡ 1 (mod 4);

t(PS0
h−4
4

,h−4
4

;h
4
,h
4

), if h− 2 ≡ 2 (mod 4);

t(PS0
h−5
4

,h−1
4

;h−1
4

,h−1
4

), if h− 2 ≡ 3 (mod 4).
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