References:
- Rae, Y., Benaarbia, A., Hughes, J., Sun, W., Experimental
characterisation and computational modelling of cyclic viscoplastic
behaviour of turbine steel. International Journal of
Fatigue , 2019; 124 : p. 581-594.
- Li, M., Barrett, A. R., Scully, S., Harrison, M.N., Leen, S.B.,
O’Donoghue, P.E., Cyclic plasticity of welded P91 material for simple
and complex power plant connections. International
Journal of Fatigue , 2016; 87 : p. 391-404.
- Li, M., Benaarbia, A., Morris, A., Sun, W., Assessment of potential
service-life performance for MarBN steel power plant header under
flexible thermomechanical operations. International
Journal of Fatigue , 2020; 135 : 105565.
- Rhys-Jones, T.N., and Cunningham, T.P., The influence of surface
coatings on the fatigue behaviour of aero engine materials.Surface and Coatings Technology , 1990; 42 (1): p.
13-19.
- Hyde, T.H., and Sun, W., A novel, high-sensitivity, small specimen
creep test. Journal of Strain Analysis for Engineering Design ,
2009; 44 (3): p. 171-185.
- Chen, H., Jackson, G.A., and Sun, W., An overview of using small punch
testing for mechanical characterization of MCrAlY bond coats.Journal of Thermal Spray Technology , 2017; 26 (6): p.
1222-1238.
- Chen, H., and Hyde, T.H., Use of multi-step loading small punch test
to investigate the ductile-to brittle transition behaviour of a
thermally sprayed CoNiCrAlY coating. Materials Science and
Engineering A , 2017; 680 : p. 203-209.
- Hyde, T. H., Sun W., and Williams, J. A., The requirements for and the
use of miniature test specimens to provide mechanical and creep
properties of materials: - a review. International Materials
Reviews , 2007; 52 (4), 213-255.
- Hyde, T.H., Hyde, C.J., and Sun, W., Theoretical basis and practical
aspects of small specimen creep testing. Journal of
Strain Analysis for Engineering Design , 2013; 48 (2): p.
112-125.
- Hyde, T.H., Hyde, C.J., and Sun, W., A basis for selecting the most
appropriate small specimen creep test type. Journal of
Pressure Vessel Technology-Transactions of the Asme , 2014;136 (2): p. 024502-1- 024502-6.
- Morris, A., Cacciapuoti, B., and Sun, W., The role of small specimen
creep testing within a life assessment framework for high temperature
power plant. International Materials Reviews , 2018;63 (2): p. 102-137.
- Wen, W., Becker, A.A., and Sun, W., Determination of material
properties of thin films and coatings using indentation tests: a
review. Journal of Materials Science , 2017;52 (21): p. 12553-12573.
- Wen, W., Sun, W., and Becker, A.A., A two-material miniature specimen
test method and the associated inverse approach for high temperature
applications. Theoretical and Applied Fracture
Mechanics , 2019; 99 : p. 1-8.
- Xu, X., Benaarbia, A., Allena, D.J., Jepsona, M.A.E., Sun, W.,
Investigation of microstructural evolution and creep rupture behaviour
of 9% Cr MarBN steel welds. Materials Science and Engineering
A , 2020; 791 : 139546.
- Dyson, C. C., Sun, W., Hyde, C. J., Brett, S. J., and Hyde, T. H., Use
of small specimen creep data in component life management: a
review. Materials Science and Technology , 2016;32 (15): p. 1567-1581.
- Hyde, T. H., Sun, W., Becker, A. A., Williams, J. A., Creep properties
and failure assessment of new and fully repaired P91 pipe welds at 923
K. Proceedings of the Institution of Mechanical Engineers
Part L-Journal of Materials-Design and Applications , 2004;218 (L3): p. 211-222.
- Li, M., Sun, F. W., Li, D. F., O’Donoghue, P. E., O’Dowd, N. P., Leen,
S. B., The effect of ferrite phases on the micromechanical response
and crack initiation in the inter-critical heat-affected zone of a
welded 9Cr martensitic steel, Fatigue & Fracture of Engineering
Materials & Structures , 2018; 41 : p. 1245-1259.
- Gussev, M. N., Howard, R. H., Terrani, K. A. T., Field, K. G.,
Sub-size tensile specimen design for in-reactor irradiation and
post-irradiation testing. Nuclear Engineering and Design , 2017;320 : p. 298-308.
- Sastry, D.H., Impression creep technique - An overview.Materials Science and Engineering A, 2005; 409 (1-2):
p. 67-75.
- Hyde, T.H., Sun, W., and Becker, A.A., Analysis of the impression
creep test method using a rectangular indenter for determining the
creep properties in welds. International Journal of
Mechanical Sciences , 1996; 38 (10): p. 1089-1102.
- Kumar, S., Ramteke, S., Chelik, S., Vanitha, C., Creep behavior of
Al-Si-Mg alloy by hot impression creep test. Materials
Today-Proceedings , 2021; 41 : p. 1207-1211.
- Dobeš, F. and Milička, K., On the Monkman–Grant relation for small
punch test data. Materials Science and Engineering: A ,
2002; 336 (1-2): p. 245-248.
- Bruchhausen, M., Holmström, S., Simonovski, I., Austin, T., Lapetite,
J.-M., Ripplinger, S., Haan, F., Recent developments in small punch
testing: Tensile properties and DBTT. Theoretical and
Applied Fracture Mechanics , 2016; 86 : p. 2-10.
- Simonovski, I., Holmstrom, S., and Bruchhausen, M., Small punch
tensile testing of curved specimens: Finite element analysis and
experiment. International Journal of Mechanical
Sciences , 2017; 120 : p. 204-213.
- Jackson, G.A., Bai, M., Pala, Z., Hussain, T., Sun, W., Small punch
creep testing of thermally sprayed Stellite 6 coating: A comparative
study of as-received vs post-heat treatment. Materials
Science and Engineering A , 2019; 749 : p. 137-147.
- Jackson, G.A., Sun, W., and McCartney, D.G., The influence of
microstructure on the ductile to brittle transition and fracture
behaviour of HVOF NiCoCrAlY coatings determined via small punch
tensile testing. Materials Science and Engineering A , 2019;754 : p. 479-490.
- Cuesta, I.I., and Alegre, J.M., Determination of the fracture
toughness by applying a structural integrity approach to pre-cracked
small punch test specimens. Engineering Fracture Mechanics ,
2011; 78 (2): p. 289-300.
- Yu, H.Y., Zhou, G.Y., Tu, S.T., Zhang, F.K., A new approach to
evaluate material creep properties by C-shape ring specimen with fixed
constraints. International Journal of Pressure Vessels and
Piping , 2021; 191 : 104357.
- Hyde, T.H., Sun, W., Nardone, S., De Bruycker, E., Small ring testing
of a creep resistant material. Materials Science and Engineering
A , 2013; 586 : p. 358-366.
- Hyde, T.H., Ali, B.S.M., and Sun, W., Analysis and design of a small,
two-bar creep test specimen. Journal of Engineering Materials
and Technology-Transactions of the ASME , 2013; 135 (4): p.
041006-1-041006-9.
- Wen, W., Jackson, G.A., Li, H., Sun, W., An experimental and numerical
study of a CoNiCrAlY coating using miniature specimen testing
techniques. International Journal of Mechanical Sciences , 2019;157 : p. 348-356.
- Cortellino, F., Rouse, J.P., Cacciapuoti, B., Sun, W., and Hyde, T.
H., Experimental and numerical analysis of initial plasticity in P91
steel small punch creep samples. Exp Mech. , 2017;57 (8): p.1193-1212.
- Wen, W., Jin, X.Z, Liu, H., Sun, W., Determination of creep damage
properties from small punch creep tests considering pre-straining
effect using an inverse approach. Mechanics of Materials , 2019;139 : 103171.
- Peng, Y.Q., Cai, L.X., Chen, H., Bao, C., A new method based on energy
principle to predict uniaxial stress–strain relations of ductile
materials by small punch testing, International Journal of
Mechanical Sciences , 2018; 138-139 : p. 244-249.
- Li, Y.Z., Stevens, P., Sun, M.C., Zhang, C.Q., Wang, W., Improvement
of predicting mechanical properties from spherical indentation test,International Journal of Mechanical Sciences , 2016;117 : p. 182-196.
- Wang, H., Wang, Q.D., Boehlert, C.J., Yang, J., Yin, D.D., Yuan, J.,
Ding, W.J., The impression creep behavior and microstructure evolution
of cast and cast-then-extruded Mg-10Gd-3Y-0.5Zr, Materials
Science and Engineering: A , 2016; 649 : p. 313-324.
- Sakthivel, T., Sasikala, G., Vasudevan, M., Role of microstructures on
heterogeneous creep behaviour across P91 steel weld joint assessed by
impression creep testing, Materials Characterization , 2020;159 , 109988.
- Zhuang, F.K., Tu, S.T., Zhou, G.Y., Wang, Q.Q., Assessment of creep
constitutive properties from three-point bending creep test with
miniaturized specimens. Journal of Strain Analysis for
Engineering Design , 2014; 49 (7): p. 482-491.
- Yang, S.S., Cao, Y., Ling, X., Qian, Y., Assessment of mechanical
properties of Incoloy800H by means of small punch test and inverse
analysis. Journal of Alloys and Compounds , 2017; 695 :
p. 2499-2505.
- J., Džugan, R., Procházka, P., Konopík, Sokolov, M.A., Lucon (Eds.),
E., Small Specimen Test Techniques, 6th Volume,ASTM International , New York, 2015; p. 12–29.
- J. Džugan, P., Konopik, M., Rund, R., Prochazka, Determination of
Local Tensile and Fatigue Properties with the Use of Sub-Sized
Specimens, ASME conference , Boston, 2015.
- J., Džugan, R., Procházka, P., Konopík, Low Cycle Fatigue Tests with
the Use of Miniaturized Test Specimens, ASME conference , Hawai,
2017.
- Lancaster, R.J., Illsley, H.W., Hurst, R., Jeffs, S., Baxter, G., A
novel approach to small punch fatigue testing. Key Engineering
Materials , 2017; 734 : p. 61-69.
- Lancaster, R.J., Jeffs, S.P., Illsley, H.W., Argyrakis, C., Hurst,
R.C., Baxter, G.J., Development of a novel methodology to study
fatigue properties using the small punch test. Materials Science
and Engineering A , 2019; 748 : p. 21-29.
- Nozaki, M., Sakane, M., and Fujiwara, M., Low cycle fatigue testing
using miniature specimens. International Journal of Fatigue ,
2020; 137 : 105636.
- Nogami, S., Hasegawa, A., and Yamazaki, M., Fatigue properties of
ferritic/martensitic steel after neutron irradiation and helium
implantation. Nuclear Materials and Energy , 2020; 24 :
100764.
- Pahlavanyali, S., Rayment, A., Roebuck, B., Drew, G., Rae, C.M.F.,
Thermo-mechanical fatigue testing of superalloys using miniature
specimens. International Journal of Fatigue , 2008;30 (2): p. 397-403.
- Turnbull, A. and Zhou, S., Comparative evaluation of environment
induced cracking of conventional and advanced steam turbine blade
steels. Part 1: Stress corrosion cracking. Corrosion Science ,
2010; 52 (9): p. 2936-2944.
- Benaarbia, A., Rae, Y., and Sun, W., Unified viscoplasticity modelling
and its application to fatigue-creep behaviour of gas turbine rotor.International Journal of Mechanical Sciences , 2018; 136: p.
36-49.
- Dai, C.Y., Zhang, B., Xu, J., Zhan, G. P., On size effects on fatigue
properties of metal foils at micrometer scales, Material Science
and Engineering: A , 2013; 575 , p. 217-222.
- Kohno, Y., Kohyama, A., Hamilton, M.L., Hirose, T., Katoh, Y., Garner,
F.A., Specimen size effects on the tensile properties of JPCA and
JFMS. Journal of Nuclear Materials , 2000; 283 : p.
1014-1017.
- Howard, C., Frazer, D., Lupinacci, A., Parker, S., Valiev, R.Z., Shin,
C., Choi, W. B., Hosemann, P., Investigation of specimen size effects
by in-situ microcompression of equal channel angular pressed copper.Materials Science and Engineering A , 2016; 649 : p.
104-113.
- Gussev, M., Busby, J.T., Field, K.G., Sokolov, M.A., Role of scale
factor during tensile testing of small specimens, Small Specimen
Test Techniques: 6th Volume. 2015, West Conshohocken, PA: ASTM
International , Jan 29, 2014-Jan 31, 2014.
- Chernobaeva, A.A., Medvedev, K.I., Zhurko, D.A., Kostromin, V.N.,
Skundin, M.A., Erak, D.Y., Mikhin, O.V., Scale factor of standard and
mini Charpy specimens from VVER-1000 RPV materials.International Journal of Pressure Vessels and Piping , 2016;145 : p. 23-28.
- Callaghan, M.D., Humphries, S.R., Law, M., Bendeich, P., and Yeung,
W.Y., Special testing equipment and validation of measurement
methodologies for high temperature low cycle fatigue testing of
miniature metallic specimens. Experimental Mechanics , 2016;56 (6): p. 1039-1050.
- Frederick, C.O., and Armstrong, P.J., A mathematical representation of
the multiaxial Bauschinger effect. Materials at High
Temperatures , 2007; 24 (1): p. 11-26.
- Hyde, T.H., Yehia, K.A. and Becker, A.A., Interpretation of impression
creep data using a reference stress approach. International
Journal of Mechanical Sciences , 1993; 35 (6): p. 451-462.
- Chen, H., and Cai L.X., Theoretical model for predicting uniaxial
stress-strain relation by dual conical indentation based on equivalent
energy principle, Acta Materialia , 2016; 121 , p.
181-189.
- Sweeney, C.A., O’Brien, B., Dunne, F.P.E., McHugh, P.E., Leen, S.B.,
Strain-gradient modelling of grain size effects on fatigue of CoCr
alloy. Acta Materialia , 2014; 78 : p. 341-353.
- Barrett, R.A., P.E., O’Donoghue, and Leen, S.B., An improved unified
viscoplastic constitutive model for strain-rate sensitivity in high
temperature fatigue. International Journal of Fatigue , 2013;48 : p. 192-204.
- Nieslony, A., Chalid, D., Kaufmann, H., Krug, P., New method for
evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood
equations with respect to compatibility. International Journal
of Fatigue , 2008; 30 (10-11): p. 1967-1977.
- Kyaw,
S.T., Rouse, J.P., Lu, J.W., Sun, W., Determination of material
parameters for a unified viscoplasticity-damage model for a P91 power
plant steel, International Journal of Mechanical Science , 2016;115-116 , p. 168-179.
- Li, D.H., Li, M., Shang D.G., Gupta, A., Sun, W., Physically-based
modeling of cyclic softening and damage behaviors for a martensitic
turbine rotor material at elevated temperature. International
Journal of Fatigue , 2021; 142 : 105956.
- Rae, Y., Guo, X., Benaarbia, A., Neate, N., Sun, W., On the
microstructural evolution in 12% Cr turbine steel during low cycle
fatigue at elevated temperature. Materials Science and
Engineering A , 2020; 773 : 138864.
- Zhang, B., Song, Z.M., Lei, L.M., Kang, L., Zhang, G.P., Geometrical
scale-sensitive fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si
alloys with ɑ/β lamellar microstructures, Journal of Materials
Science & Technology , 2014; 30 (12), p.1287-1288.
- Wan, H.Y., Chen, G.F., Li, C.P., Qi, X.B., Zhang, G.P., Data-driven
evaluation of fatigue performance of additive manufactured parts using
miniature specimens, Journal of Materials Science &
Technology , 2019; 35 , p. 1137-1146.