REFERENCES
Allison, S.D., Vitousek, P.M., (2005). Responses of extracellular
enzymes to simple and complex nutrient inputs. Soil Biology and
Biochemistry, 37, 937–944.
https://doi.org/10.1016/j.soilbio.2004.09.014
Anderson, T., Domsch, K., (1993). The metabolic quotient for
CO2 (qCO2) as a specific activity
parameter to assess the effects of environmental conditions, such as ph,
on the microbial biomass of forest soils. Soil Biology and Biochemistry,
25, 393–395. https://doi.org/10.1016/0038-0717(93)90140-7
Anderson, T.R., Hessen, D.O., Elser, J.J., Urabe, J., (2005). Metabolic
Stoichiometry and the Fate of Excess Carbon and Nutrients in Consumers.
The American Naturalist, 165, 1–15. https://doi.org/10.1086/426598
Bastida, F., Torres, I.F., Hernández, T., Bombach, P., Richnow, H.H.,
García, C., (2013). Can the labile carbon contribute to carbon
immobilization in semiarid soils? Priming effects and microbial
community dynamics. Soil Biology and Biochemistry, 57, 892–902.
https://doi.org/10.1016/j.soilbio.2012.10.037
Blagodatskaya, E., Blagodatsky, S., Anderson, T.-H., Kuzyakov, Y.,
(2014). Microbial Growth and Carbon Use Efficiency in the Rhizosphere
and Root-Free Soil. PLoS ONE, 9, e93282.
https://doi.org/10.1371/journal.pone.0093282
Chen, L., Liang, J., Qin, S., Liu, L., Fang, K., Xu, Y., Ding, J., Li,
F., Luo, Y., Yang, Y., (2016). Determinants of carbon release from the
active layer and permafrost deposits on the Tibetan Plateau. Nature
Communications, 7, 13046. https://doi.org/10.1038/ncomms13046
Chen, X., Xia, Y., Rui, Y., Ning, Z., Hu, Y., Tang, H., He, H., Li, H.,
Kuzyakov, Y., Ge, T., Wu, J., Su, Y., (2020). Microbial carbon use
efficiency, biomass turnover, and necromass accumulation in paddy soil
depending on fertilization. Agriculture, Ecosystems & Environment, 292,
106816. https://doi.org/10.1016/j.agee.2020.106816
Creamer, C.A., Jones, D.L., Baldock, J.A., Farrell, M., (2014).
Stoichiometric controls upon low molecular weight carbon decomposition.
Soil Biology and Biochemistry, 79, 50–56.
https://doi.org/10.1016/j.soilbio.2014.08.019
Czaban, W., Jämtgård, S., Näsholm, T., Rasmussen, J., Nicolaisen, M.,
Fomsgaard, I.S., (2016). Direct acquisition of organic N by white clover
even in the presence of inorganic N. Plant and Soil, 407, 91–107.
https://doi.org/10.1007/s11104-016-2896-z
de Graaff, M.-A., Classen, A.T., Castro, H.F., Schadt, C.W., (2010).
Labile soil carbon inputs mediate the soil microbial community
composition and plant residue decomposition rates. New Phytologist, 188,
1055–1064. https://doi.org/10.1111/j.1469-8137.2010.03427.x
Dijkstra, F.A., Carrillo, Y., Pendall, E., Morgan, J.A., (2013).
Rhizosphere priming: a nutrient perspective. Frontiers in Microbiology,
4. https://doi.org/10.3389/fmicb.2013.00216
Du, L., Zhu, Z., Qi, Y., Zou, D., Zhang, G., Zeng, X., Ge, T., Wu, J.,
Xiao, Z., (2020). Effects of different stoichiometric ratios on
mineralisation of root exudates and its priming effect in paddy soil.
Science of The Total Environment, 743, 140808.
https://doi.org/10.1016/j.scitotenv.2020.140808
Fang, Y., Singh, B.P., Collins, D., Armstrong, R., Van Zwieten, L.,
Tavakkoli, E., (2020). Nutrient stoichiometry and labile carbon content
of organic amendments control microbial biomass and carbon-use
efficiency in a poorly structured sodic-subsoil. Biology and Fertility
of Soils, 56, 219–233. https://doi.org/10.1007/s00374-019-01413-3
IUSS Working Group WRB (2015). World reference base for soil resources
2014. World Soil Resources Reports. No, 106. FAO, Rome
Fisk, L.M., Barton, L., Jones, D.L., Glanville, H.C., Murphy, D.V.,
(2015). Root exudate carbon mitigates nitrogen loss in a semi-arid soil.
Soil Biology and Biochemistry, 88, 380–389.
https://doi.org/10.1016/j.soilbio.2015.06.011
Haichar, F. el Z., Santaella, C., Heulin, T., Achouak, W., (2014). Root
exudates mediated interactions belowground. Soil Biology and
Biochemistry, 77, 69–80. https://doi.org/10.1016/j.soilbio.2014.06.017
Hill, B.H., Elonen, C.M., Seifert, L.R., May, A.A., Tarquinio, E.,
(2012). Microbial enzyme stoichiometry and nutrient limitation in US
streams and rivers. Ecological Indicators, 18, 540–551.
https://doi.org/10.1016/j.ecolind.2012.01.007
Hu, Y., Xiang, D., Veresoglou, S.D., Chen, F., Chen, Y., Hao, Z., Zhang,
X., Chen, B., (2014). Soil organic carbon and soil structure are driving
microbial abundance and community composition across the arid and
semi-arid grasslands in northern China. Soil Biology and Biochemistry,
77, 51–57. https://doi.org/10.1016/j.soilbio.2014.06.014
Jenkinson, D.S., Brookes, P.C., Powlson, D.S., (2004). Measuring soil
microbial biomass. Soil Biology and Biochemistry, 36, 5–7.
https://doi.org /10.1016/j.soilbio.2003.10.002
Jones, D.L., Hodge, A., Kuzyakov, Y., (2004). Plant and mycorrhizal
regulation of rhizodeposition. New Phytologist, 163, 459–480.
https://doi.org/10.1111/j.1469-8137.2004.01130.x
Jones, D.L., Nguyen, C., Finlay, R.D., (2009). Carbon flow in the
rhizosphere: carbon trading at the soil–root interface. Plant and Soil,
321, 5–33. https://doi.org/10.1007/s11104-009-9925-0
Kuzyakov, Y., (2002). Separating microbial respiration of exudates from
root respiration in non-sterile soils: a comparison of four methods.
Soil Biology and Biochemistry, 34, 1621–1631.
https://doi.org/10.1016/S0038-0717(02)00146-3
Liu, Y., Ge, T., Zhu, Z., Liu, S., Luo, Y., Li, Y., Wang, P.,
Gavrichkova, O., Xu, X., Wang, J., Wu, J., Guggenberger, G., Kuzyakov,
Y., (2019). Carbon input and allocation by rice into paddy soils: A
review. Soil Biology and Biochemistry, 133, 97–107.
https://doi.org/10.1016/j.soilbio.2019.02.019
Liu, Y., Shahbaz, M., Ge, T., Zhu, Z., Liu, S., Chen, L., Wu, X., Deng,
Y., Lu, S., Wu, J., (2020). Effects of root exudate stoichiometry on
CO2 emission from paddy soil. European Journal of Soil
Biology, 101, 103247. https://doi.org/10.1016/j.ejsobi.2020.103247
Lopez‐Sangil, L., George, C., Medina‐Barcenas, E., Birkett, A.J.,
Baxendale, C., Bréchet, L.M., Estradera‐Gumbau, E., Sayer, E.J., (2017).
The Automated Root Exudate System ( ARES ): a method to apply
solutes at regular intervals to soils in the field. Methods in Ecology
and Evolution, 8, 1042–1050. https://doi.org/10.1111/2041-210X.12764
Lu, R.K., (1999). Soil and agro-chemical analytical methods. China
Agricultural Science and Technology Press, Beijing, 107, 147–168.
Manzoni, S., Trofymow, J.A., Jackson, R.B., Porporato, A., (2010).
Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in
decomposing litter. Ecological Monographs, 80, 89–106.
https://doi.org/10.1890/09-0179.1
Marx, M.C., Wood, M., Jarvis, S.C., (2001). A microplate fluorimetric
assay for the study of enzyme diversity in soils. Soil Biology and
Biochemistry, 33, 1633–1640.
https://doi.org/10.1016/S0038-0717(01)00079-7
McGroddy, M.E., Daufresne, T., Hedin, L.O., (2004). Scaling of C:n:p
Stoichiometry in Forests Worldwide: Implications of Terrestrial
Redfield-Type Ratios. Ecology, 85, 2390–2401.
https://doi.org/10.1890/03-0351
Mehnaz, K.R., Corneo, P.E., Keitel, C., Dijkstra, F.A., (2019). Carbon
and phosphorus addition effects on microbial carbon use efficiency, soil
organic matter priming, gross nitrogen mineralization and nitrous oxide
emission from soil. Soil Biology and Biochemistry, 134, 175–186.
https://doi.org/10.1016/j.soilbio.2019.04.003
Mori, T., Aoyagi, R., Kitayama, K., Mo, J., (2021). Does the ratio of
β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative
resource allocation of soil microbes to C and N acquisition? Soil
Biology and Biochemistry, 160, 108363.
https://doi.org/10.1016/j.soilbio.2021.108363
Näsholm, T., Persson, J., (2001). Plant acquisition of organic nitrogen
in boreal forests. Physiologia Plantarum, 111, 419–426.
https://doi.org/10.1034/j.1399-3054.2001.1110401.x
Phillips, R.P., Finzi, A.C., Bernhardt, E.S., (2011). Enhanced root
exudation induces microbial feedbacks to N cycling in a pine forest
under long-term CO2 fumigation: Rhizosphere feedbacks in CO2-enriched
forests. Ecology Letters, 14, 187–194.
https://doi.org/10.1111/j.1461-0248.2010.01570.x
Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X., Xu, X., Kuzyakov,
Y., (2014). Labile carbon retention compensates for CO 2released by priming in forest soils. Global Change Biology, 20,
1943–1954. https://doi.org/10.1111/gcb.12458
Qiao, N., Xu, X., Hu, Y., Blagodatskaya, E., Liu, Y., Schaefer, D.,
Kuzyakov, Y., (2016). Carbon and nitrogen additions induce distinct
priming effects along an organic-matter decay continuum. Scientific
Reports, 6, 19865. https://doi.org/10.1038/srep19865
Schimel, J., (2003). The implications of exoenzyme activity on microbial
carbon and nitrogen limitation in soil: a theoretical model. Soil
Biology and Biochemistry, 35, 549–563.
https://doi.org/10.1016/S0038-0717(03)00015-4
Shahbaz, M., Kuzyakov, Y., Sanaullah, M., Heitkamp, F., Zelenev, V.,
Kumar, A., Blagodatskaya, E., (2017). Microbial decomposition of soil
organic matter is mediated by quality and quantity of crop residues:
mechanisms and thresholds. Biology and Fertility of Soils, 53, 287–301.
https://doi.org/10.1007/s00374-016-1174-9
Sinsabaugh, R.L., Follstad Shah, J.J., (2012). Ecoenzymatic
Stoichiometry and Ecological Theory. Annual Review of Ecology,
Evolution, and Systematics, 43, 313–343.
https://doi.org/10.1146/annurev-ecolsys-071112-124414
Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison,
S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E.,
Gartner, T.B., Hobbie, S.E., Holland, K., Keeler, B.L., Powers, J.S.,
Stursova, M., Takacs-Vesbach, C., Waldrop, M.P., Wallenstein, M.D., Zak,
D.R., Zeglin, L.H., (2008). Stoichiometry of soil enzyme activity at
global scale: Stoichiometry of soil enzyme activity. Ecology Letters,
11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L., Richter, A., (2013).
Carbon use efficiency of microbial communities: stoichiometry,
methodology and modelling. Ecology Letters, 16, 930–939.
https://doi.org/10.1111/ele.12113
Sinsabaugh, R.L., Turner, B.L., Talbot, J.M., Waring, B.G., Powers,
J.S., Kuske, C.R., Moorhead, D.L., Follstad Shah, J.J., (2016).
Stoichiometry of microbial carbon use efficiency in soils. Ecological
Monographs, 86, 172–189. https://doi.org/10.1890/15-2110.1
Soares, M., Rousk, J., (2019). Microbial growth and carbon use
efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and
stoichiometry. Soil Biology and Biochemistry, 131, 195–205.
https://doi.org/10.1016/j.soilbio.2019.01.010
Vance, E.D., Brookes, P.C., Jenkinson, D.S., (1987). An extraction
method for measuring soil microbial biomass C. Soil Biology and
Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Wei, L., Razavi, B.S., Wang, W., Zhu, Z., Liu, S., Wu, J., Kuzyakov, Y.,
Ge, T., (2019). Labile carbon matters more than temperature for enzyme
activity in paddy soil. Soil Biology and Biochemistry, 135, 134–143.
https://doi.org/10.1016/j.soilbio.2019.04.016
Wei X, Zhu Z, Liu Y, Luo Y, Deng Y, Xu X, Liu S, Richter A, Shibistova
O, Guggenberger G, Wu J. (2020). C: N: P stoichiometry regulates soil
organic carbon mineralization and concomitant shifts in microbial
community composition in paddy soil. Biology and Fertility of Soils,
56(8). https://doi.org/10.1007/s00374-020-01468-7
Wild, B., Schnecker, J., Alves, R.J.E., Barsukov, P., Bárta, J., Čapek,
P., Gentsch, N., Gittel, A., Guggenberger, G., Lashchinskiy, N.,
Mikutta, R., Rusalimova, O., Šantrůčková, H., Shibistova, O., Urich, T.,
Watzka, M., Zrazhevskaya, G., Richter, A., (2014). Input of easily
available organic C and N stimulates microbial decomposition of soil
organic matter in arctic permafrost soil. Soil Biology and Biochemistry,
75, 143–151. https://doi.org/10.1016/j.soilbio.2014.04.014
Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C.,
(1990). Measurement of soil microbial biomass C by
fumigation-extraction-an automated procedure. Soil Biology &
Biochemistry, 22, 1167–1169.
Xiong, L., Liu, X., Vinci, G., Spaccini, R., Drosos, M., Li, L.,
Piccolo, A., Pan, G., (2019). Molecular changes of soil organic matter
induced by root exudates in a rice paddy under CO2enrichment and warming of canopy air. Soil Biology and Biochemistry,
137, 107544. https://doi.org/10.1016/j.soilbio.2019.107544
Yin, H., Wheeler, E., Phillips, R.P., (2014). Root-induced changes in
nutrient cycling in forests depend on exudation rates. Soil Biology and
Biochemistry, 78, 213–221.
https://doi.org/10.1016/j.soilbio.2014.07.022
Yuan, Y., Zhao, W., Xiao, J., Zhang, Z., Qiao, M., Liu, Q., Yin, H.,
(2017). Exudate components exert different influences on microbially
mediated C losses in simulated rhizosphere soils of a spruce plantation.
Plant and Soil, 419, 127–140. https://doi.org/10.1007/s11104-017-3334-6
Zhu, Z., Ge, T., Luo, Y., Liu, S., Xu, X., Tong, C., Shibistova, O.,
Guggenberger, G., Wu, J., (2018). Microbial stoichiometric flexibility
regulates rice straw mineralization and its priming effect in paddy
soil. Soil Biology and Biochemistry, 121, 67–76.
https://doi.org/10.1016/j.soilbio.2018.03.003
Zhu, Z., Zhou, J., Shahbaz, M., Tang, H., Liu, S., Zhang, W., Yuan, H.,
Zhou, P., Alharbi, H., Wu, J., Kuzyakov, Y., Ge, T., (2021).
Microorganisms maintain C:N stoichiometric balance by regulating the
priming effect in long-term fertilized soils. Applied Soil Ecology, 167,
104033. https://doi.org/10.1016/j.apsoil.2021.104033
Table 1. Amounts of individual substrates added (mg incubation
flask-1 day-1) to the paddy soil as
artificial root exudates in the different treatments.