Acknowledgements
We are indebted to the staff of the Área de Plagas, Instituto Tecnológico Agrario de Castilla-y-León (ITACyL) and the Consejería de Agricultura, Ganadería y Desarrollo Rural de la Junta de Castilla-y-León, who collected the data within the ITACYL 2007/2155 Project and the Monitoring Program of common vole populations in Castilla-y-León. The analysis and DR were funded by Biotechnology and Biological Sciences Research Council (BBSRC) [grant number BB/M010996/1], through Eastbio DTP. The study contributes to the BOOMRAT project (MINECO: PID2019-109327RB-I00). We are grateful to Thomas Cornulier and Nigel Yoccoz who provided feedback as part of the PhD viva for DR.
References
Andersson, M. and Jonasson S., 1986. Rodent cycles in relation to food resources on an alpine heath.Oikos, 46, 93-106 Andreassen, H.P. and Ims, R.A. (2001). Dispersal in patchy vole populations: role of patch configuration, density dependence, and demography. Ecology, 82(10), 2911-2926. Bailles, A., Collinet, C., Philippe, J.-M., Lenne, P.-F., Munro, E. and Lecuit, T. (2019). Genetic induction and mechanochemical propagation of a morphogenetic wave. Nature, 572(7770), 467–473. Banerjee, M., Ghorai, S. and Mukherjee, N. (2017). Approximated Spiral and Target Patterns in Bazykin’s Prey–Predator Model: Multiscale Perturbation Analysis. Int J Bifurcat Chaos, 27(03), 1750038. Berthier, K., Piry, S., Cosson, J.-F., Giraudoux, P., Foltête, J.-C., Defaut, R., et al. (2013). Dispersal, landscape and travelling waves in cyclic vole populations. Ecol Lett, 17(1), 53–64. Berryman, A. et al. (2002).Population cycles: the case for trophic interactions. Oxford University Press. Bierman, S.M., Fairbairn, J.P., Petty, S.J., Elston, D.A., Tidhar, D. and Lambin, X. (2006). Changes over Time in the Spatiotemporal Dynamics of Cyclic Populations of Field Voles (Microtus agrestis L.).Am Nat, 167(4), 583–590. Bjørnstad, O.N. (2000). Cycles and synchrony: two historical “experiments” and one experience. J Anim Ecol, 69(5), 869–873. Bjørnstad, O.N. and Bascompte, J. (2001). Synchrony and Second-Order Spatial Correlation in Host-Parasitoid Systems. J Anim Ecol, 70(6), 924–933. Bjørnstad, O.N., Peltonen, M., Liebhold, A.M. and Baltensweiler, W. (2002). Waves of Larch Budmoth Outbreaks in the European Alps.Science, 298(5595), 1020–1023. Blasius, B., Huppert, A. and Stone, L. (1999). Complex dynamics and phase synchronization in spatially extended ecological systems.Nature, 399(6734), 354–359. Bolker, B.M. (2008).Ecological Models and Data in R. Princeton University Press. Bolker, B.M. (2020). emdbook: Ecological Models and Data in R, R package version 1.3.12. Bogdziewicz, M., Hacket‐Pain, A., Ascoli, D. and Szymkowiak, J. (2021). Environmental variation drives continental‐scale synchrony of European beech reproduction.Ecology, 03384. Bowler, D.E. and Benton, T.G. (2005). Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics.Biol Rev, 80(2), 205–225. Bugrim, A.E., Dolnik, M., Zhabotinsky, A.M. and Epstein, I.R. (1996). Heterogeneous Sources of Target Patterns in Reaction−Diffusion Systems.J Phys Chem, 100(49), 19017–19022. Cummings, D.A.T., Irizarry, R.A., Huang, N.E., Endy, T.P., Nisalak, A., Ungchusak, K. et al.(2004). Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature, 427(6972), 344–347. De Roos, A.M., McCauley, E. and Wilson, W.G. (1991). Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc Royal Soc B, 246(1316), 117-122. Erlinge, S., Danell, K., Frodin, P., Hasselquist, D., Nilsson, P., Olofsson, E.B. et al. (1999). Asynchronous population dynamics of Siberian lemmings across the Palaearctic tundra. Oecologia, 119(4), 493-500. Fay, R., Michler, S., Laesser, J., Jeanmonod, J. and Schaub, M. (2020). Large-scale vole population synchrony in central Europe revealed by Kestrel breeding performance.Front Ecol Evol, 7, 512. Fox, J.W., Legault, G., Vasseur, D.A. and Einarson, J.A. (2013). Nonlinear Effect of Dispersal Rate on Spatial Synchrony of Predator-Prey Cycles. PLoS ONE, 8(11), e79527. García, J.T., Domínguez‐Villaseñor, J., Alda, F., Calero‐Riestra, M., Pérez Olea, P., Fargallo, J.A., et al. (2019). A complex scenario of glacial survival in Mediterranean and continental refugia of a temperate continental vole species (Microtus arvalis) in Europe.J Zoolog Syst Evol, 58(1), 459–474. Gibert, J.P. and Yeakel, J.D. (2019). Laplacian matrices and Turing bifurcations: revisiting Levin 1974 and the consequences of spatial structure and movement for ecological dynamics. Theor Ecol, 12(3), 265–281. Grenfell, B.T., Bjørnstad, O.N. and Kappey, J. (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature, 414(6865), 716–723. Gurney, W.S.C., Veitch, A.R., Cruickshank, I. and McGeachin, G. (1998). Circles and spirals: population persistence in a spatially explicit predator–prey model. Ecology, 79(7), 2516-2530. Hugueny, B. (2006). Spatial synchrony in population fluctuations: extending the Moran theorem to cope with spatially heterogeneous dynamics. Oikos, 115(1), 3-14. Jareño, D., Viñuela, J., Luque-Larena, J.J., Arroyo, L., Arroyo, B. and Mougeot, F. (2014). A comparison of methods for estimating common vole (Microtus arvalis) abundance in agricultural habitats. Ecol Indic, 36, 111–119. Jareño, D., Viñuela, J., Luque-Larena, J.J., Arroyo, L., Arroyo, B. and Mougeot, F. (2015). Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain.Biol Invasions, 17(8), 2315–2327. Jepsen, J.U., Vindstad, O.P.L., Barraquand, F., Ims, R.A. and Yoccoz, N.G. (2016). Continental-scale travelling waves in forest geometrids in Europe: an evaluation of the evidence. J Anim Ecol, 85(2), 385–390. Johnson, D.M., Bjørnstad, O.N. and Liebhold, A.M. (2004). Landscape geometry and travelling waves in the larch budmoth. Ecol Lett, 7(10), 967–974. Johnson, D.M., Bjørnstad, O.N. and Liebhold, A.M. (2006). Landscape Mosaic Induces Traveling Waves of Insect Outbreaks. Oecologia, 148(1), 51–60. Koenig, W.D. (1999). Spatial autocorrelation of ecological phenomena.Trends Ecol Evol, 14(1), 22–26. Huitu, O., Norrdahl, K. and Korpimäki, E. (2003). Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia, 135(2), 209-220. Huitu, O., Laaksonen, J., Klemola, T. and Korpimäki, E. (2008). Spatial dynamics of Microtus vole populations in continuous and fragmented agricultural landscapes. Oecologia, 155(1), 53-61. Ims, R.A. and Andreassen, H.P. (2005). Density-dependent dispersal and spatial population dynamics. Proc Royal Soc B, 272(1566), 913–918. Ims, R.A. and Hjermann, D.Ø. (2001). Condition-dependent dispersal. In:Dispersal {eds. Clobert, J., Danchin E., Dhont, A.A., Nichols, J.D.} Oxford University Press, Oxford, pp. 203-216 Kapustina, M., Elston, T.C. and Jacobson, K. (2013). Compression and dilation of the membrane-cortex layer generates rapid changes in cell shape. J Cell Biol, 200(1), 95–108. Lambin, X., Elston, D.A., Petty, S.J. and MacKinnon, J.L. (1998). Spatial asynchrony and periodic travelling waves in cyclic populations of field voles. Proc Royal Soc B, 265(1405), 1491–1496. Lambin, X., Aars, J., Piertney, S. (2001). Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In: Dispersal {eds. Clobert, J., Danchin E., Dhont, A.A., Nichols, J.D.} Oxford University Press, Oxford, pp. 110-122 Lambin, X., Bretagnolle, V. and Yoccoz, N.G. (2006). Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern?J Anim Ecol, 75(2), 340-349. Levin, S.A. (1974). Dispersion and Population Interactions. Am Nat, 108(960), 207–228. Li, Z., Gao, M., Hui, C., Han, X. and Shi, H. (2005). Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation. Ecol Modell, 185(2-4), 245–254. Liebhold, A., Koenig, W.D. and Bjørnstad, O.N. (2004). Spatial Synchrony in Population Dynamics. Annu Rev Ecol Evol Syst, 35(1), 467–490. Pedersen T.L. (2020). patchwork: The Composer of Plots. https://patchwork.data-imaginist.com, https://github.com/thomasp85/patchwork. Luque-Larena, J.J., Mougeot, F., Viñuela, J., Jareño, D., Arroyo, L., Lambin, X. et al. (2013). Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl Ecol, 14(5), 432–441. Mackinnon, J.L., Petty, S.J., Elston, D.A., Thomas, C.J., Sherratt, T.N. and Lambin, X. (2001). Scale invariant spatio-temporal patterns of field vole density. J Anim Ecol, 70(1), 101–111. Maron, J.L. and Harrison, S. (1997). Spatial Pattern Formation in an Insect Host-Parasitoid System. Science, 278(5343), 1619–1621. Martinet, L.-E., Fiddyment, G., Madsen, J.R., Eskandar, E.N., Truccolo, W., Eden, U.T., et al. (2017). Human seizures couple across spatial scales through travelling wave dynamics. Nat Commun, 8(1), 14896. Moss, R., Elston, D.A. and Watson, A. (2000). Spatial asynchrony and demographic traveling waves during red grouse population cycles.Ecology, 81(4), 981-989. Mougeot, F., Lambin, X., Rodríguez‐Pastor, R., Romairone, J. and Luque‐Larena, J. (2019). Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands.Ecology, 100(9). Müller, S.C., Mair, T. and Steinbock, O. (1998). Traveling waves in yeast extract and in cultures of Dictyostelium discoideum.Biophys Chem, 72(1-2), 37–47. Oli, M.K. (2019). Population cycles in voles and lemmings: state of the science and future directions. Mamm Rev, 49(3), 226–239. Pedersen, E.J., Miller, D.L., Simpson, G.L. and Ross, N. (2019). Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ, 7, e6876. Pinot, A., Barraquand, F., Tedesco, E., Lecoustre, V., Bretagnolle, V. and Gauffre, B. (2016). Density-dependent reproduction causes winter crashes in a common vole population. Popul Ecol, 58(3), 395–405. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Rodríguez-Pastor, R., Escudero, R., Vidal, D., Mougeot, F., Arroyo, B., Lambin, X., et al. (2017). Density-dependent prevalence of Francisella tularensis in fluctuating vole populations, northwestern Spain. Emerg Infect Dis, 23(8), 1377. Rodríguez-Pastor, R., Escudero, R., Lambin, X., Vidal, M.D., Gil, H., Jado, I., et al. (2018). Zoonotic pathogens in fluctuating common vole (Microtus arvalis) populations: occurrence and dynamics. Parasitology, 146(3), 389–398. Roos D., Saldaña C.C., Arroyo B., Mougeot F., Luque-Larena J.J., & Lambin X., 2019. Unintentional effects of environmentally-friendly farming practices: Arising conflicts between zero-tillage and a crop pest, the common vole (Microtus arvalis). Agric Ecosyst Environ, 272, 105-113 Royama, T. (1992).Analytical population dynamics. Springer, Dordrecht. Satake, A. and Iwasa, Y. (2002). Spatially limited pollen exchange and a long‐range synchronization of trees. Ecology, 83(4), 993-1005. Sherratt, J.A., Eagan, B.T. and Lewis, M.A. (1997). Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? Philos Trans R Soc Lond, B, Biol Sci, 352(1349), 21–38. Sherratt, T.N., Lambin, X., Petty, S.J., Mackinnon, J.L., Coles, C.F. and Thomas, C.J. (2000). Use of coupled oscillator models to understand synchrony and travelling waves in populations of the field vole Microtus agrestis in northern England. J Appl Ecol, 37(s1), 148–158. Sherratt, J.A. (2001). Periodic travelling waves in cyclic predator-prey systems. Ecol Lett, 4(1), 30–37. Sherratt, J.A., Lambin, X., Thomas, C.J. and Sherratt, T.N. (2002). Generation of periodic waves by landscape features in cyclic predator–prey systems. Proc Royal Soc B, 269(1489), 327–334. Sherratt, J.A. (2003). Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems.SIAM J Appl Math, 63(5), 1520–1538. Sherratt, J.A., Lambin, X. and Sherratt, T.N. (2003). The Effects of the Size and Shape of Landscape Features on the Formation of Traveling Waves in Cyclic Populations. Am Nat, 162(4), 503–513. Sherratt, J.A. and Smith, M.J. (2008). Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models.J R Soc Interface, 5(22), 483–505. Sherratt, J.A. (2016). Invasion Generates Periodic Traveling Waves (Wavetrains) in Predator-Prey Models with Nonlocal Dispersal. SIAM J Appl Math, 76(1), 293–313. Smith, M.J. and Sherratt, J.A. (2007). The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction–diffusion systems. Phys D: Nonlinear Phenom, 236(2), 90–103. Sprugel, D.G. (1976). Dynamic structure of wave-regenerated Abies balsamea forests in the north-eastern United States. J Ecol, 889-911. Sutherland, W.J., Gill, J.A. and Norris, K. (2004). Density dependent dispersal: concepts, evidence, mechanisms and consequences. In:Dispersal {eds. Bullock, J.M., Kneward, R.E., Hails, R.} Blackwells, Oxford, pp. 134-151 Sundell, J., Huitu, O., Henttonen, H., Kaikusalo, A., Korpimäki, E., Pietiäinen, H., et al. (2004). Large‐scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole‐eating avian predators. J Anim Ecol, 73(1), 167-178. Tedesco, P. and Hugueny, B. (2006). Life history strategies affect climate based spatial synchrony in population dynamics of West African freshwater fishes. Oikos, 115(1), 117-127. Vasseur, D.A. and Fox, J.W. (2009). Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature, 460(7258), 1007–1010. Vindstad, O.P.L., Jepsen, J.U., Yoccoz, N.G., Bjørnstad, O.N., Mesquita, M. d. S. and Ims, R.A. (2019). Spatial synchrony in sub‐arctic geometrid moth outbreaks reflects dispersal in larval and adult life cycle stages. J Anim Ecol, 88(8), 1134–1145. Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B,73(1), 3-36 Ydenberg, R.C. (1987). Nomadic Predators and Geographical Synchrony in Microtine Population Cycles. Oikos, 50(2), 270–272.