REFERENCES
Ahrens, C. W., Rymer, P. D., Stow, A., Bragg, J. G., Dillon, S. K.,
Umbers, K. D. L., & Dudaniec, R. Y. (2018). The search for loci under
selection: Trends, biases and progress. Molecular Ecology, 27,
1342–1356. https ://doi.org/10.1111/mec.14549
Ahrens, C.W., Byrne, M., & Rymer, P.D. (2019a). Standing genomic
variation within coding and regulatory regions contributes to the
adaptive capacity to climate in a foundation tree species. Molecular
Ecology, 28, 2502–16. https://doi.org/10.1111/mec.15092
Ahrens, C.W., Andrew, M.E., Mazanec, R.A., Ruthrof, K.X., Challis, A.,
Hardy, G., Byrne, M., Tissue, D.T., & Rymer, P.D. (2019b). Plant
functional traits differ in adaptability and are predicted to be
differentially affected by climate change. Ecology and Evolution, 10,
232–248. https://doi.org/10.1002/ece3.5890
Ahrens, C.W., Jordan, R., Bragg, J., Harrison, P.A., Hopley, T.,
Bothwell, H., Murray, K., Steane, D.A., Whale, J.W., Byrne, M., Andrew,
R., & Rymer, P.D. (2021a). Regarding the F-word: the effects of data
filtering on inferred genotype-environment associations. Molecular
Ecology Resources, https://doi.org/10.1111/1755-0998.13351
Ahrens, C.W., Rymer, P.D. & Tissue, D.T. (2021b). Intra-specific trait
variation remains hidden in the environment. New Phytologist, 229:
1183-1185. https://doi.org/10.1111/nph.16959
Aitken, S.N., & Bemmels, J.B. (2016). Time to get moving: assisted gene
flow of forest trees. Evolutionary Applications, 9, 271–290.
https://doi.org/10.1111/eva.12293
Altschul, S.F., et al., (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Research,
25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
Anderson, J.T., Willis, J.H., & Mitchell‐Olds, T. (2011). Evolutionary
genetics of plant adaptation. Trends in Genetics, 27, 258–266. https://
doi.org/10.1016/j.tig.2011.04.001
Aspinwall, M.J., Pfautsch, S., Tjoelker, M.G., Vårhammar, A., Possell,
M., Tissue, D.T., Drake, J.E., Reich, P.B., Atkin, O.K., Rymer, P.D.,
Dennison, S., & Van Sluyter, S.C. (2019). Range size and growth
temperature influence Eucalyptus species responses to an
experimental heatwave. Global Change Biology, 25, 1665–1684.
https://doi.org/10.1111/gcb.14590
BOM and CSIRO. State of the climate. 2020. Available at:
http://www.bom.gov.au/state-of-the
climate/documents/State-of-the-Climate-2020. pdf [Accessed 08 May
2021]
Bradshaw, F.J. (2015). Reference material for jarrah forest
silviculture. Forest Management Series FEM061. Department of Parks and
Wildlife, Perth, pp. 141.
Bragg, J. G., Supple, M. A., Andrew, R. L., & Borevitz, J. O. (2015).
Genomic variation across landscapes: Insights and applications. New
Phytologist, 207, 953–967. https://doi.org/10.1111/nph.13410
Brondizio, E.S., Settele, J., Díaz, S., & Ngo, H.T. (2019). Global
assessment report on biodiversity and ecosystem services of the
intergovernmental science-policy platform on biodiversity and ecosystem
services. IPBES secretariat, Bonn, Germany.
https://doi.org/10.5281/zenodo.3553579
Byrne, M., Macdonald, B., & Francki, M. (2001). Incorporation of sodium
sulfite into extraction protocol minimizes degradation of AcaciaDNA. BioTechniques, 30, 742–4–748. https://doi.org/10.2144/01304bm06
Camarero, J.J., Alvarez-Taboada, F., Hevia, A., & Castedo-Dorado, F.
(2018). Radial growth and wood density reflect the impacts and
susceptibility to defoliation by gypsy moth and climate in radiata pine.
Frontiers in Plant Science, 9, 1582.
https://doi.org/10.3389/fpls.2018.01582
Capblancq, T., Fitzpatrick, M.C., Bay, R.A., Exposito-Alonso, M., &
Keller, S.R. (2020). Genomic prediction of (mal)adaptation across
current and future climatic landscapes. Annual Review of Ecology,
Evolution, and Systematics, 51, 245–69.
https://doi.org/10.1146/annurev-ecolsys-020720-042553
Carlo, M.A., Riddell, E.A., Levy, O., & Sears, M.W. (2018). Recurrent
sublethal warming reduces embryonic survival, inhibits juvenile growth,
and alters species distribution projections under climate change.
Ecology Letters, 21, 104–116. https://doi.org/10.1111/ele.12877
Caye, K., Jumentier, B., Lepeule, J., & François, O. (2019). LFMM 2:
Fast and accurate inference of gene-environment associations in
genome-wide studies. Molecular Biology and Evolution, 36, 852 860.
https://doi.org/10.1093/molbev/msz008
CCWA. (2013). Forest Management Plan 2014–2023. Conservation Commission
of Western Australia (CCWA), Perth.
Chhatre, V.E., Fetter, K.C., Gougherty, A..V, Fitzpatrick, M.C.,
Soolanayakanahally, RY., et al., (2019). Climatic niche predicts the
landscape structure of locally adaptive standing genetic variation.
BioRxiv 817411. https:// doi.org/10.1101/817411
Christmas, M.J., Breed, M.F., & Lowe, A.J. (2016). Constraints to and
conservation implications for climate change adaptation in plants.
Conservation Genetics, 17, 305–20.
https://doi.org/10.1007/s10592-015-0782-5.
Collevatti, R.G., Novaes, E., Silva-Junior, O.B., Vieira, L.D.,
Lima-Ribeiro, M.S., & Grattapaglia, D. (2019). A genome-wide scan shows
evidence for local adaptation in a widespread keystone neotropical
forest tree. Heredity, 123, 117–137.
https://doi.org/10.1038/s41437-019-0188-0
Coop, G., Witonsky, D., Di Rienzo, A., & Pritchard, J. K. (2010). Using
environmental correlations to identify loci underlying local adaptation.
Genetics, 185, 1411–1423. https://doi.org/10.1534/genetics.110.114819
Corcobado, T., Cubera, E., Juarez, E., Moreno, G., & Solla, A. (2014).
Drought events determine performance of Quercus ilex seedlings
and increase their susceptibility to Phytophthora cinnamomi .
Agricultural and Forest Meteorology, 192, 1–8.
https://doi.org/10.1016/j.agrformet.2014.02.007
Correia, B., Hancock, R.D., Amaral, J., Gomez-Cadenas, A., Valledor, L.,
Pinto, G. (2018). Combined drought and heat activates protective
responses in Eucalyptus globulus that are not activated when
subjected to drought or heat stress alone. Frontiers in Plant Science,
9, 819. https://doi.org/10.3389/fpls.2018.00819
Costa e Silva, J., Potts, B., Harrison, P.A., & Bailey, T. (2019).
Temperature and rainfall are separate agents of selection shaping
population differentiation in a forest tree. Forests, 10, 1145.
https://doi.org/10.3390/f10121145
Davison, E.M. (2015). How Phytophthora cinnamomi became
associated with the death of Eucalyptus marginata – the early
investigations into jarrah dieback. Australasian Plant Pathology, 44,
263-271. https://doi.org/10.1007/s13313-015-0356-5
Davison, E.M. (2018). Relative importance of site, weather and
phytophthora cinnamomi in the decline and death of Eucalyptus
marginata – Jarrah dieback investigations in the 1970s to 1990s.
Australasian Plant Pathology, 47, 245–57.
https://doi.org/10.1007/s13313-018-0558-8.
Dey, R., Lewis, S.C., Arblaster, J.M., & Abram NJ (2019). A review of
past and projected changes in Australia’s rainfall. Wiley Interdiscip
Rev: Clim Change, 10, 577. https://doi/org/10.1002/wcc.577
Doyle JJ and Doyle JL (1990) Isolation of plant DNA from fresh tissue.
Focus, 12, 13–15.
Duan, S., Liu, B., Zhang, Y., Li, G., & Guo, X. (2019). Genome-wide
identification and abiotic stress-responsive pattern of heat shock
transcription factor family in Triticum aestivum L. BMC Genomics,
20, 1–20. https://doi.org/10.1186/s12864-019-5617-1
Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using
generalized dissimilarity modelling to analyze and predict patterns of
beta diversity in regional biodiversity assessment. Diversity and
Distributions, 13, 252–264.
https://doi.org/10.1111/j.1472-4642.2007.00341
Fick, S.E., & Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial
resolution climate surfaces for global land areas. International Journal
of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
Fitzpatrick, M.C., & Keller, S.R. (2015). Ecological genomics meets
community‐level modelling of biodiversity: Mapping the genomic landscape
of current and future environmental adaptation. Ecology Letters, 18,
1–16. https ://doi.org/10.1111/ele.12376
Forester, B.R., Lasky, J.R., Wagner, H.H., & Urban D.L. (2018).
Comparing methods for detecting multilocus adaptation with multivariate
genotype–environment associations. Molecular Ecology, 27, 2215–33.
https://doi.org/10.1111/mec.14584.
Frichot, E., Schoville, S.D., Bouchard, G., & François, O. (2013).
Testing for associations between loci and environmental gradients using
latent factor mixed models. Molecular Biology and Evolution, 30, 1687–
1699. https://doi.org/10.1093/molbev/mst063
Frichot, E., & François, O. (2015). LEA: an R package for landscape and
ecological association studies. Methods in Ecology and Evolution, 6,
925– 929. https://doi.org/10.1111/2041-210X.12382
Gagné-Bourque, F., Bertrand, A., Claessens, A., Aliferis, K. A., &
Jabaji, S. (2016). Alleviation of drought stress and metabolic changes
in timothy (Phleum pratense L.) colonized with Bacillus
subtilis B26. Frontiers in Plant Science, 7, 584.
https://doi.org/10.3389/fpls.2016.00584
Gautier, M. (2015). Genome-wide scan for adaptive divergence and
association with population specific covariates. Genetics, 201,
1555–1579. https://doi.org/10.1534/genetics.115.181453
Gentilesca, T., Camarero, J.J., Colangelo, M., Nole, A. & Ripullone, F.
(2017). Drought-induced oak decline in the western Mediterranean region:
an overview on current evidences, mechanisms and management options to
improve forest resilience. iForest - Biogeosciences and Forestry, 10,
796–806. https://doi.org/10.3832/ifor2317-010
Goudet, J. (2005). Hierfstat, a package for R to compute and test
variance components and F -statistics. Molecular Ecology Notes, 5,
184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.
Gougherty, A.V., Keller, S.R., Chhatre, V.E., & Fitzpatrick, M.C.
(2020). Future climate change promotes novel gene-climate associations
in balsam poplar (Populus balsamifera L.), a forest tree species.
BioRxiv, 961060. https://doi.org/10.1101/2020.02.28.961060
Gougherty, A. V., Keller, S. R., & Fitzpatrick, M. C. (2021).
Maladaptation, migration and extirpation fuel climate change risk in a
forest tree species. Nature Climate Change, 11, 166–171.
https://doi.org/10.1038/s41558-020-00968-6
Gugger, P.F., Fitz-Gibbon, S.T., Albarrán-Lara, A., Wright, J.W. &
Sork, V.L. (2021). Landscape genomics of Quercus lobata reveals
genes involved in local climate adaptation at multiple spatial scales.
Molecular Ecology, 30, 406–423. https://doi.org/10.1111/mec.15731
Gundale, M.J., Nilsson, M., Bansal, S., & Jaderlund, A. (2012). The
interactive effects of temperature and light on biological nitrogen
fixation in boreal forests. New Phytologist, 194, 453–463.
https://doi.org/10.1111/j.1469-8137.2012.04071.x
Guzella, T.S., Dey, S., Chelo, I.M., Pino-Querido, A., Pereira, V.F.,
Proulx, S.R., et al., (2018). Slower environmental change hinders
adaptation from standing genetic variation. PLoS Genetics, 14, e1007731.
https://doi.org/10.1371/journal. pen.1007731
Harris, R.M.B., Beaumont, L.J., Vance, T.R., Tozer, C.R., Remenyi, T.,
Perkins-Kirkpatrick, S.E., et al. (2018). Biological responses to the
press and pulse of climate trends and extreme events. Nature Climate
Change, 8, 579–587. https://doi.org/10.1038/s41558-018-0187-9
Hoffmann, A., Griffin, P., Dillon, S., Catullo, R., Rane, R., Byrne, M.,
& Sgrò, C. (2015). A framework for incorporating evolutionary genomics
into biodiversity conservation and management. Climate Change Responses,
2, 1. https://doi.org/10.1186/s4066 5-014-0009-x
Honjo, M.N., & Kudoh, H. (2019). Arabidopsis halleri : a
perennial model system for studying population differentiation and local
adaptation. AoB PLANTS, 11, 1–13.
https://doi.org/10.1093/aobpla/plz076.
Hwang, J.U., Song, W.Y., Hong, D., Ko, D., Yamaoka, Y., Jang, S., &
Lee, Y. (2016). Plant ABC transporters enable many unique aspects of a
terrestrial plant’s lifestyle. Molecular Plant, 9, 338–355.
https://doi.org/10.1016/j.molp.2016.02.003
Ingvarsson, P. K., & Bernhardsson, C. (2020). Genome-wide signatures of
environmental adaptation in European aspen (Populus tremula )
under current and future climate conditions. Evolutionary Applications,
13, 132–142. https://doi.org/10.1111/eva.12792
IPCC, 2021: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P.
Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R.
Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou
(eds.)]. Cambridge University Press. In Press.
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching
and permutation program for dealing with label switching and
multimodality in analysis of population structure. Bioinformatics, 23,
1801–1806. https://doi.org/10.1093/bioin forma tics/btm233
Jones, R. C., Steane, D. A., Potts, B. M., & Vaillancourt, R. E.
(2002). Microsatellite and morphological analysis of Eucalyptus
globulus populations. Canadian Journal of Forest Research, 32, 59–66.
https://doi.org/10.1139/x01-172
Jordan, R., Hoffmann, A.A., Dillon, S.K., & Prober, S.M. (2017).
Evidence of genomic adaptation to climate in Eucalyptus
microcarpa : Implications for adaptive potential to projected climate
change. Molecular Ecology, 26, 6002–6020.
https://doi.org/10.1111/mec.14341
Jordan, R., Prober, S.M., Hoffmann, A.A., & Dillon, S.K. (2020).
Combined analyses of phenotype, genotype and climate implicate local
adaptation as a driver of diversity in Eucalyptus microcarpa(grey box). Forests, 11, 495. https://doi.org/10.3390/F11050495.
Joshi, V. & Jander, G. (2009). Arabidopsis methionine
gamma-lyase is regulated according to isoleucine biosynthesis needs but
plays a subordinate role to threonine deaminase. Plant Physiology, 151,
367 378. https://doi.org/10.1104/pp.109.138651
Joubès, J., Rafaele, S., Bourdenx, B., Garcia, C., Laroche-Traineau, J.,
Moreau, P., et al., (2008). The VLCFA elongase gene family inArabidopsis thaliana : phylogenetic analysis, 3D modelling and
expression profiling. Plant Molecular Biology, 67, 547–566.
https://doi.org/10.1007/s11103-008-9339-z
Kala, J., Tenna A.S., Rudloff, D., Andrys, J., Rieke, O., & Lyons, T.J.
(2020). Evaluation of the weather research and forecasting model in
simulating fire weather for the South-west of Western Australia.”
International Journal of Wildland Fire, 29, 779–92.
https://doi.org/10.1071/WF19111.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90, 773–795.
https://doi.org/10.1080/01621 459.1995.10476572
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local
adaptation. Ecology Letters, 7, 1225–1241. https
://doi.org/10.1111/j.1461‐0248.2004.00684.x
Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H.,
… Uszynski, G. (2012). Diversity arrays technology: A generic
genome profiling technology on open platforms. In F. Pompanon & A.
Bonin (Eds.), Data production and analysis in population genomics:
Methods and protocols (pp. 67–89). Totowa, NJ: Humana Press.
Kirkpatrick, M., &Meyer, K. (2004). Direct estimation of genetic
principal components: simplified analysis of complex phenotypes.
Genetics, 168, 2295–2306. https://doi.org/10.1534/genetics.104.029181.
Koch, J.M., & Samsa, G.P. (2007). Restoring Jarrah Forest in
southwestern Australia after bauxite mining. Restoration Ecology, 15,
S17–S25. https://doi.org/10.1111/j.1526‐100X.2007.00289.x
Kremer, A., Ronce, O., Robledo-Arnuncio, J.J., Guillaume, F., Bohrer,
G., Nathan, R., Bridle, J.R, Gomulkiewicz, R., Klein, E.K., Ritland. K.,
Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene
flow and adaptation of forest trees to rapid climate change. Ecology
Letters, 15, 378–392. https://doi.org/10.1111/j.1461-0248.2012.01746.x
Kryazhimskiy, S., & Plotkin, J. B. (2008). The population genetics of
dN/dS. PLoS Genetics, 4, e1000304. https://doi.org/10.1371/journ
al.pgen.1000304
Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J. H., Kim, S.G., et al.,
(2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral
inductive pathways in Arabidopsis . Genes and Development, 14,
2366–2376.
Lee, J., Finn, H., & Calver, M. (2013). Feeding activity of threatened
black cockatoos in mine-site rehabilitation in the jarrah forest of
south-western Australia. Australian Journal of Zoology ,61, 119 131.
https://doi.org/10.1071/ZO12101
Levin, P., & Poe, M. (2017). Conservation for the Anthropocene Ocean:
interdisciplinary science in support of nature and people. Cambridge:
Academic Press, 530.
Liao, C., Zheng, Y., & Guo, Y. (2017). MYB30 transcription factor
regulates oxidative and heat stress responses through ANNEXIN-mediated
cytosolic calcium signalling in Arabidopsis . New Phytologist,
216, 163–177. https://doi.org/10.1111/nph.14679
MacPherson, A., Hohenlohe P.A., & Nuismer, S.L. (2015). Trait
dimensionality explains widespread variation in local adaptation.
Proceedings of the Royal Society B: Biological Sciences, 282, 1802.
https://doi.org/10.1098/rspb.2014.1570.
Maheshwari, P., Assmann, S.M., & Albert, R. (2020). A guard cell
abscisic acid (ABA) network model that captures the stomatal resting
state. Frontiers in Physiology, 11, 11-927
https://doi.org/10.3389/fphys.2020.00927.
Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., &
Cierco-Ayrolles, C. (2012). Novel measures of linkage disequilibrium
that correct the bias due to population structure and relatedness.
Heredity, 108, 285–291. https://doi.org/10.1038/hdy.2011.73
Manion, G., Lisk, M., Ferrier, S., Nieto‐Lugilde, D., Mokany, K., &
Fitzpatrick, M. C. (2018). gdm: Generalized dissimilarity modeling. R
package version 1.3.7. Retrieved from
https://cran.rproject.org/web/packages/gdm/index.html
Martins, K., Gugger, P. F., Llanderal-Mendoza, J., Gonzalez-Rodrigruez,
A., Fitz-Gibbon, S. T., Zhao, J., Rodríguez-Correa, H., Oyama, K. &
Sork, V. L. (2018). Landscape genomics provides evidence of
climate-associated genetic variation in Mexican populations ofQuercus rugosa . Evolutionary Applications, 11, 1842–1858.
https://doi.org/10.1111/eva.12684
Matusick, G., Ruthrof, K., Brouwers, N.C., Dell, B., & Hardy, G.S.J.
(2013). Sudden forest canopy collapse corresponding with extreme drought
and heat in a Mediterranean‐type eucalypt forest in southwestern
Australia. European Journal of Forest Research, 132, 497–510.
https://doi.org/10.1007/s10342-013-0690-5
Mayol, M. (2019). A multiscale approach to detect selection in non‐model
tree species: widespread adaptation despite population decline inTaxus baccata L. – Evolutionary Applications, 13, 143–160.
https://doi.org/10.1111/eva.12838
McChesney, C.J., Koch, J.M., & Bell, D.T. (1995). Jarrah forest
restoration in Western Australia: Canopy and topographic effects.
Restoration Ecology, 3, 105–110.
https://doi.org/10.1111/j.1526100X.1995.tb00083.x
McGuigan, K., Chenoweth, S.F., & Blows, M.W. (2005). Phenotypic
divergence along lines of genetic variance. American Naturalist, 165,
32–43. https://doi.org/10.1086/426600.
Mmadi, M.A., Dossa, K., Wang, L., Zhou, R., Wang, Y.,Cisse, N., Sy,
M.O., & Zhang, X. (2017). Functional characterization of the versatile
MYB gene family uncovered their important roles in plant development and
responses to drought and waterlogging in sesame. Genes, 8, 362.
https://doi.org/10.3390/genes8120362
Murray, K.D., Janes, J.K., Jones, A., Bothwell, H.M., Andrew, R.L., &
Borevitz, J.O. (2019). Landscape drivers of genomic diversity and
divergence in woodland Eucalyptus . Molecular Ecology, 28, 5232
5247. https://doi.org/10.1111/mec.15287
Myburg, A.A., Grattapaglia, D., Tuskan, G.A., Hellsten, U., Hayes, R.D.,
Grimwood, J., Schmutz, J., et al., (2014). The genome of
Eucalyptus grandis . Nature, 510, 356–362.
https://doi.org/10.1038/nature13308
Nelson, D.C., Flematti, G.R., Ghisalberti, E.L., Dixon, K.W., & Smith,
S.M. (2012). Regulation of seed germination and seedling growth by
chemical signals from burning vegetation. Annu Rev Plant Biol., 63,
107–30. https://doi.org /10.1101/gad.813600.
O’Brien, E.K., Mazanec, R.A., & Krauss, S.L (2007). Provenance
variation of ecologically important traits of forest trees: implications
for restoration. Journal of Applied Ecology, 44, 583–93.
https://doi.org/10.1111/j.1365-2664.2007.01313.x.
O’Brien, E.K., & Krauss, S.L. (2010). Testing the home-site advantage
in forest trees on disturbed and undisturbed sites. Restoration Ecology,
18, 359–372. https://doi.org/10.1111/j.1526100X.2008.00453.x
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., … Wagner, H. (2018). vegan: Community Ecology
Package. R package version 2.5‐1. Retrieved from
https://cran.rproject.org/web/packa ges/vegan/index.html
Pacifici, M., Foden, W., Visconti, P., et al., (2015). Assessing species
vulnerability to climate change. Nature Climate Change, 5, 215–224.
https://doi.org/10.1038/nclimate2448
Perruc, E., Kinoshita, N., & Lopez-Molina, L. (2007). The role of
chromatin-remodeling factor PKL in balancing osmotic stress responses
during Arabidopsis seed germination. The Plant Journal, 52,
927-936. https://doi.org/10.1111/j.1365-313X.2007.03288.x
Piedallu, C., Gegout, J.C., Perez, V., & Lebourgeois, F. (2013) Soil
water balance performs better than climatic water variables in tree
species distribution modelling. Global Ecology and Biogeography, 22,
470–482. https://doi.org/10.1111/geb.12012
Pritzkow, C., Szota, C., Williamson, V., & Arndt, S.K. (2020).
Phenotypic plasticity of drought tolerance traits in a widespread
eucalypt (Eucalyptus obliqua ). Forests, 11,
1371.doi:https://doi.org/10.3390/f11121371
Prober, S.M., Byrne, M., McLean, E.H., Steane, D.A., Potts, B.M.,
Vaillancourt, R.E., & Stock, W.D. (2015). Climate-adjusted
provenancing: a strategy for climate-resilient ecological restoration.
Frontiers in Ecology and Evolution, 3, 1–5.
https://doi.org/10.3389/fevo.2015.00065.
QGIS.org. (2021). QGIS Geographic Information System. QGIS Association.
http://www.qgis.org
Queirós, L., Deus, E., Silva, J.S., Vicente, J., Ortiz, L., Fernandes,
P.M., & Castro-Díez, P. (2020). Assessing the drivers and the
recruitment potential of Eucalyptus globulus in the Iberian
Peninsula. Forest Ecology and Management, 466, 118147.
https://doi.org/10.1016/j.foreco.2020.118147
R Core Team. (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.
Rajab, H., Khan, M.S., Malagoli, M., Hell, R., & Wirtz, M. (2019).
Sulfate-induced stomata closure requires the canonical aba signal
transduction machinery. Plants, 8, 21.
https://doi.org/10.3390/plants8010021
Reed, T.E., Schindler, D.E., & Waples, R.S. (2011). Interacting effects
of phenotypic plasticity and evolution on population persistence in a
changing climate. Conservation Biology, 25, 56–63.
https://doi.org/10.1111/j.1523-1739.2010.01552.x
Ren, L., Sun, J., Chen, S., Gao, J., Dong, B., Liu, Y., & Jiang, J.
(2014). A transcriptomic analysis of Chrysanthemum nankingenseprovides insights into the basis of low temperature tolerance. BMC
Genomics, 15, 844. https ://doi.org/10.1186/1471‐2164‐15‐844
Rocha, S.M.G., Vidaurre, G.B., Pezzopane, J.E.M., Almeida, M.N.F.,
Carneiro, R.L., Campoe, O.C., Scolforo, H.F., Alvares, C.A., Neves,
J.C.L., Xavier, A.C., & Figura, M.A. (2020). Influence of climatic
variations on production, biomass and density of wood inEucalyptus clones of different species. Forest Ecology and
Management, 473, 118290. https://doi.org/10.1016/j.foreco.2020.118290
Rosenberg, N. A. (2004). distruct: A program for the graphical display
of population structure. Molecular Ecology Notes, 4, 137–138. https ://
doi.org/10.1046/j.1471‐8286.2003.00566.x
Scharf, K. D., Rose, S., Zott, W., Schofl, F., & Nover, L. (1990).
Three tomato genes code for heat stress transcription factors with a
region of remarkable homology to the DNA binding domain of the yeast
HSF. EMBO J., 13, 4495-501.
https://doi.org/10.1002/j.14602075.1990.tb07900.x
Sexton, J.P., Strauss, S.Y., & Rice, K.J. (2011). Gene flow increases
fitness at the warm edge of a species’ range. Proceedings of the
National Academy of Sciences, 108, 11704–11709.
https://doi.org/10.1073/pnas.1100404108
Sheldon, C.C., Finnegan, E.J., Dennis, E.S., & Peacock, W.J. (2006).
Quantitative effects of vernalization on FLC and SOC1 expression. The
Plant Journal, 45, 871–883. https://doi.org/10.1111/j.1365
313X.2006.02652.x
Shryock, D. F., Washburn, L. K., DeFalco, L. A., & Esque, T. C. (2020).
Harnessing landscape genomics to identify future climate resilient
genotypes in a desert annual. Molecular Ecology, 792, 698-717.
https://doi.org/10.1111/mec.15672
Soto-Correa, J.C., Sáenz-Romero, C., Lindig-Cisneros, R., & de la
Berrera, E. (2012). The neotropical shrub Lupinus elegans , from
temperate forests, may not adapt to climate change. Plant Biology, 15,
607-610. https://doi.org/10.1111/j.1438-8677.2012.00716.x
Standish, R.J., Daws, M.I., Gove, A.D., Didham, R.K., Grigg, A.H., Koch,
J.M., & Hobbs, R.J. (2015). Long term data suggest jarrah-forest
establishment at restored mine sites is resistant to climate
variability. Journal of Ecology, 103, 78–89.
https://doi.org/10.1111/1365-2745.12301
Staudinger, M.D., Carter, S.L., Cross, M.S., Dubois, NS., Duffy, J. E.,
Enquist, C., … Turne, W. (2013). Biodiversity in a changing
climate: A synthesis of current and projected trends in the US.
Frontiers in Ecology and the Environment, 11, 465–473.
https://doi.org/10.1890/120272=
Steane, D. A., McLean, E. H., Potts, B. M., Prober, S. M., Stock, W. D.,
Stylianou, V. M., … Byrne, M. (2017). Evidence for adaptation and
acclimation in a widespread eucalypt of semi‐arid Australia. Biological
Journal of the Linnean Society, 121, 484–500.
https://doi.org/10.1093/biolinnean/blw051
Stoneman, G.L., Turner, N.C., & Dell, B. (1994). Leaf growth,
photosynthesis and tissue water relations of greenhouse-grownEucalyptus marginata seedlings in response to water deficits.
Tree Physiology, 14, 633-646.
http://dx.doi.org/10.1093/treephys/14.6.633
Su, W., Huang, L., Ling, H., et al., (2020). Sugarcane calcineurin
B-like (CBL ) genes play important but versatile roles in
regulation of responses to biotic and abiotic stresses. Scientific
Reports, 10, 167. https://doi.org/10.1038/s41598-019-57058-7
Supple, MA., Bragg, J.G., Broadhurst, L.M., Nicotra, A.B., Byrne, M.,
Andrew, R.L., & Borevitz, J.O. (2018). Landscape genomic prediction for
restoration of a Eucalyptus foundation species under climate
change. eLife, 7, e31835. https://doi.org/10.7554/eLife.31835
The Gene Ontology Consortium. (2019). The Gene Ontology Resource: 20
years and still GOing strong. Nucleic Acids Research, 47, D330–D338.
https://doi.org/10.1093/nar/gky1055
Tian, F., Yang, D.C., Meng, Y.Q., Jin, J., & Gao. G. (2020).
PlantRegMap: charting functional regulatory maps in plants. Nucleic
Acids Research, 48, D1104–13. https://doi.org/10.1093/nar/gkz1020.
Todesco, M., Owens, G.L., Bercovich, N., Légaré, J.S., Soudi, S., Burge,
D.O., Huang, K., Ostevik, K.L., Drummond, E.B.M., Imerovski, I., Lande,
K., Pascual-Robles, M.A., Nanavati, M., Jahani,M., Cheung, W., Staton,
S.E., Muños, S., Nielsen, R., Donovan, L.A., Rieseberg, L.H. (2020).
Massive haplotypes underlie ecotypic differentiation in sunflowers.
Nature, 584, 602-607. https://doi.org/10.1038/s41586-020-2467-6
Urban, M. (2015). Accelerating extinction risk from climate change.
Science, 348, 571–573. https://doi.org/10.1126/science.aaa4984
von Takach, B., Ahrens, C.W., Lindenmayer, D.B. and Banks, S.C. (2021),
Scale-dependent signatures of local adaptation in a foundation tree
species. Molecular Ecology, 30, 2248-2261.
https://doi.org/10.1111/mec.15894
Wadgymar, S.M., Lowry, D.B., Gould, B.A., Byron, C.N., Mactavish, R.M.,
& Anderson, J.T. (2017). Identifying targets and agents of selection:
innovative methods to evaluate the processes that contribute to local
adaptation. Methods in Ecology and Evolution, 8, 738–749.
https://doi.org/10.1111/2041-210X.12777
Walters, S.J., Robinson, T.P., Byrne, M., Wardell-Johnson, G.W., &
Nevill, P. (2021). Association of putatively adaptive genetic variation
with climatic variables differs between a parasite and its host.
Evolutionary Applications, 14, 1732– 1746.
https://doi.org/10.1111/eva.13234
Water Corporation. (2020) Streamfow. https://pw-cdn.watercorporatio
n.com.au/Our-water/Rainfall-and-dams/Streamfow. Accessed 11/05/2021
Weir, B.S., & Cockerham, C.C. (1984). Estimating F -statistics
for the analysis of population structure. Evolution, 38, 1358–1370,
Wheeler, M.A., Byrne, M., & McComb, J.A. (2003). Little genetic
differentiation within the dominant forest tree, Eucalyptus
marginata (Myrtaceae) of south-western Australia. Silvae Genetica, 52,
254-259. http://researchrepository.murdoch.edu.au/id/eprint/16460
White, N.J. & Butlin, R.K. (2021). Multidimensional divergent
selection, local adaptation, and speciation. Evolution.
https://doi.org/10.1111/evo.14312
Whitford, K.R., & Williams, M.R. (2002) . Hollows in jarrah and marri
trees, II: selecting trees to retain for hollow dependent fauna. Forest
Ecology and Management, 160, 2151–2232.
https://doi.org/10.1016/S0378-1127(01)00447-9
Whitford, K.R., Wiseman, D., McCaw, W.L., & Bradshaw, F.J. (2015).
Characteristics of nest trees and nest hollows used by the forest
red-tailed black cockatoo (Calyptorhynchus banksii naso ) in
south-west Western Australia: comments on Johnstone et al., (2013).
Pacific Conservation Biology, 21,133 145.
https://doi.org/10.1071/PC14911
Wittkopp, P. J., & Kalay, G. (2012). Cis‐regulatory elements: Molecular
mechanisms and evolutionary processes underlying divergence. Nature
Reviews Genetics, 13, 59–69. https://doi.org/10.1038/nrg3095
Wrigley, J., & Fagg, M. (2012). Eucalypts: A Celebration. Allen and
Unwin, Crowsnest, New South Wales, p. 60. ISBN: 9781743310809
Yu, W., Zhao, R., Wang, L., Zhang, S., Li, R., Sheng, J., & Shen, L.
(2019). ABA signalling rather than ABA metabolism is involved in
trehalose-induced drought tolerance in tomato plants. Planta, 250,
643-655. https://doi.org/10.1007/s00425-019-03195-2
Zhang, H., Li, G., Fu, C., Duan, S., Hu, D., & Gu, X. (2020a).
Genome-wide identification, transcriptome analysis and alternative
splicing events of Hsf family genes in maize. Scientific Reports, 10,
1–11. https://doi.org/10.1038/s41598-020-65068-z.
Zhang, H., Liu, D., Yang, B., Liu, W.Z., Mu, B., Song, H., Chen, B., et
al., (2020b). Arabidopsis cpk6 positively regulates ABA
signalling and drought tolerance through phosphorylating ABA-responsive
element binding factors.” Journal of Experimental Botany, 71, 188–203.
https://doi.org/10.1093/jxb/erz432.
Zhang, X., Li, J., Liu, A., Zou, J., Zhou, X., Xiang, J., & Chen, X.
(2012). Expression profile in rice panicle: Insights into heat response
mechanism at reproductive stage. PLoS ONE, 7, e49652. https://doi.
org/10.1371/journal.pone.0049652
Zielke, M., Ekker, A.S., Olsen, R.A., Spjelkavik, S., & Solheim, B.
(2002). The influence of abiotic factors on biological nitrogen fixation
in different types of vegetation in the High Arctic, Svalbard. Arctic,
Antarctic, and Alpine Research, 34, 293-299.
https://doi.org/10.1080/15230430.2002.12003497