REFERENCES
Allison, S.D., Vitousek, P.M., (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37, 937–944. https://doi.org/10.1016/j.soilbio.2004.09.014
Anderson, T., Domsch, K., (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as ph, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25, 393–395. https://doi.org/10.1016/0038-0717(93)90140-7
Anderson, T.R., Hessen, D.O., Elser, J.J., Urabe, J., (2005). Metabolic Stoichiometry and the Fate of Excess Carbon and Nutrients in Consumers. The American Naturalist, 165, 1–15. https://doi.org/10.1086/426598
Bastida, F., Torres, I.F., Hernández, T., Bombach, P., Richnow, H.H., García, C., (2013). Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics. Soil Biology and Biochemistry, 57, 892–902. https://doi.org/10.1016/j.soilbio.2012.10.037
Blagodatskaya, E., Blagodatsky, S., Anderson, T.-H., Kuzyakov, Y., (2014). Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil. PLoS ONE, 9, e93282. https://doi.org/10.1371/journal.pone.0093282
Chen, L., Liang, J., Qin, S., Liu, L., Fang, K., Xu, Y., Ding, J., Li, F., Luo, Y., Yang, Y., (2016). Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 7, 13046. https://doi.org/10.1038/ncomms13046
Chen, X., Xia, Y., Rui, Y., Ning, Z., Hu, Y., Tang, H., He, H., Li, H., Kuzyakov, Y., Ge, T., Wu, J., Su, Y., (2020). Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agriculture, Ecosystems & Environment, 292, 106816. https://doi.org/10.1016/j.agee.2020.106816
Creamer, C.A., Jones, D.L., Baldock, J.A., Farrell, M., (2014). Stoichiometric controls upon low molecular weight carbon decomposition. Soil Biology and Biochemistry, 79, 50–56. https://doi.org/10.1016/j.soilbio.2014.08.019
Czaban, W., Jämtgård, S., Näsholm, T., Rasmussen, J., Nicolaisen, M., Fomsgaard, I.S., (2016). Direct acquisition of organic N by white clover even in the presence of inorganic N. Plant and Soil, 407, 91–107. https://doi.org/10.1007/s11104-016-2896-z
de Graaff, M.-A., Classen, A.T., Castro, H.F., Schadt, C.W., (2010). Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 188, 1055–1064. https://doi.org/10.1111/j.1469-8137.2010.03427.x
Dijkstra, F.A., Carrillo, Y., Pendall, E., Morgan, J.A., (2013). Rhizosphere priming: a nutrient perspective. Frontiers in Microbiology, 4. https://doi.org/10.3389/fmicb.2013.00216
Du, L., Zhu, Z., Qi, Y., Zou, D., Zhang, G., Zeng, X., Ge, T., Wu, J., Xiao, Z., (2020). Effects of different stoichiometric ratios on mineralisation of root exudates and its priming effect in paddy soil. Science of The Total Environment, 743, 140808. https://doi.org/10.1016/j.scitotenv.2020.140808
Fang, Y., Singh, B.P., Collins, D., Armstrong, R., Van Zwieten, L., Tavakkoli, E., (2020). Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biology and Fertility of Soils, 56, 219–233. https://doi.org/10.1007/s00374-019-01413-3
IUSS Working Group WRB (2015). World reference base for soil resources 2014. World Soil Resources Reports. No, 106. FAO, Rome
Fisk, L.M., Barton, L., Jones, D.L., Glanville, H.C., Murphy, D.V., (2015). Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biology and Biochemistry, 88, 380–389. https://doi.org/10.1016/j.soilbio.2015.06.011
Haichar, F. el Z., Santaella, C., Heulin, T., Achouak, W., (2014). Root exudates mediated interactions belowground. Soil Biology and Biochemistry, 77, 69–80. https://doi.org/10.1016/j.soilbio.2014.06.017
Hill, B.H., Elonen, C.M., Seifert, L.R., May, A.A., Tarquinio, E., (2012). Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers. Ecological Indicators, 18, 540–551. https://doi.org/10.1016/j.ecolind.2012.01.007
Hu, Y., Xiang, D., Veresoglou, S.D., Chen, F., Chen, Y., Hao, Z., Zhang, X., Chen, B., (2014). Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biology and Biochemistry, 77, 51–57. https://doi.org/10.1016/j.soilbio.2014.06.014
Jenkinson, D.S., Brookes, P.C., Powlson, D.S., (2004). Measuring soil microbial biomass. Soil Biology and Biochemistry, 36, 5–7. https://doi.org /10.1016/j.soilbio.2003.10.002
Jones, D.L., Hodge, A., Kuzyakov, Y., (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 163, 459–480. https://doi.org/10.1111/j.1469-8137.2004.01130.x
Jones, D.L., Nguyen, C., Finlay, R.D., (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil, 321, 5–33. https://doi.org/10.1007/s11104-009-9925-0
Kuzyakov, Y., (2002). Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods. Soil Biology and Biochemistry, 34, 1621–1631. https://doi.org/10.1016/S0038-0717(02)00146-3
Liu, Y., Ge, T., Zhu, Z., Liu, S., Luo, Y., Li, Y., Wang, P., Gavrichkova, O., Xu, X., Wang, J., Wu, J., Guggenberger, G., Kuzyakov, Y., (2019). Carbon input and allocation by rice into paddy soils: A review. Soil Biology and Biochemistry, 133, 97–107. https://doi.org/10.1016/j.soilbio.2019.02.019
Liu, Y., Shahbaz, M., Ge, T., Zhu, Z., Liu, S., Chen, L., Wu, X., Deng, Y., Lu, S., Wu, J., (2020). Effects of root exudate stoichiometry on CO2 emission from paddy soil. European Journal of Soil Biology, 101, 103247. https://doi.org/10.1016/j.ejsobi.2020.103247
Lopez‐Sangil, L., George, C., Medina‐Barcenas, E., Birkett, A.J., Baxendale, C., Bréchet, L.M., Estradera‐Gumbau, E., Sayer, E.J., (2017). The Automated Root Exudate System ( ARES ): a method to apply solutes at regular intervals to soils in the field. Methods in Ecology and Evolution, 8, 1042–1050. https://doi.org/10.1111/2041-210X.12764
Lu, R.K., (1999). Soil and agro-chemical analytical methods. China Agricultural Science and Technology Press, Beijing, 107, 147–168.
Manzoni, S., Trofymow, J.A., Jackson, R.B., Porporato, A., (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89–106. https://doi.org/10.1890/09-0179.1
Marx, M.C., Wood, M., Jarvis, S.C., (2001). A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 33, 1633–1640. https://doi.org/10.1016/S0038-0717(01)00079-7
McGroddy, M.E., Daufresne, T., Hedin, L.O., (2004). Scaling of C:n:p Stoichiometry in Forests Worldwide: Implications of Terrestrial Redfield-Type Ratios. Ecology, 85, 2390–2401. https://doi.org/10.1890/03-0351
Mehnaz, K.R., Corneo, P.E., Keitel, C., Dijkstra, F.A., (2019). Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biology and Biochemistry, 134, 175–186. https://doi.org/10.1016/j.soilbio.2019.04.003
Mori, T., Aoyagi, R., Kitayama, K., Mo, J., (2021). Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biology and Biochemistry, 160, 108363. https://doi.org/10.1016/j.soilbio.2021.108363
Näsholm, T., Persson, J., (2001). Plant acquisition of organic nitrogen in boreal forests. Physiologia Plantarum, 111, 419–426. https://doi.org/10.1034/j.1399-3054.2001.1110401.x
Phillips, R.P., Finzi, A.C., Bernhardt, E.S., (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation: Rhizosphere feedbacks in CO2-enriched forests. Ecology Letters, 14, 187–194. https://doi.org/10.1111/j.1461-0248.2010.01570.x
Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X., Xu, X., Kuzyakov, Y., (2014). Labile carbon retention compensates for CO 2released by priming in forest soils. Global Change Biology, 20, 1943–1954. https://doi.org/10.1111/gcb.12458
Qiao, N., Xu, X., Hu, Y., Blagodatskaya, E., Liu, Y., Schaefer, D., Kuzyakov, Y., (2016). Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum. Scientific Reports, 6, 19865. https://doi.org/10.1038/srep19865
Schimel, J., (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 35, 549–563. https://doi.org/10.1016/S0038-0717(03)00015-4
Shahbaz, M., Kuzyakov, Y., Sanaullah, M., Heitkamp, F., Zelenev, V., Kumar, A., Blagodatskaya, E., (2017). Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils, 53, 287–301. https://doi.org/10.1007/s00374-016-1174-9
Sinsabaugh, R.L., Follstad Shah, J.J., (2012). Ecoenzymatic Stoichiometry and Ecological Theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313–343. https://doi.org/10.1146/annurev-ecolsys-071112-124414
Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner, T.B., Hobbie, S.E., Holland, K., Keeler, B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M.P., Wallenstein, M.D., Zak, D.R., Zeglin, L.H., (2008). Stoichiometry of soil enzyme activity at global scale: Stoichiometry of soil enzyme activity. Ecology Letters, 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L., Richter, A., (2013). Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters, 16, 930–939. https://doi.org/10.1111/ele.12113
Sinsabaugh, R.L., Turner, B.L., Talbot, J.M., Waring, B.G., Powers, J.S., Kuske, C.R., Moorhead, D.L., Follstad Shah, J.J., (2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86, 172–189. https://doi.org/10.1890/15-2110.1
Soares, M., Rousk, J., (2019). Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology and Biochemistry, 131, 195–205. https://doi.org/10.1016/j.soilbio.2019.01.010
Vance, E.D., Brookes, P.C., Jenkinson, D.S., (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Wei, L., Razavi, B.S., Wang, W., Zhu, Z., Liu, S., Wu, J., Kuzyakov, Y., Ge, T., (2019). Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biology and Biochemistry, 135, 134–143. https://doi.org/10.1016/j.soilbio.2019.04.016
Wei X, Zhu Z, Liu Y, Luo Y, Deng Y, Xu X, Liu S, Richter A, Shibistova O, Guggenberger G, Wu J. (2020). C: N: P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biology and Fertility of Soils, 56(8). https://doi.org/10.1007/s00374-020-01468-7
Wild, B., Schnecker, J., Alves, R.J.E., Barsukov, P., Bárta, J., Čapek, P., Gentsch, N., Gittel, A., Guggenberger, G., Lashchinskiy, N., Mikutta, R., Rusalimova, O., Šantrůčková, H., Shibistova, O., Urich, T., Watzka, M., Zrazhevskaya, G., Richter, A., (2014). Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology and Biochemistry, 75, 143–151. https://doi.org/10.1016/j.soilbio.2014.04.014
Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., (1990). Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biology & Biochemistry, 22, 1167–1169.
Xiong, L., Liu, X., Vinci, G., Spaccini, R., Drosos, M., Li, L., Piccolo, A., Pan, G., (2019). Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2enrichment and warming of canopy air. Soil Biology and Biochemistry, 137, 107544. https://doi.org/10.1016/j.soilbio.2019.107544
Yin, H., Wheeler, E., Phillips, R.P., (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology and Biochemistry, 78, 213–221. https://doi.org/10.1016/j.soilbio.2014.07.022
Yuan, Y., Zhao, W., Xiao, J., Zhang, Z., Qiao, M., Liu, Q., Yin, H., (2017). Exudate components exert different influences on microbially mediated C losses in simulated rhizosphere soils of a spruce plantation. Plant and Soil, 419, 127–140. https://doi.org/10.1007/s11104-017-3334-6
Zhu, Z., Ge, T., Luo, Y., Liu, S., Xu, X., Tong, C., Shibistova, O., Guggenberger, G., Wu, J., (2018). Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology and Biochemistry, 121, 67–76. https://doi.org/10.1016/j.soilbio.2018.03.003
Zhu, Z., Zhou, J., Shahbaz, M., Tang, H., Liu, S., Zhang, W., Yuan, H., Zhou, P., Alharbi, H., Wu, J., Kuzyakov, Y., Ge, T., (2021). Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Applied Soil Ecology, 167, 104033. https://doi.org/10.1016/j.apsoil.2021.104033
Table 1. Amounts of individual substrates added (mg incubation flask-1 day-1) to the paddy soil as artificial root exudates in the different treatments.