We are indebted to the staff of the Área de Plagas, Instituto
Tecnológico Agrario de Castilla-y-León (ITACyL) and the Consejería de
Agricultura, Ganadería y Desarrollo Rural de la Junta de
Castilla-y-León, who collected the data within the ITACYL 2007/2155
Project and the Monitoring Program of common vole populations in
Castilla-y-León. The analysis and DR were funded by Biotechnology and
Biological Sciences Research Council (BBSRC) [grant number
BB/M010996/1], through Eastbio DTP. The study contributes to the
BOOMRAT project (MINECO: PID2019-109327RB-I00). We are grateful to
Thomas Cornulier and Nigel Yoccoz who provided feedback as part of the
PhD viva for DR.
Andersson, M. and Jonasson S.,
1986. Rodent cycles in relation to food resources on an alpine heath.Oikos, 46, 93-106
Andreassen, H.P. and Ims, R.A. (2001). Dispersal in patchy vole
populations: role of patch configuration, density dependence, and
demography. Ecology, 82(10), 2911-2926.
Bailles, A., Collinet, C., Philippe, J.-M., Lenne, P.-F., Munro, E. and
Lecuit, T. (2019). Genetic induction and mechanochemical propagation of
a morphogenetic wave. Nature, 572(7770), 467–473.
Banerjee, M., Ghorai, S. and Mukherjee, N. (2017). Approximated Spiral
and Target Patterns in Bazykin’s Prey–Predator Model: Multiscale
Perturbation Analysis. Int J Bifurcat Chaos, 27(03), 1750038.
Berthier, K., Piry, S., Cosson, J.-F., Giraudoux, P., Foltête, J.-C.,
Defaut, R., et al. (2013). Dispersal, landscape and travelling
waves in cyclic vole populations. Ecol Lett, 17(1), 53–64.
Berryman, A. et al. (2002).Population cycles: the case for trophic interactions. Oxford
University Press.
Bierman, S.M., Fairbairn, J.P., Petty, S.J., Elston, D.A., Tidhar, D.
and Lambin, X. (2006). Changes over Time in the Spatiotemporal Dynamics
of Cyclic Populations of Field Voles (Microtus agrestis L.).Am Nat, 167(4), 583–590.
Bjørnstad, O.N. (2000). Cycles and synchrony: two historical
“experiments” and one experience. J Anim Ecol, 69(5), 869–873.
Bjørnstad, O.N. and Bascompte, J. (2001). Synchrony and Second-Order
Spatial Correlation in Host-Parasitoid Systems. J Anim Ecol,
70(6), 924–933.
Bjørnstad, O.N., Peltonen, M., Liebhold, A.M. and Baltensweiler, W.
(2002). Waves of Larch Budmoth Outbreaks in the European Alps.Science, 298(5595), 1020–1023.
Blasius, B., Huppert, A. and Stone, L. (1999). Complex dynamics and
phase synchronization in spatially extended ecological systems.Nature, 399(6734), 354–359.
Bolker, B.M. (2008).Ecological Models and Data in R. Princeton University Press.
Bolker, B.M. (2020). emdbook: Ecological Models and Data in R, R
package version 1.3.12.
Bogdziewicz, M., Hacket‐Pain, A.,
Ascoli, D. and Szymkowiak, J. (2021). Environmental variation drives
continental‐scale synchrony of European beech reproduction.Ecology, 03384.
Bowler, D.E. and Benton, T.G. (2005). Causes and consequences of animal
dispersal strategies: relating individual behaviour to spatial dynamics.Biol Rev, 80(2), 205–225.
Bugrim, A.E., Dolnik, M., Zhabotinsky, A.M. and Epstein, I.R. (1996).
Heterogeneous Sources of Target Patterns in Reaction−Diffusion Systems.J Phys Chem, 100(49), 19017–19022.
Cummings, D.A.T., Irizarry, R.A.,
Huang, N.E., Endy, T.P., Nisalak, A., Ungchusak, K. et al.(2004). Travelling waves in the occurrence of dengue haemorrhagic fever
in Thailand. Nature, 427(6972), 344–347.
De Roos, A.M., McCauley, E. and
Wilson, W.G. (1991). Mobility versus density-limited predator-prey
dynamics on different spatial scales. Proc Royal Soc B,
246(1316), 117-122.
Erlinge, S., Danell, K., Frodin, P., Hasselquist, D., Nilsson, P.,
Olofsson, E.B. et al. (1999). Asynchronous population dynamics of
Siberian lemmings across the Palaearctic tundra. Oecologia,
119(4), 493-500.
Fay, R., Michler, S., Laesser, J.,
Jeanmonod, J. and Schaub, M. (2020). Large-scale vole population
synchrony in central Europe revealed by Kestrel breeding performance.Front Ecol Evol, 7, 512.
Fox, J.W., Legault, G., Vasseur, D.A. and Einarson, J.A. (2013).
Nonlinear Effect of Dispersal Rate on Spatial Synchrony of Predator-Prey
Cycles. PLoS ONE, 8(11), e79527.
García, J.T., Domínguez‐Villaseñor, J., Alda, F., Calero‐Riestra, M.,
Pérez Olea, P., Fargallo, J.A., et al. (2019). A complex scenario
of glacial survival in Mediterranean and continental refugia of a
temperate continental vole species (Microtus arvalis) in Europe.J Zoolog Syst Evol, 58(1), 459–474.
Gibert, J.P. and Yeakel, J.D. (2019). Laplacian matrices and Turing
bifurcations: revisiting Levin 1974 and the consequences of spatial
structure and movement for ecological dynamics. Theor Ecol,
12(3), 265–281.
Grenfell, B.T., Bjørnstad, O.N.
and Kappey, J. (2001). Travelling waves and spatial hierarchies in
measles epidemics. Nature, 414(6865), 716–723.
Gurney, W.S.C., Veitch, A.R., Cruickshank, I. and McGeachin, G. (1998).
Circles and spirals: population persistence in a spatially explicit
predator–prey model. Ecology, 79(7), 2516-2530.
Hugueny, B. (2006). Spatial
synchrony in population fluctuations: extending the Moran theorem to
cope with spatially heterogeneous dynamics. Oikos, 115(1), 3-14.
Jareño, D., Viñuela, J., Luque-Larena, J.J., Arroyo, L., Arroyo, B. and
Mougeot, F. (2014). A comparison of methods for estimating common vole
(Microtus arvalis) abundance in agricultural habitats. Ecol
Indic, 36, 111–119.
Jareño, D., Viñuela, J., Luque-Larena, J.J., Arroyo, L., Arroyo, B. and
Mougeot, F. (2015). Factors associated with the colonization of
agricultural areas by common voles Microtus arvalis in NW Spain.Biol Invasions, 17(8), 2315–2327.
Jepsen, J.U., Vindstad, O.P.L., Barraquand, F., Ims, R.A. and Yoccoz,
N.G. (2016). Continental-scale travelling waves in forest geometrids in
Europe: an evaluation of the evidence. J Anim Ecol, 85(2),
385–390.
Johnson, D.M., Bjørnstad, O.N. and
Liebhold, A.M. (2004). Landscape geometry and travelling waves in the
larch budmoth. Ecol Lett, 7(10), 967–974.
Johnson, D.M., Bjørnstad, O.N. and
Liebhold, A.M. (2006). Landscape Mosaic Induces Traveling Waves of
Insect Outbreaks. Oecologia, 148(1), 51–60.
Koenig, W.D. (1999). Spatial autocorrelation of ecological phenomena.Trends Ecol Evol, 14(1), 22–26.
Huitu, O., Norrdahl, K. and
Korpimäki, E. (2003). Landscape effects on temporal and spatial
properties of vole population fluctuations. Oecologia, 135(2),
209-220.
Huitu, O., Laaksonen, J., Klemola, T. and Korpimäki, E. (2008). Spatial
dynamics of Microtus vole populations in continuous and
fragmented agricultural landscapes. Oecologia, 155(1), 53-61.
Ims, R.A. and Andreassen, H.P. (2005). Density-dependent dispersal and
spatial population dynamics. Proc Royal Soc B, 272(1566),
913–918.
Ims, R.A. and Hjermann, D.Ø. (2001). Condition-dependent dispersal. In:Dispersal {eds. Clobert, J., Danchin E., Dhont, A.A., Nichols,
J.D.} Oxford University Press, Oxford, pp. 203-216
Kapustina, M., Elston, T.C. and Jacobson, K. (2013). Compression and
dilation of the membrane-cortex layer generates rapid changes in cell
shape. J Cell Biol, 200(1), 95–108.
Lambin, X., Elston, D.A., Petty,
S.J. and MacKinnon, J.L. (1998). Spatial asynchrony and periodic
travelling waves in cyclic populations of field voles. Proc Royal
Soc B, 265(1405), 1491–1496.
Lambin, X., Aars, J., Piertney, S. (2001). Dispersal, intraspecific
competition, kin competition and kin facilitation: a review of the
empirical evidence. In: Dispersal {eds. Clobert, J., Danchin E.,
Dhont, A.A., Nichols, J.D.} Oxford University Press, Oxford, pp.
110-122
Lambin, X., Bretagnolle, V. and
Yoccoz, N.G. (2006). Vole population cycles in northern and southern
Europe: is there a need for different explanations for single pattern?J Anim Ecol, 75(2), 340-349.
Levin, S.A. (1974). Dispersion and Population Interactions. Am
Nat, 108(960), 207–228.
Li, Z., Gao, M., Hui, C., Han, X. and Shi, H. (2005). Impact of predator
pursuit and prey evasion on synchrony and spatial patterns in
metapopulation. Ecol Modell, 185(2-4), 245–254.
Liebhold, A., Koenig, W.D. and Bjørnstad, O.N. (2004). Spatial Synchrony
in Population Dynamics. Annu Rev Ecol Evol Syst, 35(1), 467–490.
Pedersen T.L. (2020). patchwork:
The Composer of Plots. https://patchwork.data-imaginist.com,
https://github.com/thomasp85/patchwork.
Luque-Larena, J.J., Mougeot, F., Viñuela, J., Jareño, D., Arroyo, L.,
Lambin, X. et al. (2013). Recent large-scale range expansion and
outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic
Appl Ecol, 14(5), 432–441.
Mackinnon, J.L., Petty, S.J.,
Elston, D.A., Thomas, C.J., Sherratt, T.N. and Lambin, X. (2001). Scale
invariant spatio-temporal patterns of field vole density. J Anim
Ecol, 70(1), 101–111.
Maron, J.L. and Harrison, S. (1997). Spatial Pattern Formation in an
Insect Host-Parasitoid System. Science, 278(5343), 1619–1621.
Martinet, L.-E., Fiddyment, G., Madsen, J.R., Eskandar, E.N., Truccolo,
W., Eden, U.T., et al. (2017). Human seizures couple across
spatial scales through travelling wave dynamics. Nat Commun,
8(1), 14896.
Moss, R., Elston, D.A. and Watson, A. (2000). Spatial asynchrony and
demographic traveling waves during red grouse population cycles.Ecology, 81(4), 981-989.
Mougeot, F., Lambin, X., Rodríguez‐Pastor, R., Romairone, J. and
Luque‐Larena, J. (2019). Numerical response of a mammalian specialist
predator to multiple prey dynamics in Mediterranean farmlands.Ecology, 100(9).
Müller, S.C., Mair, T. and Steinbock, O. (1998). Traveling waves in
yeast extract and in cultures of Dictyostelium discoideum.Biophys Chem, 72(1-2), 37–47.
Oli, M.K. (2019). Population cycles in voles and lemmings: state of the
science and future directions. Mamm Rev, 49(3), 226–239.
Pedersen, E.J., Miller, D.L., Simpson, G.L. and Ross, N. (2019).
Hierarchical generalized additive models in ecology: an introduction
with mgcv. PeerJ, 7, e6876.
Pinot, A., Barraquand, F., Tedesco, E., Lecoustre, V., Bretagnolle, V.
and Gauffre, B. (2016). Density-dependent reproduction causes winter
crashes in a common vole population. Popul Ecol, 58(3), 395–405.
R Core Team (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Rodríguez-Pastor, R., Escudero,
R., Vidal, D., Mougeot, F., Arroyo, B., Lambin, X., et al.
(2017). Density-dependent prevalence of Francisella tularensis in
fluctuating vole populations, northwestern Spain. Emerg Infect
Dis, 23(8), 1377.
Rodríguez-Pastor, R., Escudero,
R., Lambin, X., Vidal, M.D., Gil, H., Jado, I., et al. (2018).
Zoonotic pathogens in fluctuating common vole (Microtus arvalis)
populations: occurrence and dynamics. Parasitology, 146(3),
389–398.
Roos D., Saldaña C.C., Arroyo B., Mougeot F., Luque-Larena J.J., &
Lambin X., 2019. Unintentional effects of environmentally-friendly
farming practices: Arising conflicts between zero-tillage and a crop
pest, the common vole (Microtus arvalis). Agric Ecosyst
Environ, 272, 105-113
Royama, T. (1992).Analytical population dynamics. Springer, Dordrecht.
Satake, A. and Iwasa, Y. (2002).
Spatially limited pollen exchange and a long‐range synchronization of
trees. Ecology, 83(4), 993-1005.
Sherratt, J.A., Eagan, B.T. and Lewis, M.A. (1997). Oscillations and
chaos behind predator–prey invasion: mathematical artifact or
ecological reality? Philos Trans R Soc Lond, B, Biol Sci,
352(1349), 21–38.
Sherratt, T.N., Lambin, X., Petty,
S.J., Mackinnon, J.L., Coles, C.F. and Thomas, C.J. (2000). Use of
coupled oscillator models to understand synchrony and travelling waves
in populations of the field vole Microtus agrestis in northern
England. J Appl Ecol, 37(s1), 148–158.
Sherratt, J.A. (2001). Periodic travelling waves in cyclic predator-prey
systems. Ecol Lett, 4(1), 30–37.
Sherratt, J.A., Lambin, X., Thomas, C.J. and Sherratt, T.N. (2002).
Generation of periodic waves by landscape features in cyclic
predator–prey systems. Proc Royal Soc B, 269(1489), 327–334.
Sherratt, J.A. (2003). Periodic Travelling Wave Selection by Dirichlet
Boundary Conditions in Oscillatory Reaction-Diffusion Systems.SIAM J Appl Math, 63(5), 1520–1538.
Sherratt, J.A., Lambin, X. and Sherratt, T.N. (2003). The Effects of the
Size and Shape of Landscape Features on the Formation of Traveling Waves
in Cyclic Populations. Am Nat, 162(4), 503–513.
Sherratt, J.A. and Smith, M.J. (2008). Periodic travelling waves in
cyclic populations: field studies and reaction–diffusion models.J R Soc Interface, 5(22), 483–505.
Sherratt, J.A. (2016). Invasion Generates Periodic Traveling Waves
(Wavetrains) in Predator-Prey Models with Nonlocal Dispersal. SIAM
J Appl Math, 76(1), 293–313.
Smith, M.J. and Sherratt, J.A. (2007). The effects of unequal diffusion
coefficients on periodic travelling waves in oscillatory
reaction–diffusion systems. Phys D: Nonlinear Phenom, 236(2),
90–103.
Sprugel, D.G. (1976). Dynamic structure of wave-regenerated Abies
balsamea forests in the north-eastern United States. J Ecol,
889-911.
Sutherland, W.J., Gill, J.A. and Norris, K. (2004). Density dependent
dispersal: concepts, evidence, mechanisms and consequences. In:Dispersal {eds. Bullock, J.M., Kneward, R.E., Hails, R.}
Blackwells, Oxford, pp. 134-151
Sundell, J., Huitu, O., Henttonen, H., Kaikusalo, A., Korpimäki, E.,
Pietiäinen, H., et al. (2004). Large‐scale spatial dynamics of
vole populations in Finland revealed by the breeding success of
vole‐eating avian predators. J Anim Ecol, 73(1), 167-178.
Tedesco, P. and Hugueny, B.
(2006). Life history strategies affect climate based spatial synchrony
in population dynamics of West African freshwater fishes. Oikos,
115(1), 117-127.
Vasseur, D.A. and Fox, J.W.
(2009). Phase-locking and environmental fluctuations generate synchrony
in a predator–prey community. Nature, 460(7258), 1007–1010.
Vindstad, O.P.L., Jepsen, J.U.,
Yoccoz, N.G., Bjørnstad, O.N., Mesquita, M. d. S. and Ims, R.A. (2019).
Spatial synchrony in sub‐arctic geometrid moth outbreaks reflects
dispersal in larval and adult life cycle stages. J Anim Ecol,
88(8), 1134–1145.
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York.
Wood, S.N. (2011) Fast stable
restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. J R Stat Soc Ser B,73(1), 3-36
Ydenberg, R.C. (1987). Nomadic Predators and Geographical Synchrony in
Microtine Population Cycles. Oikos, 50(2), 270–272.