REFERENCES
Ahrens, C. W., Rymer, P. D., Stow, A., Bragg, J. G., Dillon, S. K., Umbers, K. D. L., & Dudaniec, R. Y. (2018). The search for loci under selection: Trends, biases and progress. Molecular Ecology, 27, 1342–1356. https ://doi.org/10.1111/mec.14549
Ahrens, C.W., Byrne, M., & Rymer, P.D. (2019a). Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species. Molecular Ecology, 28, 2502–16. https://doi.org/10.1111/mec.15092
Ahrens, C.W., Andrew, M.E., Mazanec, R.A., Ruthrof, K.X., Challis, A., Hardy, G., Byrne, M., Tissue, D.T., & Rymer, P.D. (2019b). Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecology and Evolution, 10, 232–248. https://doi.org/10.1002/ece3.5890
Ahrens, C.W., Jordan, R., Bragg, J., Harrison, P.A., Hopley, T., Bothwell, H., Murray, K., Steane, D.A., Whale, J.W., Byrne, M., Andrew, R., & Rymer, P.D. (2021a). Regarding the F-word: the effects of data filtering on inferred genotype-environment associations. Molecular Ecology Resources, https://doi.org/10.1111/1755-0998.13351
Ahrens, C.W., Rymer, P.D. & Tissue, D.T. (2021b). Intra-specific trait variation remains hidden in the environment. New Phytologist, 229: 1183-1185. https://doi.org/10.1111/nph.16959
Aitken, S.N., & Bemmels, J.B. (2016). Time to get moving: assisted gene flow of forest trees. Evolutionary Applications, 9, 271–290. https://doi.org/10.1111/eva.12293
Altschul, S.F., et al., (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
Anderson, J.T., Willis, J.H., & Mitchell‐Olds, T. (2011). Evolutionary genetics of plant adaptation. Trends in Genetics, 27, 258–266. https:// doi.org/10.1016/j.tig.2011.04.001
Aspinwall, M.J., Pfautsch, S., Tjoelker, M.G., Vårhammar, A., Possell, M., Tissue, D.T., Drake, J.E., Reich, P.B., Atkin, O.K., Rymer, P.D., Dennison, S., & Van Sluyter, S.C. (2019). Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Global Change Biology, 25, 1665–1684. https://doi.org/10.1111/gcb.14590
BOM and CSIRO. State of the climate. 2020. Available at: http://www.bom.gov.au/state-of-the climate/documents/State-of-the-Climate-2020. pdf [Accessed 08 May 2021]
Bradshaw, F.J. (2015). Reference material for jarrah forest silviculture. Forest Management Series FEM061. Department of Parks and Wildlife, Perth, pp. 141.
Bragg, J. G., Supple, M. A., Andrew, R. L., & Borevitz, J. O. (2015). Genomic variation across landscapes: Insights and applications. New Phytologist, 207, 953–967. https://doi.org/10.1111/nph.13410
Brondizio, E.S., Settele, J., Díaz, S., & Ngo, H.T. (2019). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. IPBES secretariat, Bonn, Germany. https://doi.org/10.5281/zenodo.3553579
Byrne, M., Macdonald, B., & Francki, M. (2001). Incorporation of sodium sulfite into extraction protocol minimizes degradation of AcaciaDNA. BioTechniques, 30, 742–4–748. https://doi.org/10.2144/01304bm06
Camarero, J.J., Alvarez-Taboada, F., Hevia, A., & Castedo-Dorado, F. (2018). Radial growth and wood density reflect the impacts and susceptibility to defoliation by gypsy moth and climate in radiata pine. Frontiers in Plant Science, 9, 1582. https://doi.org/10.3389/fpls.2018.01582
Capblancq, T., Fitzpatrick, M.C., Bay, R.A., Exposito-Alonso, M., & Keller, S.R. (2020). Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annual Review of Ecology, Evolution, and Systematics, 51, 245–69. https://doi.org/10.1146/annurev-ecolsys-020720-042553
Carlo, M.A., Riddell, E.A., Levy, O., & Sears, M.W. (2018). Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change. Ecology Letters, 21, 104–116. https://doi.org/10.1111/ele.12877
Caye, K., Jumentier, B., Lepeule, J., & François, O. (2019). LFMM 2: Fast and accurate inference of gene-environment associations in genome-wide studies. Molecular Biology and Evolution, 36, 852 860. https://doi.org/10.1093/molbev/msz008
CCWA. (2013). Forest Management Plan 2014–2023. Conservation Commission of Western Australia (CCWA), Perth.
Chhatre, V.E., Fetter, K.C., Gougherty, A..V, Fitzpatrick, M.C., Soolanayakanahally, RY., et al., (2019). Climatic niche predicts the landscape structure of locally adaptive standing genetic variation. BioRxiv 817411. https:// doi.org/10.1101/817411
Christmas, M.J., Breed, M.F., & Lowe, A.J. (2016). Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 17, 305–20. https://doi.org/10.1007/s10592-015-0782-5.
Collevatti, R.G., Novaes, E., Silva-Junior, O.B., Vieira, L.D., Lima-Ribeiro, M.S., & Grattapaglia, D. (2019). A genome-wide scan shows evidence for local adaptation in a widespread keystone neotropical forest tree. Heredity, 123, 117–137. https://doi.org/10.1038/s41437-019-0188-0
Coop, G., Witonsky, D., Di Rienzo, A., & Pritchard, J. K. (2010). Using environmental correlations to identify loci underlying local adaptation. Genetics, 185, 1411–1423. https://doi.org/10.1534/genetics.110.114819
Corcobado, T., Cubera, E., Juarez, E., Moreno, G., & Solla, A. (2014). Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi . Agricultural and Forest Meteorology, 192, 1–8. https://doi.org/10.1016/j.agrformet.2014.02.007
Correia, B., Hancock, R.D., Amaral, J., Gomez-Cadenas, A., Valledor, L., Pinto, G. (2018). Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone. Frontiers in Plant Science, 9, 819. https://doi.org/10.3389/fpls.2018.00819
Costa e Silva, J., Potts, B., Harrison, P.A., & Bailey, T. (2019). Temperature and rainfall are separate agents of selection shaping population differentiation in a forest tree. Forests, 10, 1145. https://doi.org/10.3390/f10121145
Davison, E.M. (2015). How Phytophthora cinnamomi became associated with the death of Eucalyptus marginata – the early investigations into jarrah dieback. Australasian Plant Pathology, 44, 263-271. https://doi.org/10.1007/s13313-015-0356-5
Davison, E.M. (2018). Relative importance of site, weather and phytophthora cinnamomi in the decline and death of Eucalyptus marginata – Jarrah dieback investigations in the 1970s to 1990s. Australasian Plant Pathology, 47, 245–57. https://doi.org/10.1007/s13313-018-0558-8.
Dey, R., Lewis, S.C., Arblaster, J.M., & Abram NJ (2019). A review of past and projected changes in Australia’s rainfall. Wiley Interdiscip Rev: Clim Change, 10, 577. https://doi/org/10.1002/wcc.577
Doyle JJ and Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
Duan, S., Liu, B., Zhang, Y., Li, G., & Guo, X. (2019). Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC Genomics, 20, 1–20. https://doi.org/10.1186/s12864-019-5617-1
Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using generalized dissimilarity modelling to analyze and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13, 252–264. https://doi.org/10.1111/j.1472-4642.2007.00341
Fick, S.E., & Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
Fitzpatrick, M.C., & Keller, S.R. (2015). Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecology Letters, 18, 1–16. https ://doi.org/10.1111/ele.12376
Forester, B.R., Lasky, J.R., Wagner, H.H., & Urban D.L. (2018). Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Molecular Ecology, 27, 2215–33. https://doi.org/10.1111/mec.14584.
Frichot, E., Schoville, S.D., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30, 1687– 1699. https://doi.org/10.1093/molbev/mst063
Frichot, E., & François, O. (2015). LEA: an R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6, 925– 929. https://doi.org/10.1111/2041-210X.12382
Gagné-Bourque, F., Bertrand, A., Claessens, A., Aliferis, K. A., & Jabaji, S. (2016). Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Frontiers in Plant Science, 7, 584. https://doi.org/10.3389/fpls.2016.00584
Gautier, M. (2015). Genome-wide scan for adaptive divergence and association with population specific covariates. Genetics, 201, 1555–1579. https://doi.org/10.1534/genetics.115.181453
Gentilesca, T., Camarero, J.J., Colangelo, M., Nole, A. & Ripullone, F. (2017). Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest - Biogeosciences and Forestry, 10, 796–806. https://doi.org/10.3832/ifor2317-010
Goudet, J. (2005). Hierfstat, a package for R to compute and test variance components and F -statistics. Molecular Ecology Notes, 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.
Gougherty, A.V., Keller, S.R., Chhatre, V.E., & Fitzpatrick, M.C. (2020). Future climate change promotes novel gene-climate associations in balsam poplar (Populus balsamifera L.), a forest tree species. BioRxiv, 961060. https://doi.org/10.1101/2020.02.28.961060
Gougherty, A. V., Keller, S. R., & Fitzpatrick, M. C. (2021). Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nature Climate Change, 11, 166–171. https://doi.org/10.1038/s41558-020-00968-6
Gugger, P.F., Fitz-Gibbon, S.T., Albarrán-Lara, A., Wright, J.W. & Sork, V.L. (2021). Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales. Molecular Ecology, 30, 406–423. https://doi.org/10.1111/mec.15731
Gundale, M.J., Nilsson, M., Bansal, S., & Jaderlund, A. (2012). The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytologist, 194, 453–463. https://doi.org/10.1111/j.1469-8137.2012.04071.x
Guzella, T.S., Dey, S., Chelo, I.M., Pino-Querido, A., Pereira, V.F., Proulx, S.R., et al., (2018). Slower environmental change hinders adaptation from standing genetic variation. PLoS Genetics, 14, e1007731. https://doi.org/10.1371/journal. pen.1007731
Harris, R.M.B., Beaumont, L.J., Vance, T.R., Tozer, C.R., Remenyi, T., Perkins-Kirkpatrick, S.E., et al. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8, 579–587. https://doi.org/10.1038/s41558-018-0187-9
Hoffmann, A., Griffin, P., Dillon, S., Catullo, R., Rane, R., Byrne, M., & Sgrò, C. (2015). A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses, 2, 1. https://doi.org/10.1186/s4066 5-014-0009-x
Honjo, M.N., & Kudoh, H. (2019). Arabidopsis halleri : a perennial model system for studying population differentiation and local adaptation. AoB PLANTS, 11, 1–13. https://doi.org/10.1093/aobpla/plz076.
Hwang, J.U., Song, W.Y., Hong, D., Ko, D., Yamaoka, Y., Jang, S., & Lee, Y. (2016). Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Molecular Plant, 9, 338–355. https://doi.org/10.1016/j.molp.2016.02.003
Ingvarsson, P. K., & Bernhardsson, C. (2020). Genome-wide signatures of environmental adaptation in European aspen (Populus tremula ) under current and future climate conditions. Evolutionary Applications, 13, 132–142. https://doi.org/10.1111/eva.12792
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801–1806. https://doi.org/10.1093/bioin forma tics/btm233
Jones, R. C., Steane, D. A., Potts, B. M., & Vaillancourt, R. E. (2002). Microsatellite and morphological analysis of Eucalyptus globulus populations. Canadian Journal of Forest Research, 32, 59–66. https://doi.org/10.1139/x01-172
Jordan, R., Hoffmann, A.A., Dillon, S.K., & Prober, S.M. (2017). Evidence of genomic adaptation to climate in Eucalyptus microcarpa : Implications for adaptive potential to projected climate change. Molecular Ecology, 26, 6002–6020. https://doi.org/10.1111/mec.14341
Jordan, R., Prober, S.M., Hoffmann, A.A., & Dillon, S.K. (2020). Combined analyses of phenotype, genotype and climate implicate local adaptation as a driver of diversity in Eucalyptus microcarpa(grey box). Forests, 11, 495. https://doi.org/10.3390/F11050495.
Joshi, V. & Jander, G. (2009). Arabidopsis methionine gamma-lyase is regulated according to isoleucine biosynthesis needs but plays a subordinate role to threonine deaminase. Plant Physiology, 151, 367 378. https://doi.org/10.1104/pp.109.138651
Joubès, J., Rafaele, S., Bourdenx, B., Garcia, C., Laroche-Traineau, J., Moreau, P., et al., (2008). The VLCFA elongase gene family inArabidopsis thaliana : phylogenetic analysis, 3D modelling and expression profiling. Plant Molecular Biology, 67, 547–566. https://doi.org/10.1007/s11103-008-9339-z
Kala, J., Tenna A.S., Rudloff, D., Andrys, J., Rieke, O., & Lyons, T.J. (2020). Evaluation of the weather research and forecasting model in simulating fire weather for the South-west of Western Australia.” International Journal of Wildland Fire, 29, 779–92. https://doi.org/10.1071/WF19111.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795. https://doi.org/10.1080/01621 459.1995.10476572
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225–1241. https ://doi.org/10.1111/j.1461‐0248.2004.00684.x
Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H., … Uszynski, G. (2012). Diversity arrays technology: A generic genome profiling technology on open platforms. In F. Pompanon & A. Bonin (Eds.), Data production and analysis in population genomics: Methods and protocols (pp. 67–89). Totowa, NJ: Humana Press.
Kirkpatrick, M., &Meyer, K. (2004). Direct estimation of genetic principal components: simplified analysis of complex phenotypes. Genetics, 168, 2295–2306. https://doi.org/10.1534/genetics.104.029181.
Koch, J.M., & Samsa, G.P. (2007). Restoring Jarrah Forest in southwestern Australia after bauxite mining. Restoration Ecology, 15, S17–S25. https://doi.org/10.1111/j.1526‐100X.2007.00289.x
Kremer, A., Ronce, O., Robledo-Arnuncio, J.J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J.R, Gomulkiewicz, R., Klein, E.K., Ritland. K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15, 378–392. https://doi.org/10.1111/j.1461-0248.2012.01746.x
Kryazhimskiy, S., & Plotkin, J. B. (2008). The population genetics of dN/dS. PLoS Genetics, 4, e1000304. https://doi.org/10.1371/journ al.pgen.1000304
Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J. H., Kim, S.G., et al., (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis . Genes and Development, 14, 2366–2376.
Lee, J., Finn, H., & Calver, M. (2013). Feeding activity of threatened black cockatoos in mine-site rehabilitation in the jarrah forest of south-western Australia. Australian Journal of Zoology ,61, 119 131. https://doi.org/10.1071/ZO12101
Levin, P., & Poe, M. (2017). Conservation for the Anthropocene Ocean: interdisciplinary science in support of nature and people. Cambridge: Academic Press, 530.
Liao, C., Zheng, Y., & Guo, Y. (2017). MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signalling in Arabidopsis . New Phytologist, 216, 163–177. https://doi.org/10.1111/nph.14679
MacPherson, A., Hohenlohe P.A., & Nuismer, S.L. (2015). Trait dimensionality explains widespread variation in local adaptation. Proceedings of the Royal Society B: Biological Sciences, 282, 1802. https://doi.org/10.1098/rspb.2014.1570.
Maheshwari, P., Assmann, S.M., & Albert, R. (2020). A guard cell abscisic acid (ABA) network model that captures the stomatal resting state. Frontiers in Physiology, 11, 11-927 https://doi.org/10.3389/fphys.2020.00927.
Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., & Cierco-Ayrolles, C. (2012). Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity, 108, 285–291. https://doi.org/10.1038/hdy.2011.73
Manion, G., Lisk, M., Ferrier, S., Nieto‐Lugilde, D., Mokany, K., & Fitzpatrick, M. C. (2018). gdm: Generalized dissimilarity modeling. R package version 1.3.7. Retrieved from https://cran.rproject.org/web/packages/gdm/index.html
Martins, K., Gugger, P. F., Llanderal-Mendoza, J., Gonzalez-Rodrigruez, A., Fitz-Gibbon, S. T., Zhao, J., Rodríguez-Correa, H., Oyama, K. & Sork, V. L. (2018). Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations ofQuercus rugosa . Evolutionary Applications, 11, 1842–1858. https://doi.org/10.1111/eva.12684
Matusick, G., Ruthrof, K., Brouwers, N.C., Dell, B., & Hardy, G.S.J. (2013). Sudden forest canopy collapse corresponding with extreme drought and heat in a Mediterranean‐type eucalypt forest in southwestern Australia. European Journal of Forest Research, 132, 497–510. https://doi.org/10.1007/s10342-013-0690-5
Mayol, M. (2019). A multiscale approach to detect selection in non‐model tree species: widespread adaptation despite population decline inTaxus baccata L. – Evolutionary Applications, 13, 143–160. https://doi.org/10.1111/eva.12838
McChesney, C.J., Koch, J.M., & Bell, D.T. (1995). Jarrah forest restoration in Western Australia: Canopy and topographic effects. Restoration Ecology, 3, 105–110. https://doi.org/10.1111/j.1526100X.1995.tb00083.x
McGuigan, K., Chenoweth, S.F., & Blows, M.W. (2005). Phenotypic divergence along lines of genetic variance. American Naturalist, 165, 32–43. https://doi.org/10.1086/426600.
Mmadi, M.A., Dossa, K., Wang, L., Zhou, R., Wang, Y.,Cisse, N., Sy, M.O., & Zhang, X. (2017). Functional characterization of the versatile MYB gene family uncovered their important roles in plant development and responses to drought and waterlogging in sesame. Genes, 8, 362. https://doi.org/10.3390/genes8120362
Murray, K.D., Janes, J.K., Jones, A., Bothwell, H.M., Andrew, R.L., & Borevitz, J.O. (2019). Landscape drivers of genomic diversity and divergence in woodland Eucalyptus . Molecular Ecology, 28, 5232 5247. https://doi.org/10.1111/mec.15287
Myburg, A.A., Grattapaglia, D., Tuskan, G.A., Hellsten, U., Hayes, R.D., Grimwood, J., Schmutz, J., et al., (2014). The genome of Eucalyptus grandis . Nature, 510, 356–362. https://doi.org/10.1038/nature13308
Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., & Smith, S.M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol., 63, 107–30. https://doi.org /10.1101/gad.813600.
O’Brien, E.K., Mazanec, R.A., & Krauss, S.L (2007). Provenance variation of ecologically important traits of forest trees: implications for restoration. Journal of Applied Ecology, 44, 583–93. https://doi.org/10.1111/j.1365-2664.2007.01313.x.
O’Brien, E.K., & Krauss, S.L. (2010). Testing the home-site advantage in forest trees on disturbed and undisturbed sites. Restoration Ecology, 18, 359–372. https://doi.org/10.1111/j.1526100X.2008.00453.x
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2018). vegan: Community Ecology Package. R package version 2.5‐1. Retrieved from https://cran.rproject.org/web/packa ges/vegan/index.html
Pacifici, M., Foden, W., Visconti, P., et al., (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5, 215–224. https://doi.org/10.1038/nclimate2448
Perruc, E., Kinoshita, N., & Lopez-Molina, L. (2007). The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. The Plant Journal, 52, 927-936. https://doi.org/10.1111/j.1365-313X.2007.03288.x
Piedallu, C., Gegout, J.C., Perez, V., & Lebourgeois, F. (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecology and Biogeography, 22, 470–482. https://doi.org/10.1111/geb.12012
Pritzkow, C., Szota, C., Williamson, V., & Arndt, S.K. (2020). Phenotypic plasticity of drought tolerance traits in a widespread eucalypt (Eucalyptus obliqua ). Forests, 11, 1371.doi:https://doi.org/10.3390/f11121371
Prober, S.M., Byrne, M., McLean, E.H., Steane, D.A., Potts, B.M., Vaillancourt, R.E., & Stock, W.D. (2015). Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Frontiers in Ecology and Evolution, 3, 1–5. https://doi.org/10.3389/fevo.2015.00065.
QGIS.org. (2021). QGIS Geographic Information System. QGIS Association. http://www.qgis.org
Queirós, L., Deus, E., Silva, J.S., Vicente, J., Ortiz, L., Fernandes, P.M., & Castro-Díez, P. (2020). Assessing the drivers and the recruitment potential of Eucalyptus globulus in the Iberian Peninsula. Forest Ecology and Management, 466, 118147. https://doi.org/10.1016/j.foreco.2020.118147
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rajab, H., Khan, M.S., Malagoli, M., Hell, R., & Wirtz, M. (2019). Sulfate-induced stomata closure requires the canonical aba signal transduction machinery. Plants, 8, 21. https://doi.org/10.3390/plants8010021
Reed, T.E., Schindler, D.E., & Waples, R.S. (2011). Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conservation Biology, 25, 56–63. https://doi.org/10.1111/j.1523-1739.2010.01552.x
Ren, L., Sun, J., Chen, S., Gao, J., Dong, B., Liu, Y., & Jiang, J. (2014). A transcriptomic analysis of Chrysanthemum nankingenseprovides insights into the basis of low temperature tolerance. BMC Genomics, 15, 844. https ://doi.org/10.1186/1471‐2164‐15‐844
Rocha, S.M.G., Vidaurre, G.B., Pezzopane, J.E.M., Almeida, M.N.F., Carneiro, R.L., Campoe, O.C., Scolforo, H.F., Alvares, C.A., Neves, J.C.L., Xavier, A.C., & Figura, M.A. (2020). Influence of climatic variations on production, biomass and density of wood inEucalyptus clones of different species. Forest Ecology and Management, 473, 118290. https://doi.org/10.1016/j.foreco.2020.118290
Rosenberg, N. A. (2004). distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138. https :// doi.org/10.1046/j.1471‐8286.2003.00566.x
Scharf, K. D., Rose, S., Zott, W., Schofl, F., & Nover, L. (1990). Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA binding domain of the yeast HSF. EMBO J., 13, 4495-501. https://doi.org/10.1002/j.14602075.1990.tb07900.x
Sexton, J.P., Strauss, S.Y., & Rice, K.J. (2011). Gene flow increases fitness at the warm edge of a species’ range. Proceedings of the National Academy of Sciences, 108, 11704–11709. https://doi.org/10.1073/pnas.1100404108
Sheldon, C.C., Finnegan, E.J., Dennis, E.S., & Peacock, W.J. (2006). Quantitative effects of vernalization on FLC and SOC1 expression. The Plant Journal, 45, 871–883. https://doi.org/10.1111/j.1365 313X.2006.02652.x
Shryock, D. F., Washburn, L. K., DeFalco, L. A., & Esque, T. C. (2020). Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual. Molecular Ecology, 792, 698-717. https://doi.org/10.1111/mec.15672
Soto-Correa, J.C., Sáenz-Romero, C., Lindig-Cisneros, R., & de la Berrera, E. (2012). The neotropical shrub Lupinus elegans , from temperate forests, may not adapt to climate change. Plant Biology, 15, 607-610. https://doi.org/10.1111/j.1438-8677.2012.00716.x
Standish, R.J., Daws, M.I., Gove, A.D., Didham, R.K., Grigg, A.H., Koch, J.M., & Hobbs, R.J. (2015). Long term data suggest jarrah-forest establishment at restored mine sites is resistant to climate variability. Journal of Ecology, 103, 78–89. https://doi.org/10.1111/1365-2745.12301
Staudinger, M.D., Carter, S.L., Cross, M.S., Dubois, NS., Duffy, J. E., Enquist, C., … Turne, W. (2013). Biodiversity in a changing climate: A synthesis of current and projected trends in the US. Frontiers in Ecology and the Environment, 11, 465–473. https://doi.org/10.1890/120272=
Steane, D. A., McLean, E. H., Potts, B. M., Prober, S. M., Stock, W. D., Stylianou, V. M., … Byrne, M. (2017). Evidence for adaptation and acclimation in a widespread eucalypt of semi‐arid Australia. Biological Journal of the Linnean Society, 121, 484–500. https://doi.org/10.1093/biolinnean/blw051
Stoneman, G.L., Turner, N.C., & Dell, B. (1994). Leaf growth, photosynthesis and tissue water relations of greenhouse-grownEucalyptus marginata seedlings in response to water deficits. Tree Physiology, 14, 633-646. http://dx.doi.org/10.1093/treephys/14.6.633
Su, W., Huang, L., Ling, H., et al., (2020). Sugarcane calcineurin B-like (CBL ) genes play important but versatile roles in regulation of responses to biotic and abiotic stresses. Scientific Reports, 10, 167. https://doi.org/10.1038/s41598-019-57058-7
Supple, MA., Bragg, J.G., Broadhurst, L.M., Nicotra, A.B., Byrne, M., Andrew, R.L., & Borevitz, J.O. (2018). Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change. eLife, 7, e31835. https://doi.org/10.7554/eLife.31835
The Gene Ontology Consortium. (2019). The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 47, D330–D338. https://doi.org/10.1093/nar/gky1055
Tian, F., Yang, D.C., Meng, Y.Q., Jin, J., & Gao. G. (2020). PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Research, 48, D1104–13. https://doi.org/10.1093/nar/gkz1020.
Todesco, M., Owens, G.L., Bercovich, N., Légaré, J.S., Soudi, S., Burge, D.O., Huang, K., Ostevik, K.L., Drummond, E.B.M., Imerovski, I., Lande, K., Pascual-Robles, M.A., Nanavati, M., Jahani,M., Cheung, W., Staton, S.E., Muños, S., Nielsen, R., Donovan, L.A., Rieseberg, L.H. (2020). Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature, 584, 602-607. https://doi.org/10.1038/s41586-020-2467-6
Urban, M. (2015). Accelerating extinction risk from climate change. Science, 348, 571–573. https://doi.org/10.1126/science.aaa4984
von Takach, B., Ahrens, C.W., Lindenmayer, D.B. and Banks, S.C. (2021), Scale-dependent signatures of local adaptation in a foundation tree species. Molecular Ecology, 30, 2248-2261. https://doi.org/10.1111/mec.15894
Wadgymar, S.M., Lowry, D.B., Gould, B.A., Byron, C.N., Mactavish, R.M., & Anderson, J.T. (2017). Identifying targets and agents of selection: innovative methods to evaluate the processes that contribute to local adaptation. Methods in Ecology and Evolution, 8, 738–749. https://doi.org/10.1111/2041-210X.12777
Walters, S.J., Robinson, T.P., Byrne, M., Wardell-Johnson, G.W., & Nevill, P. (2021). Association of putatively adaptive genetic variation with climatic variables differs between a parasite and its host. Evolutionary Applications, 14, 1732– 1746. https://doi.org/10.1111/eva.13234
Water Corporation. (2020) Streamfow. https://pw-cdn.watercorporatio n.com.au/Our-water/Rainfall-and-dams/Streamfow. Accessed 11/05/2021
Weir, B.S., & Cockerham, C.C. (1984). Estimating F -statistics for the analysis of population structure. Evolution, 38, 1358–1370,
Wheeler, M.A., Byrne, M., & McComb, J.A. (2003). Little genetic differentiation within the dominant forest tree, Eucalyptus marginata (Myrtaceae) of south-western Australia. Silvae Genetica, 52, 254-259. http://researchrepository.murdoch.edu.au/id/eprint/16460
White, N.J. & Butlin, R.K. (2021). Multidimensional divergent selection, local adaptation, and speciation. Evolution. https://doi.org/10.1111/evo.14312
Whitford, K.R., & Williams, M.R. (2002) . Hollows in jarrah and marri trees, II: selecting trees to retain for hollow dependent fauna. Forest Ecology and Management, 160, 2151–2232. https://doi.org/10.1016/S0378-1127(01)00447-9
Whitford, K.R., Wiseman, D., McCaw, W.L., & Bradshaw, F.J. (2015). Characteristics of nest trees and nest hollows used by the forest red-tailed black cockatoo (Calyptorhynchus banksii naso ) in south-west Western Australia: comments on Johnstone et al., (2013). Pacific Conservation Biology, 21,133 145. https://doi.org/10.1071/PC14911
Wittkopp, P. J., & Kalay, G. (2012). Cis‐regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics, 13, 59–69. https://doi.org/10.1038/nrg3095
Wrigley, J., & Fagg, M. (2012). Eucalypts: A Celebration. Allen and Unwin, Crowsnest, New South Wales, p. 60. ISBN: 9781743310809
Yu, W., Zhao, R., Wang, L., Zhang, S., Li, R., Sheng, J., & Shen, L. (2019). ABA signalling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants. Planta, 250, 643-655. https://doi.org/10.1007/s00425-019-03195-2
Zhang, H., Li, G., Fu, C., Duan, S., Hu, D., & Gu, X. (2020a). Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Scientific Reports, 10, 1–11. https://doi.org/10.1038/s41598-020-65068-z.
Zhang, H., Liu, D., Yang, B., Liu, W.Z., Mu, B., Song, H., Chen, B., et al., (2020b). Arabidopsis cpk6 positively regulates ABA signalling and drought tolerance through phosphorylating ABA-responsive element binding factors.” Journal of Experimental Botany, 71, 188–203. https://doi.org/10.1093/jxb/erz432.
Zhang, X., Li, J., Liu, A., Zou, J., Zhou, X., Xiang, J., & Chen, X. (2012). Expression profile in rice panicle: Insights into heat response mechanism at reproductive stage. PLoS ONE, 7, e49652. https://doi. org/10.1371/journal.pone.0049652
Zielke, M., Ekker, A.S., Olsen, R.A., Spjelkavik, S., & Solheim, B. (2002). The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the High Arctic, Svalbard. Arctic, Antarctic, and Alpine Research, 34, 293-299. https://doi.org/10.1080/15230430.2002.12003497