References:
  1. Rae, Y., Benaarbia, A., Hughes, J., Sun, W., Experimental characterisation and computational modelling of cyclic viscoplastic behaviour of turbine steel. International Journal of Fatigue , 2019; 124 : p. 581-594.
  2. Li, M., Barrett, A. R., Scully, S., Harrison, M.N., Leen, S.B., O’Donoghue, P.E., Cyclic plasticity of welded P91 material for simple and complex power plant connections. International Journal of Fatigue , 2016; 87 : p. 391-404.
  3. Li, M., Benaarbia, A., Morris, A., Sun, W., Assessment of potential service-life performance for MarBN steel power plant header under flexible thermomechanical operations. International Journal of Fatigue , 2020; 135 : 105565.
  4. Rhys-Jones, T.N., and Cunningham, T.P., The influence of surface coatings on the fatigue behaviour of aero engine materials.Surface and Coatings Technology , 1990; 42 (1): p. 13-19.
  5. Hyde, T.H., and Sun, W., A novel, high-sensitivity, small specimen creep test. Journal of Strain Analysis for Engineering Design , 2009; 44 (3): p. 171-185.
  6. Chen, H., Jackson, G.A., and Sun, W., An overview of using small punch testing for mechanical characterization of MCrAlY bond coats.Journal of Thermal Spray Technology , 2017; 26 (6): p. 1222-1238.
  7. Chen, H., and Hyde, T.H., Use of multi-step loading small punch test to investigate the ductile-to brittle transition behaviour of a thermally sprayed CoNiCrAlY coating. Materials Science and Engineering A , 2017; 680 : p. 203-209.
  8. Hyde, T. H., Sun W., and Williams, J. A., The requirements for and the use of miniature test specimens to provide mechanical and creep properties of materials: - a review. International Materials Reviews , 2007; 52 (4), 213-255.
  9. Hyde, T.H., Hyde, C.J., and Sun, W., Theoretical basis and practical aspects of small specimen creep testing. Journal of Strain Analysis for Engineering Design , 2013; 48 (2): p. 112-125.
  10. Hyde, T.H., Hyde, C.J., and Sun, W., A basis for selecting the most appropriate small specimen creep test type. Journal of Pressure Vessel Technology-Transactions of the Asme , 2014;136 (2): p. 024502-1- 024502-6.
  11. Morris, A., Cacciapuoti, B., and Sun, W., The role of small specimen creep testing within a life assessment framework for high temperature power plant. International Materials Reviews , 2018;63 (2): p. 102-137.
  12. Wen, W., Becker, A.A., and Sun, W., Determination of material properties of thin films and coatings using indentation tests: a review. Journal of Materials Science , 2017;52 (21): p. 12553-12573.
  13. Wen, W., Sun, W., and Becker, A.A., A two-material miniature specimen test method and the associated inverse approach for high temperature applications. Theoretical and Applied Fracture Mechanics , 2019; 99 : p. 1-8.
  14. Xu, X., Benaarbia, A., Allena, D.J., Jepsona, M.A.E., Sun, W., Investigation of microstructural evolution and creep rupture behaviour of 9% Cr MarBN steel welds. Materials Science and Engineering A , 2020; 791 : 139546.
  15. Dyson, C. C., Sun, W., Hyde, C. J., Brett, S. J., and Hyde, T. H., Use of small specimen creep data in component life management: a review. Materials Science and Technology , 2016;32 (15): p. 1567-1581.
  16. Hyde, T. H., Sun, W., Becker, A. A., Williams, J. A., Creep properties and failure assessment of new and fully repaired P91 pipe welds at 923 K. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications , 2004;218 (L3): p. 211-222.
  17. Li, M., Sun, F. W., Li, D. F., O’Donoghue, P. E., O’Dowd, N. P., Leen, S. B., The effect of ferrite phases on the micromechanical response and crack initiation in the inter-critical heat-affected zone of a welded 9Cr martensitic steel, Fatigue & Fracture of Engineering Materials & Structures , 2018; 41 : p. 1245-1259.
  18. Gussev, M. N., Howard, R. H., Terrani, K. A. T., Field, K. G., Sub-size tensile specimen design for in-reactor irradiation and post-irradiation testing. Nuclear Engineering and Design , 2017;320 : p. 298-308.
  19. Sastry, D.H., Impression creep technique - An overview.Materials Science and Engineering A, 2005; 409 (1-2): p. 67-75.
  20. Hyde, T.H., Sun, W., and Becker, A.A., Analysis of the impression creep test method using a rectangular indenter for determining the creep properties in welds. International Journal of Mechanical Sciences , 1996; 38 (10): p. 1089-1102.
  21. Kumar, S., Ramteke, S., Chelik, S., Vanitha, C., Creep behavior of Al-Si-Mg alloy by hot impression creep test. Materials Today-Proceedings , 2021; 41 : p. 1207-1211.
  22. Dobeš, F. and Milička, K., On the Monkman–Grant relation for small punch test data. Materials Science and Engineering: A , 2002; 336 (1-2): p. 245-248.
  23. Bruchhausen, M., Holmström, S., Simonovski, I., Austin, T., Lapetite, J.-M., Ripplinger, S., Haan, F., Recent developments in small punch testing: Tensile properties and DBTT. Theoretical and Applied Fracture Mechanics , 2016; 86 : p. 2-10.
  24. Simonovski, I., Holmstrom, S., and Bruchhausen, M., Small punch tensile testing of curved specimens: Finite element analysis and experiment. International Journal of Mechanical Sciences , 2017; 120 : p. 204-213.
  25. Jackson, G.A., Bai, M., Pala, Z., Hussain, T., Sun, W., Small punch creep testing of thermally sprayed Stellite 6 coating: A comparative study of as-received vs post-heat treatment. Materials Science and Engineering A , 2019; 749 : p. 137-147.
  26. Jackson, G.A., Sun, W., and McCartney, D.G., The influence of microstructure on the ductile to brittle transition and fracture behaviour of HVOF NiCoCrAlY coatings determined via small punch tensile testing. Materials Science and Engineering A , 2019;754 : p. 479-490.
  27. Cuesta, I.I., and Alegre, J.M., Determination of the fracture toughness by applying a structural integrity approach to pre-cracked small punch test specimens. Engineering Fracture Mechanics , 2011; 78 (2): p. 289-300.
  28. Yu, H.Y., Zhou, G.Y., Tu, S.T., Zhang, F.K., A new approach to evaluate material creep properties by C-shape ring specimen with fixed constraints. International Journal of Pressure Vessels and Piping , 2021; 191 : 104357.
  29. Hyde, T.H., Sun, W., Nardone, S., De Bruycker, E., Small ring testing of a creep resistant material. Materials Science and Engineering A , 2013; 586 : p. 358-366.
  30. Hyde, T.H., Ali, B.S.M., and Sun, W., Analysis and design of a small, two-bar creep test specimen. Journal of Engineering Materials and Technology-Transactions of the ASME , 2013; 135 (4): p. 041006-1-041006-9.
  31. Wen, W., Jackson, G.A., Li, H., Sun, W., An experimental and numerical study of a CoNiCrAlY coating using miniature specimen testing techniques. International Journal of Mechanical Sciences , 2019;157 : p. 348-356.
  32. Cortellino, F., Rouse, J.P., Cacciapuoti, B., Sun, W., and Hyde, T. H., Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples. Exp Mech. , 2017;57 (8): p.1193-1212.
  33. Wen, W., Jin, X.Z, Liu, H., Sun, W., Determination of creep damage properties from small punch creep tests considering pre-straining effect using an inverse approach. Mechanics of Materials , 2019;139 : 103171.
  34. Peng, Y.Q., Cai, L.X., Chen, H., Bao, C., A new method based on energy principle to predict uniaxial stress–strain relations of ductile materials by small punch testing, International Journal of Mechanical Sciences , 2018; 138-139 : p. 244-249.
  35. Li, Y.Z., Stevens, P., Sun, M.C., Zhang, C.Q., Wang, W., Improvement of predicting mechanical properties from spherical indentation test,International Journal of Mechanical Sciences , 2016;117 : p. 182-196.
  36. Wang, H., Wang, Q.D., Boehlert, C.J., Yang, J., Yin, D.D., Yuan, J., Ding, W.J., The impression creep behavior and microstructure evolution of cast and cast-then-extruded Mg-10Gd-3Y-0.5Zr, Materials Science and Engineering: A , 2016; 649 : p. 313-324.
  37. Sakthivel, T., Sasikala, G., Vasudevan, M., Role of microstructures on heterogeneous creep behaviour across P91 steel weld joint assessed by impression creep testing, Materials Characterization , 2020;159 , 109988.
  38. Zhuang, F.K., Tu, S.T., Zhou, G.Y., Wang, Q.Q., Assessment of creep constitutive properties from three-point bending creep test with miniaturized specimens. Journal of Strain Analysis for Engineering Design , 2014; 49 (7): p. 482-491.
  39. Yang, S.S., Cao, Y., Ling, X., Qian, Y., Assessment of mechanical properties of Incoloy800H by means of small punch test and inverse analysis. Journal of Alloys and Compounds , 2017; 695 : p. 2499-2505.
  40. J., Džugan, R., Procházka, P., Konopík, Sokolov, M.A., Lucon (Eds.), E., Small Specimen Test Techniques, 6th Volume,ASTM International , New York, 2015; p. 12–29.
  41. J. Džugan, P., Konopik, M., Rund, R., Prochazka, Determination of Local Tensile and Fatigue Properties with the Use of Sub-Sized Specimens, ASME conference , Boston, 2015.
  42. J., Džugan, R., Procházka, P., Konopík, Low Cycle Fatigue Tests with the Use of Miniaturized Test Specimens, ASME conference , Hawai, 2017.
  43. Lancaster, R.J., Illsley, H.W., Hurst, R., Jeffs, S., Baxter, G., A novel approach to small punch fatigue testing. Key Engineering Materials , 2017; 734 : p. 61-69.
  44. Lancaster, R.J., Jeffs, S.P., Illsley, H.W., Argyrakis, C., Hurst, R.C., Baxter, G.J., Development of a novel methodology to study fatigue properties using the small punch test. Materials Science and Engineering A , 2019; 748 : p. 21-29.
  45. Nozaki, M., Sakane, M., and Fujiwara, M., Low cycle fatigue testing using miniature specimens. International Journal of Fatigue , 2020; 137 : 105636.
  46. Nogami, S., Hasegawa, A., and Yamazaki, M., Fatigue properties of ferritic/martensitic steel after neutron irradiation and helium implantation. Nuclear Materials and Energy , 2020; 24 : 100764.
  47. Pahlavanyali, S., Rayment, A., Roebuck, B., Drew, G., Rae, C.M.F., Thermo-mechanical fatigue testing of superalloys using miniature specimens. International Journal of Fatigue , 2008;30 (2): p. 397-403.
  48. Turnbull, A. and Zhou, S., Comparative evaluation of environment induced cracking of conventional and advanced steam turbine blade steels. Part 1: Stress corrosion cracking. Corrosion Science , 2010; 52 (9): p. 2936-2944.
  49. Benaarbia, A., Rae, Y., and Sun, W., Unified viscoplasticity modelling and its application to fatigue-creep behaviour of gas turbine rotor.International Journal of Mechanical Sciences , 2018; 136: p. 36-49.
  50. Dai, C.Y., Zhang, B., Xu, J., Zhan, G. P., On size effects on fatigue properties of metal foils at micrometer scales, Material Science and Engineering: A , 2013; 575 , p. 217-222.
  51. Kohno, Y., Kohyama, A., Hamilton, M.L., Hirose, T., Katoh, Y., Garner, F.A., Specimen size effects on the tensile properties of JPCA and JFMS. Journal of Nuclear Materials , 2000; 283 : p. 1014-1017.
  52. Howard, C., Frazer, D., Lupinacci, A., Parker, S., Valiev, R.Z., Shin, C., Choi, W. B., Hosemann, P., Investigation of specimen size effects by in-situ microcompression of equal channel angular pressed copper.Materials Science and Engineering A , 2016; 649 : p. 104-113.
  53. Gussev, M., Busby, J.T., Field, K.G., Sokolov, M.A., Role of scale factor during tensile testing of small specimens, Small Specimen Test Techniques: 6th Volume. 2015, West Conshohocken, PA: ASTM International , Jan 29, 2014-Jan 31, 2014.
  54. Chernobaeva, A.A., Medvedev, K.I., Zhurko, D.A., Kostromin, V.N., Skundin, M.A., Erak, D.Y., Mikhin, O.V., Scale factor of standard and mini Charpy specimens from VVER-1000 RPV materials.International Journal of Pressure Vessels and Piping , 2016;145 : p. 23-28.
  55. Callaghan, M.D., Humphries, S.R., Law, M., Bendeich, P., and Yeung, W.Y., Special testing equipment and validation of measurement methodologies for high temperature low cycle fatigue testing of miniature metallic specimens. Experimental Mechanics , 2016;56 (6): p. 1039-1050.
  56. Frederick, C.O., and Armstrong, P.J., A mathematical representation of the multiaxial Bauschinger effect. Materials at High Temperatures , 2007; 24 (1): p. 11-26.
  57. Hyde, T.H., Yehia, K.A. and Becker, A.A., Interpretation of impression creep data using a reference stress approach. International Journal of Mechanical Sciences , 1993; 35 (6): p. 451-462.
  58. Chen, H., and Cai L.X., Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle, Acta Materialia , 2016; 121 , p. 181-189.
  59. Sweeney, C.A., O’Brien, B., Dunne, F.P.E., McHugh, P.E., Leen, S.B., Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Materialia , 2014; 78 : p. 341-353.
  60. Barrett, R.A., P.E., O’Donoghue, and Leen, S.B., An improved unified viscoplastic constitutive model for strain-rate sensitivity in high temperature fatigue. International Journal of Fatigue , 2013;48 : p. 192-204.
  61. Nieslony, A., Chalid, D., Kaufmann, H., Krug, P., New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility. International Journal of Fatigue , 2008; 30 (10-11): p. 1967-1977.
  62. Kyaw, S.T., Rouse, J.P., Lu, J.W., Sun, W., Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel, International Journal of Mechanical Science , 2016;115-116 , p. 168-179.
  63. Li, D.H., Li, M., Shang D.G., Gupta, A., Sun, W., Physically-based modeling of cyclic softening and damage behaviors for a martensitic turbine rotor material at elevated temperature. International Journal of Fatigue , 2021; 142 : 105956.
  64. Rae, Y., Guo, X., Benaarbia, A., Neate, N., Sun, W., On the microstructural evolution in 12% Cr turbine steel during low cycle fatigue at elevated temperature. Materials Science and Engineering A , 2020; 773 : 138864.
  65. Zhang, B., Song, Z.M., Lei, L.M., Kang, L., Zhang, G.P., Geometrical scale-sensitive fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys with ɑ/β lamellar microstructures, Journal of Materials Science & Technology , 2014; 30 (12), p.1287-1288.
  66. Wan, H.Y., Chen, G.F., Li, C.P., Qi, X.B., Zhang, G.P., Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens, Journal of Materials Science & Technology , 2019; 35 , p. 1137-1146. ­