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We examine above-threshold ionization spectra of model atomic hydrogen in short infrared
laser pulses by solving the one-electron time-dependent Schrédinger equation in momentum space.
To bypass the difficulty of solving the time-dependent Schrodinger equation with the interacting
nonlocal Coulomb potential, we have recently formulated an alternative ab initio approach
[Ongonwou et al. Annals of Physics 375, 471 (2016)], which is relied on the expansion of the
atomic wavefunction and the interacting nonlocal Coulomb potential on a discrete basis set of
Coulomb Sturmians in momentum space. As far as short infrared laser pulses are concerned, we
have numerically evaluated the photoelectron momentum distributions, angular distributions and
bound states populations. The results obtained from our accurate new computationally method
are compared against predictions of other time-dependent calculations in the literature. This new
theoretical model shows its sensitivity to the carrier-envelope phase of the laser pulse and captures
the left-right dependence of the emitted photoelectrons momentum and angular distributions. More
precisely, short pulses manifest significant dependence of the differential ionization probability on
carrier-envelope phase of the laser pulse and broken forward-backward symmetry in the angular
distributions.
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1. INTRODUCTION

The experimental and theoretical investigations of
the interaction mechanisms of atoms, molecules and
clusters with intense laser fields represent one of the
most challenging problems of present day research.
In strong dependence on the laser parameters, very
different phenomena can be observed among which the
multiphoton processes, such as high-order harmonic
generation (HHG) [1-3] and above-threshold ionization
(ATI) (an extension of multiphoton ionization where
multiple photons are absorbed to not only access the
ionization continuum but to surpass the ionization
potential by more than one photon) [4-8] in atomic and
molecular systems. More particularly, the ionization
dynamics of the atomic systems has undergone very
strong development in the past decades, mainly related
to the rapid progress of high powerful laser technology,
namely, the possibility of generating extremely short and
intense pulses. Today, with the rapid advance of modern
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laser technologies, lasers of various frequencies and
different intensities, ultrashort and ultrafast laser pulses
of duration of a few femtoseconds have opened new fron-
tiers of science [9, 10] and are routinely available in many
laboratories [11]. Studies of this highly nonlinear process
of matter with strong laser pulses have revealed many in-
teresting features of physical and chemical processes [12].

While significant progresses have been made, some
issues such as the response of atoms to such laser pulses
remain open. In particular, the roles of Coulomb po-
tential, carrier-envelope phase (CEP) effects, frequency,
intensity, an additional laser pulse and non-dipole effects
in the dynamics of ionization are not completely clarified
and certainly still hide some surprises. A challenging
task was to develop a theoretical approach that takes
into account the laser-matter interaction at all levels
to describe these different kinds of phenomena. In this
framework, it seems interesting to recall in one hand
that, concerning the former, in the context of ionization
dynamics, de Bohan [13, 14] and other authors [15-20]
have shown the efficiency of the momentum space. As
results, the wave function remains more compact and
localized, the possibility to have access to ejection times
of wavepackets in the continuum as well as information



on the role of Coulomb potential on this mechanism. On
other hand we mention that interest in CEP-dependent
effects of few cycle laser pulses has grown since the late
1990s. Experiments on the ionization of hydrogen atom
with few-cycle pulses, mainly to accurately measure
CEP effects on the photoelectron spatial distributions
were undertaken by Brabec and Krausz [11], Wallace
et al. [21], Krausz and Ivanov [22], since the physics
of these phenomena is highly relevant to attosecond
science. For these experiments, the laser pulse duration
was slightly shorter 5.5 fs. Experimentally, the CEP of
consecutive pulses from a laser varies randomly over the
entire 27 range unless some CEP stabilization technique
is employed [23]. Another active stabilization technique
uses the CEP dependence of strong-field photoelectron
spectra to obtain the error signal [24]. One can also use
optical parametric amplification to obtain high-energy
pulses with passive CEP stability [25]. Achieving the
goal of agreement between theory and experiment has
led to validation of experimental techniques and to
novel calibration methods for strong-field experiments
[26]. Theoretically, calculations assume a completely
characterized electric field or vector potential waveform,
implying a fixed value of CEP. Telnov and Chu [27] have
presented a method for calculations of electron distribu-
tions after above-threshold multiphoton ionization from
the core region of a time-dependent wavepacket. They
included subtle effects related to the CEP dependence of
the total ionization probability and the electron energy
spectra. In a recent article, Chen and co-workers [28]
have used a numerical-basis-state method to solve the
TDSE in strong-field physics problems. They applied
the method to the hydrogen atom and reported results
for excitation and ionization probabilities as well as pho-
toelectron momentum distributions for different values
of laser parameters, such as intensity, pulse length, and
CEP. Sudrez and collaborators [17] developed an analyt-
ical description of multiphoton processes, which extends
the theoretical strong-field approximation (SFA) [29], for
both the direct and rescattering transition amplitudes
in atoms. As a test case, they chose a nonlocal atomic
separable potential and computed both the direct and
the rescattering transition amplitudes and thus the final
photoelectron momentum distribution. They showed
also that their model is sensitive to the CEP and can be
used to efficiently extract atomic structural information
and electron dynamics from measured photoelectron
spectra.

In our previous paper [30], we proposed a method
which proved to be fast and reliable for all practical
purposes in order to understand the multiphoton pro-
cesses. In this theoretical approach, we properly treated
the crucial problem of the non-locality and logarithmic
singularity exhibited by the Coulomb potential in the
TDSE in the momentum space. Our results showed the
good agreement with others results published in the
literature [28, 31-37]. The aim of this paper is to use our

novel spectral approach for investigating the CEP effects
on photoelectron momentum and angular distributions,
which properties differ significantly from those for long
pulses.

The paper is organized as follows: in section 2,
we give a brief description of our theoretical method,
which is based on the quasianalytical solution of the 3-
dimensional TDSE in the reciprocal space for the in-
teraction of a single-active electron system exposed to
an intense infrared field. This section also includes the
description of ultrashort laser pulses. In section 3, we
present numerical results that shed light of the asymme-
try in the ionization probability density, photoelectron
momentum and angular distributions resulting from ion-
ization of the hydrogen atom by few-cycle infrared laser
pulses with defined CEP. The excited state probabili-
ties are also presented. We summarize our results and
present some conclusions in section 4. Atomic units (a.u.)
(me = e = h = 1) are used throughout this paper unless
otherwise specified.

2. THEORETICAL ATOMIC MODEL IN
MOMENTUM SPACE

In this section we sketch our recently introduced
methodology. In our novel model, we start from the
TDSE associated with the interaction of a spin-free one-
electron system exposed to an intense infrared field. Few
considerations are in order here. The external electric or
potential field is supposed to be linearly polarized along
the unit vector e,, we restrict ourselves to the velocity
gauge [38] and dipole approximation of the interaction
between the strong laser radiation and the atomic system.
Under the above considerations, the TDSE describing the
dynamics of an hydrogen-like ion of nucleus charge Z ex-
posed to such a laser field, writes in the momentum space
[34]

{igt - %p2 + (p-e:)A(t)| ¥(p,?)

—/dp’V(p,p’)‘I’(p',t) =0, (2.1)
with the initial condition that the atom is in its ground

state. We normalize the wavepackets in the following
manner

/dp | W(p.1) [P= 1.

We use the velocity form for the laser-atom interac-
tion Hamiltonian. The second term of the left-hand-side
of equation (2.1) contains the non-local kernel V (p,p’)
which is the Coulomb potential in the momentum space.

Z

V(p,p/):_—%z'p_p, 5 (2.2)



The TDSE (2.1) is rendered difficult to solve by the singu-
larity exhibited by the Coulomb potential (2.2). In order
to avoid the issue of logarithmic singularity in Eq. (2.1)
at p = p’, we have solved the integral equation (2.1) by
means of a genuine quasi-analytical sturmian approach
NCPE-SM which simplifies the resolution of this equa-
tion.

2.1. Sturmian expansion of Coulomb potential
model

The detailed account of the model and all physical ob-
servables are clearly given in [30]. In what follows and
in order to make our text self-contained, we only give in
this section, the main step of our developments method
used to determine the electron dynamics in a photoion-
ization process. A theoretical description of this spectral
method consists in expanding the atomic wavefunction
and the interacting nonlocal Coulomb potential on a dis-
crete basis set of Coulomb Sturmian functions in momen-
tum space {®, (p)}, that have interesting features very
suitable for a reliable spectral approach and that we have
recently constructed [30]
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where C™) denotes the Gegenbauer polynomial [39],

K

%, is the normalization factor, p = (p,p), P = P/p

is the unit vector directed along p, Yz, (P) is usually
known as the modified spherical harmonics [40], while
%,(p) denotes the radial Sturmian function in the mo-
mentum space. The quantum numbers n, ¢, m, i and
the nonlinear real parameter x are such that n > ¢+ 1,
t=0,1,2,..,m < a=n—-¢-—1=01,.., and
0 < k < 1. These Coulomb Sturmian functions verify
the following orthogonality and closure relations
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We start our approach by expanding the interacting non-
local Coulomb potential
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and the spectral expansion of the total wave function
U(p,t) that contains the complete information about the
dynamics of the ionization process

\I/(p7t) = Z Cnfm(t) Zﬁm(p)a

ném

(2.10)

in terms of Coulomb Sturmian functions. Inserting Eqgs.
(2.9) and (2.10) in Eq. (2.1) and after some manipula-
tions, one arrives at the time-dependent matrix equation

d

LY =HY, H=HY +H®W,

iS (2.11)
where W is now the vector representation of the wave-
function whose elements are the expansion coefficients
Cnom. HO®, S and HY are the atomic Hamiltonian,
the overlap matrix and the matrix of the dipole coupling
respectively and their elements are given in [30]. Since
our basis functions are real, the above mentioned matri-
ces H(® S are real symmetric and H") is sparse while
the Hamiltonian matrix H is block tridiagonal.

2.2. Description of ultrashort laser pulses

Modeling the laser pulse is a difficult choice. Several
technical issues that are especially relevant for few-cycle
pulses have been discussed in the literature [41], more
precisely two alternative theoretical descriptions of such
a pulse have retained the attention. One specifies the
electric-field of the laser pulse, while the other starts from
its vector potential. Therefore the pulse envelope can
be associated with the vector potential A(t) or with the
electric-field vector £(t) = (—1/¢)0A(t)/0t. The zero-
net-force condition [* £(¢)d( = A(—o0) — A(c0) =
—A(o0) = 0, not only valid for this dipole approxima-
tion case, has to be satisfied.

The electric-field vector having a sine-square pulse enve-
lope can be written following [28] (denoted LP1)

E(t) = & sin? (ﬂ) sin (wt + @) e,,E = \/ ia (2.12)
T, Io

for 0 <t <T,, and £(t) = 0 outside this interval, where
&p represents the maximum field strength. We assume
that the total pulse duration equals an integer number
of optical cycles so that T, = n.1I', where the period
T =27 /w, and ¢ is the CEP that specifies the delay be-
tween the maximum of the envelope and the nearest max-
imum of the electric field of the carrier wave with laser
angular frequency w. Iy = 3.5095 x 1016 W.cm ™2 denotes
the atomic unit (a.u.) of laser intensity I, corresponding



to the atomic unit of electric field, Fy = 5 x 10° V.em ™!
at the atomic radius ag = 0.0529 nm of the 1s hydrogen
atom orbit. We mention here that, while £(0) = £(T},) =
0, the vector potential is, in general, different from zero
for t <0 and t > T,,. However, if the total pulse dura-
tion equals an integer number n, of laser cycles, we have
A(0) = A(T},) so that the integral over the electric field
is zero, that is, the electric field has no dc component as
required. The vector potential is given by

A(t) = [acos(wt + ¢) — ay cos(Nywt + )
—a_cos(N_wt + ¢) + (a4 + a— —a)cos¢e,

(2.13)
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A different definition of a few-cycle pulse was considered
in [42]. From the point of view of integration of the TDSE
it is more convenient to define a linearly polarized laser
field with a sine-square envelope by its vector potential
(denoted LP2)

~ Agsin? [ ® ) s AVES
A(t) = Apsin (Tp) sin (wt + @) e,, Ag = N
(2.15)

for 0 <t < T,, and A(t) = 0 outside this interval. This
definition is also convenient because the zero-net-force is
automatically satisfied, since the vector potential is by
definition equal to zero at the beginning and at the end
of the pulse, regardless of whether the number of cycles
is integer or not. Therefore, this approach can be used
for ultrashort pulses with non-integer n..

3. RESULTS AND DISCUSSION

We use the methodology outline above to study the
role of the CEP on ionization of H(1s) initialized from
the ground state. As we choose the quantization axis
along the laser polarization direction, the system has the
axial symmetry during evolution, and the magnetic quan-
tum number m = 0 is a constant of motion, i.e., it is
conserved. Consequently, the index m introduced in Eq.
(2.10) is removed from notations subsequently for further
simplification,

U(p,t) =Y cnel)Z5e(p)Yao (P)- (3.1)
nt

Since the final momentum wavepacket is available, any
information about the system can be easily extracted.
As for NCPE-SM, a very effective and efficient numerical
algorithm is employed for the high-precision solution of
Eq. (2.11), namely the matrix iterative method devel-
oped by Nurhuda and Faisal [43] which is an elegant and

widely used short-time adapted Crank-Nicolson propaga-
tor [44, 45]. The wavepacket is propagated in the atomic
basis, and then at the end of the laser pulse, it is rotated
back to the Sturmian basis where physical observables
are computed, except for the populations which are cal-
culated in the atomic base. Concretely, for the numeri-
cal calculation, the boundaries in the sums of the orbital
quantum number ¢ and the radial quantum number 7
take integer values varying in the intervals (0, £,,4,) and
(1, inaz ), respectively. We monitored the convergence by
varying the value of parameters £,,42, Mmae and k which
limit the number of terms involved in the summations, so
as to improve the calculation of the wavefunction. Full
convergence in terms of the basis size has been reached in
our computations with the set of optimized parameters
Timaz = 1500 Sturmians per angular moment, £,,,, = 31
i.e. a total of 32 angular momenta, and the nonlinear
parameter £ = 0.3. In order to study more in depth
the accuracy of NCPE-SM, let us consider particularly
few cases for which the dynamics are well-known. We
present results of a number of runs and the results as
a function of laser parameters and compare our data to
those from other approaches in the literature. As be-
fore, we assume that the vector potential A(t) is given
by the formulas (2.13) for LP1 and (2.15) for LP2. Mul-
tiphoton ionization (MPI), tunneling ionization (TI) and
HHG are the basic processes that dominate laser-matter
physics in this regime of intense infrared laser pulses. The
above mentioned nonresonant ionization processes can be
attributed to two distinct regimes based on the value of
the adiabaticity parameter, the so-called Keldysh param-
eter [46], v = \/1,/(2U,), with U, = I/(4w?) being the
ponderomotive energy, and I, being the electron ioniza-
tion potential: the perturbative regime at relatively low
intensity (weak laser fields) when 7 > 1, the multipho-
ton processes are the dominant mechanism, while in the
strong field limit when v < 1 corresponds to the tunnel-
ing regime. At the transition region when v = 1 it is im-
possible to make a clear-cut separation between the two
mechanisms. Both of them, multiphoton processes and
tunnel ionization play a role. This has been confirmed
experimentally and by numerical simulations. The ATI
photoelectrons induced directly by the laser fields have a
classical cutoff energy 2U,, while the electrons produced
by the rescattering can extend to the maximum energy
up to 10U, [47, 48].

Excited-state populations

We start by applying the NCPE-SM approach to in-
vestigate the population in bound states. Figure 1 shows
the n and ¢ distributions of the excited states popula-
tions resulting from the interaction of atomic hydrogen
exposed to a n, = 2 cycle pulse of 800 nm wavelength
(photon energy, 0.057 a.u.), with a peak intensity of
1 x 10 W.em™2 for different CEPs ¢ = 0, ©/4, /2
at the end of laser pulses. The results obtained with



the LP2 are shown on the upper row, whereas, the lower
row presents the LP1 results. In our present calcula-
tions, the Keldysh parameter v = 1.068 restricts us to
the transition regime. These excited-state probabilities
are given as a function of the principal quantum number
n (summed over [ = 0, ...,n—1) (right panel) and the an-
gular quantum number ¢ (left panel). The bound state
populations are given in the atomic basis directly by the
absolute square of the expansion coefficients for energy
less than zero. Overall, at shorter pulses, it is observed
that the dynamics of the excited states is both phase and
shape laser field-dependent. Their distributions spread
out more and more, and maxima population at differ-
ent n appear, which exhibit a strong correlation of the
excited-state population to the CEP of the few-cycle laser
pulses. In Figs. 1(c) and (d), maxima populations are
found mainly in the (n = 4,¢ = 0), (n = 5,¢ = 3) and
(n = 6,¢ = 5) excited states for CEPs ¢ = 0, ©/4, w/2
respectively, which are in agreement with the well-known
conclusion for the shortest pulse, the population is dis-
tributed at the largest even-as well as odd- ¢ values, in-
dicating that the well-known resonant character which is
observed in the long pulses (that show the multiphoton
character of the excitation process) of the transition is
lost [49]. These results are in very good agreement with
those obtained by Chen et al. [28] (see Fig. 4(a) and
Fig. 5(a)). Furthermore, the (n = 5,¢ = 3) is the high-
est point in the distribution for which excited states are
populated. These findings qualitatively agree with com-
mon expectations outlined in recent works [28, 50, 51].
The preceding analysis can be extended in the case of
Figs. 1(a) and (b). The results with the LP2 pulse are
completely different from those obtained with the LP1
pulse. At the maximum distribution of the excited states
populations, LP2 results are average about 1.9 and 2.5
orders of magnitude larger than LP1 results for P, and
P, respectively. Let us switch to analyze the P, , distri-
bution of the excited states produced for the same pulse
as in Fig. 1. In the left panel of Fig. 2, results with LP2
are shown, whereas LP1 results are given in the right
panel. It is clearly visible in this figure that the P, ,
distribution of the populations is strongly correlated to
the profile of the laser field. Explicitly, we note a strik-
ing difference of this distribution when passing from the
laser field LP1 to the laser field LP2. We see that, as the
CEP of LP1 increases from 0, 7/4 to 7/2, we observe a
high migration of population toward a larger number of
excited states with larger values of the principal quantum
number, reaching values n of around 14 whereas a small
number of excited states are getting populated with the
laser pulse LP2.

Differential ionization probability

We investigate here the effects of CEP on ATI spec-
tra. The investigation of these effects is timely in view
of progress in laser technology. Ultrashort pulses have

the advantage that the highest pulse intensity is reached
in a time shorter than that which the electron needs to
escape from an atom, allowing the use of much higher
effective field strengths. The peak electric field of such
few-cycle pulses depends on the CEP. Since the ioniza-
tion process depends on the field in a highly nonlinear
way, the asymmetry of the field induces an asymmetry
in the emission direction of photoelectrons [52-55]. In
Fig. 3 we report our investigations of ionization probabil-
ity density Dion(p,Ty) = |Pion(p,T})|? obtained within
the framework of NCPE-SM model. By a simple rota-
tion of continuum-state part of the wavefunction from
the atomic basis to the sturmian set, we deduce the ion-
ized wavefunction in the sturmian basis as [30, 37]

= X @)l

at the end of the pulse, for atomic hydrogen H(1s) by
a linearly polarized n. = 2-optical cycle laser fields LP1
and LP2 with frequency w = 0.057 a.u. and peak inten-
sity I = 1 x 10" W.cm™2, for various CEPs ¢ =

¢ = /4 and ¢ = w/2 respectively, as a function of
the canonical momentum along the polarization axis p,
for the forward ejected electrons p, > 0 and backward
ejected electrons p, < 0. It seems worth to mention
here that we have also used the conventional method for
the calculation of the differential ionization probabilities
which is to project the total electron wave function at the
end of the laser field to the continuum states constructed
by the Coulomb wave function [15, 56]. The triple
differential ionization probability (photoelectron energy-
angular distribution) which is the probability density for
the electrons emitted with momentum p = (p, 6, ) into
the unit energy and solid angle intervals is computed from

d3P
dEdQ - \/EDion(pa Tp)a

where d§) = sin dfdp and E = p?/2. As the system has
the axial symmetry around the direction of polarization
of laser field during evolution, equation (3.3) can be cast
into the appropriate form
d*pP
dpndp:

’LO’ﬂ p7 (3.2)

(3.3)

= 270y Dion (P, Tp)- (3.4)
We restrict firstly the analysis to the electrons having
only a canonical momentum p, along the polarization
axis, thus the transverse component p,, is set equal to
zero. Under these conditions, the ponderomotive poten-
tial U, takes the value 0.219 a.u., and the Keldysh pa-
rameter v = 1.068. Therefore, one is in a regime where
a subtle interplay between multiphoton and tunnel ion-
izations exists, and the dynamics of the process is not
easy to discriminate. The results are displayed on a log-
arithmic scale in order to reveal the global ATI energy
distribution. Both panels of Fig. 3 reveal the typical
ATT spectra behavior. The two most prominent fea-
tures highlighted in this ATI spectra are (1)-the emer-
gence of the low (E < 2U,) and the high or plateau



(2U, < E < 10U, )-energy patterns due to the direct and
indirect ionization processes respectively [47, 53], with
the expected two cutoffs defined by 2U, and 10U, ac-
cording to the well-known three-step model [57, 58], (2)-
the ability of our model to capture the CEP asymmetries,
the electrons are preferentially emitted along the polar-
ization vector and for instance, photoelectrons ejected
towards the left differ substantially from those emitted
to the right for the case when a few-cycle driving pulse
is used. It is interesting to specify that, the spectrum of
the direct and high-energy rescattered electrons do not
exhibit any spatial backward-forward symmetry which is
visible in Fig. 3. An obervation of the curves shows
that the left-right asymmetry exists for the three val-
ues of ¢. We have check that the left-right asymmetry
becomes less and less pronounced when the number of
optical cycle of field increases [37]. These results show
that our NCPE-SM approach is a reliable alternative for
the calculation of ATT spectra. When concentrating on
the high-energy part of all these spectra, we observed
the common behaviour that more high-energy electrons
are emitted to the left. This result contrasts very well
with what we obtained and depicted in Fig. 3 (f) where
the photoelectrons ejected towards the right are clearly
observed. Another interesting result is that there ex-
ists a well-defined cross-over energy where emission to
the right becomes more prominent than to the left. It
is worth mentioning that the CEP effects can be served
as a tool for an accurate determination of the absolute
phase which theoretical result should be subjected to fo-
cal averaging [59].

Electron momentum and angular distributions

In order to complete the analysis, we have extended
the application of the proposed NCPE-SM theory to the
study of photoelectron momentum and angular distribu-
tions for atomic hydrogen H(1s) interacting with a lin-
early polarized 2-optical cycle laser field with frequency
w = 0.057 a.u. and peak intensity I = 1 x 10'* W.cm™2
for various CEPs ¢ = 0 (upper line), ¢ = 7/4 (second
line), ¢ = w/2 (third line) and ¢ = 7 (lower line). Panels
on the left shows results with the pulse LP2 and Panels
on the right shows results with the pulse LP1. Due to the
axial or cylindrical symmetry of the atomic system, the
triple differential ionization probability is independent of
. Thus the photoelectron energy-angular distribution
is described by the double differential ionization proba-
bility d*P/dp,dp. given by Eq. (3.4) or by the angular
distribution dP/dS? inferred from Eq. (3.3).

The high-resolution color contour of the double differ-
ential ionization probability and angular distributions of
electrons are displayed in Figs. 4 and 5. The color den-
sity is plotted in logarithmic scale and characterizes the
value of the photoelectron momentum distributions. As
one can see from Figs. 4 and 5, due to the few-cycle
laser field wave form, the electron trajectories strongly

depend on the CEP and the photoelectron momentum
and angular distributions exhibit a clear left-right asym-
metry behavior with respect to the p, = 0 momentum
which can be understood with the occurrence and in-
terference of only a few emission and rescattering events
[17]. Fig. 4 shows that the photoelectron momentum dis-
tribution is no ring shaped and is squeezed along the laser
field direction. Strictly speaking, one could say that the
photoelectron momentum distribution is in deformed arc
structure shaped. Thus indicates that the photoelectron
momentum distribution strongly depends on the direc-
tion for the specified laser-pulse parameters. Moreover,
when the absolute phase of the fields takes the values
¢ =0 and ¢ = 7/4 , the backward emission of electrons
is preponderant while the forward emission emerges when
¢ = . In the particular case of ¢ = 7/2, the ejection
of the electron into the continuum is laser field shape de-
pendent. The electrons are mostly emitted to the left for
LP2 laser field shape and to the right for LP1’s one.

4. SUMMARY AND OUTLOOK

It has been shown that the momentum space is, de-
spite the non-locality of the atomic potential, actually
well suited to probe the ionization dynamics and the
atomic potential effects. It highlights, in fact, a quasi-
instantaneous viewing of the process since at the first
sight, ionization happens first in terms of moment be-
fore being in terms of position. In other word, working
in the momentum space, provides direct information on
the ionization dynamics and in particular on the time
at which the electron is emitted. We have developed
an efficient ab initio NCPE-SM method of solving the
TDSE directly in the momentum space. It should be
pointed out that to date this is the only approach which
analytically eliminates the singularities of the kernel of
the integrodifferential equation. We have adopted the
velocity form of the laser-atom interaction and our the-
ory goes far beyond the well-known SFA. A theoretical
description of the NCPE-SM spectral method consists
in expanding the atomic wavefunction and the interact-
ing nonlocal Coulomb potential on a discrete basis set of
Coulomb Sturmian functions in momentum space. Our
novel model provides on one hand simple frameworks
for MPI and ATI understanding, which are in agree-
ment with the available experimental observations and
the previous theoretical approaches, and on the other
hand, has drawbacks and advantages [30, 34, 35, 37].
Due to the highly efficient numerical algorithm for the
computation of the total wavepackets, we have been able
to gain insights in the photoelectron momentum and an-
gular distributions of ATI as well as excitation proba-
bilities in a regime of intense ultrashort low-frequency
laser pulse. From these investigations, it emerges the
following two clear observations - photoelectron spectra
show the two well-known cutoffs which are ubiquitously
present in atomic ATI [47, 53] - our novel model captures



the left-right dependence or asymmetry of the emitted
photoelectrons momentum and angular distributions. It
thus shows its sensitivity to the CEP of the laser pulse.
The ability to capture this dependence and its features
is especially important for applications to methods such
as Laser-induced electron diffraction (LIED), which re-
lies on large momentum transfers and backscattered elec-
tron distributions. As another interesting perspectives,
(1) the NCPE-SM spectral treatment will be extended
to basis set of B-spline functions. This new represen-
tation could be useful to explore multiphoton processes
in hydrogen atom, (2) the NCPE-SM model will also be
extended to include other aspects such as nondipole cor-
rections. These questions, surely not easy tasks will be
addressed in the forthcoming publications.
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FIG. 1: (Color online) Excited-state populations at the end of
the pulse, resulting from the atomic hydrogen H(1s) driven by
a linearly polarized 2-optical cycle laser field with frequency
w = 0.057 a.u. and peak intensity / = 1 x 10 W.cm™2
for various CEPs ¢ = 0 (red dotted line with full circles),
¢ = m/4 (blue dashed line with full circles (upper row) and
with hatched diamonds (lower row)), ¢ = w/2 (black dashed-
dotted line with full circles (upper row) and with solid squares

(lower row)). They are given as a function of the angular

momentum quantum number ¢ (Panels on the left (a) and (c))

and as a function of the principal quantum number n (Panels
on the right (b) and (d)). The first row shows NCPE-SM
results with the pulse LP2 and the second row shows NCPE-

SM results with the pulse LP1. The symbol is connected with
lines to guide the eye.
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FIG. 2: (Color online) Distribution of the populations as a
function of the angular momentum quantum number ¢ and
the principal quantum number n at the end of the pulse, for
atomic hydrogen H(1s) interacting with a linearly polarized
2-optical cycle laser field with wavelength of 800 nm. The
peak intensity is fixed at I = 1 x 10'* W.cm™2 and a CEP
¢ = 0 (upper line (a) and (b)), ¢ = 7/4 (middle line (c) and
(d)), and ¢ = w/2 (lower line (e) and (f)). Left column shows
NCPE-SM results with the pulse LP2 and right column shows
NCPE-SM results with the pulse LP1.
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FIG. 3: (Color online) Left (blue solid line) and right (black
solid line) ionization probability density (in logarithm scale)
at the end of the pulse, for atomic hydrogen H(1ls) by a
linearly polarized 2-optical cycle laser field with frequency
w = 0.057 a.u. and peak intensity I = 1 x 10'* W.cm™2 for
various CEPs ¢ = 0 (upper line (a) and (b)), ¢ = 7/4 (second
line (c¢) and (d)), and ¢ = /2 (lower line (e) and (f)). Panels
on the left shows NCPE-SM results with the pulse LP2 and
Panels on the right shows NCPE-SM results with the pulse
LP1.
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FIG. 4: (Color online) Double differential electron momentum
distributions (in logarithmic scale) in cylindrical coordinates
(p=,pn) at the end of the pulse, in photodetachment from
hydrogen atom H(1s) by a linearly polarized 2-optical cycle
laser field with frequency w = 0.057 a.u. and peak intensity
I =1x10" W.cm™? for various CEPs ¢ = 0 (upper line),
¢ = 7/4 (second line), ¢ = 7/2 (third line) and ¢ = 7 (lower
line). Panels on the left shows NCPE-SM results with the
pulse LP2 and Panels on the right shows NCPE-SM results
with the pulse LP1.
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FIG. 5: Photoelectron angular distributions at the end of the
pulse, for atomic hydrogen H(1s) interacting with a linearly
polarized 2-optical cycle laser field with wavelength of 800 nm
and peak intensity 7 = 1 x 10 W.cm ™2 for various CEPs
¢ = 0 (upper line), ¢ = w/4 (second line), ¢ = m/2 (third
line) and ¢ = 7 (lower line). Panels on the left shows NCPE-
SM results with the pulse LP2 and Panels on the right shows
NCPE-SM results with the pulse LP1.
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