5 References
[1] Kouranova, E., Forbes, K., Zhao, G., Warren, J., Bartels, A.,
Wu, Y., Cui, X. (2016). CRISPRs for optimal targeting: Delivery of
CRISPR components as DNA, RNA, and protein into cultured cells and
single-cell embryos. Hum. Gene Ther. , 27, 464–475. DOI:
10.1089/hum.2016.009.
[2] DeWitt, M. A., Corn, J. E., Carroll, D. (2014). Genome editing
via delivery of Cas9 ribonucleoprotein. Methods , 121-122,
9–15.DOI: 10.1016/j.ymeth.2017.04.003.
[3] Anders, C., Jinek, M. (2014). In vitro enzymology of Cas9.Meth . Enzymol , 546, 1–20. DOI:
10.1016/B978-0-12-801185-0.00001-5.
[4] Nishimasu, H., Cong, L., Yan, W. X., Ran, F. A. Zetsche, B., Li,
Y., … Nureki, O et al. (2015). Crystal structure of
Staphylococcus aureus Cas9. Cell , 162, 1113–1126. DOI:
10.1016/j.cell.2015.08.007.
[5] Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J.,
Almendros, C. (2009). Short motif sequences determine the targets of the
prokaryotic CRISPR defence system. Microbiology , 155, 733–740.
DOI: 10.1099/mic.0.023960-0.
[6] Friedland, A. E., Baral, R., Singhal, P., Loveluck, K., Shen,
S., Sanchez, M., … Bumcrot, D. (2015). Characterization of
Staphylococcus aureus Cas9: A smaller Cas9 for all-in-one
adeno-associated virus delivery and paired nickase applications.Genome Biol ., 16, 257.DOI: 10.1186/s13059-015-0817-8.
[7] Zuo, Z., Liu, J., (2016). Cas9-catalyzed DNA cleavage generates
staggered ends: Evidence from molecular dynamics simulations.Sci . Rep ., 5, 37584. DOI: 10.1038/srep37584.
[8] Stephenson, A. A., Raper, A. T., Suo, Z. (2018). Bidirectional
degradation of DNA cleavage products catalyzed by CRISPR/Cas9. J.
Am. Chem. Soc ., 140, 3743–3750. DOI: 10.1021/jacs.7b13050.
[9] Yourik, P., Fuchs, R. T., Mabuchi, M., Curcuru, J. L. Robb, G.
(2019). Staphylococcus aureus Cas9 is a multiple-turnover enzyme.RNA , 25, 35–44. DOI: 10.1261/rna.067355.118.
[10] Li, J.-F., Norville, J. E., Aach, J., McCormack, M. Zhang, D.,
Bush, J., … Sheen, J. (2013). Multiplex and homologous
recombination-mediated genome editing in Arabidopsis and Nicotiana
benthamiana using guide RNA and Cas9. Nat. Biotechnol. ,
31, 688–691. DOI: 10.1038/nbt.2654.
[11] Witte, C. P., Noel, L., Gielbert, J., Parker, J. Romeis, T.
(2004). Rapid one-step protein purification from plant material using
the eight-amino acid StrepII epitope. Plant Mol Biol, 55 ,
135–147.
[12] Buntru, M., Vogel, S., Stoff, K., Spiegel, H., Schillberg, S.
(2015). A versatile coupled cell-free transcription-translation system
based on tobacco BY-2 cell lysates. Biotechnol. Bioeng. , 112,
867–878. DOI: 10.1002/bit.25502.
[13] Guan, J. C., Koch, K. E., Suzuki, M., Wu, S. Latshaw, S.,
Petruff, T., … McCarty, D. R. (2012). Diverse roles of
strigolactone signaling in maize architecture and the uncoupling of a
branching-specific subnetwork. Plant Physiol. , 160, 1303–1317.
DOI: 10.1104/pp.112.204503.
[14] Park, J., Bae, S., Kim, J.-S. (2015). Cas-Designer: a web-based
tool for choice of CRISPR-Cas9 target sites. Bioinformatics, 31,4014–4016. DOI: 10.1093/bioinformatics/btv537.
[15] Yeliseev, A., Zoubak, L., Schmidt, T. G. M. (2016). Application
of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a
G protein-coupled cannabinoid receptor. Protein Expres. Purif .,
131, 109–118. DOI: 10.1016/j.pep.2016.11.006.
[16] Walton, R. T., Christie, K. A., Whittaker, M. N., Kleinstiver,
B. P. (2020). Unconstrained genome targeting with near-PAMless
engineered CRISPR-Cas9 variants. Science , 368, 290–296. DOI:
10.1126/science.aba8853.
[17] Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L.,
Sun, N., … Liu, D. R. (2018). Evolved Cas9 variants with broad
PAM compatibility and high DNA specificity. Nature , 556, 57, DOI:
10.1038/nature26155.
[18] Chiba, C. H., Knirsch, M. C., Azzoni, A. R., Moreira, A. R.,
Stephano, M. A. (2021). Cell-free protein synthesis: advances on
production process for biopharmaceuticals and immunobiological products.Biotechniques. DOI: 10.2144/btn-2020-0155.
[19] Chandrasekaran, A., Singh, A. K. (2014). One-pot, microscale
cell-free enzyme expression and screening, in: Alexandrov, K., Johnston,
W. A. (Ed.). Cell-free protein synthesis: Methods and protocols / edited
by Kirill Alexandrov and Wayne A. Johnston, Institute for Molecular
Bioscience, The University of Queensland, St. Lucia, QLD, Australia,
Humana Press, New York, pp. 55–69.
[20] Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe,
T., Ishii, H., … Kondo, A. (2017). Targeted base editing in rice
and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat.
Biotechnol. , 35, 441–443, DOI: 10.1038/nbt.3833.
[21] Nakamura, M., Gao, Y., Dominguez, A. A., Qi, L. S. (2021).
CRISPR technologies for precise epigenome editing. Nat. Cell
Biol., 23, 11–22, DOI: 10.1038/s41556-020-00620-7.
[22] Shakirova, K. M., Ovchinnikova, V. Y., Dashinimaev, E. B.
(2020). Cell reprogramming with CRISPR/Cas9 based transcriptional
regulation systems. Front. Bioeng. Biotechnol., 8, 882, DOI:
10.3389/fbioe.2020.00882.