Arias, M., le Poul, Y., Chouteau, M., Boisseau, R., Rosser, N., Théry,
M., & Llaurens, V. (2016). Crossing fitness valleys: empirical
estimation of a fitness landscape associated with polymorphic
mimicry. Proceedings. Biological sciences, 283(1829),
20160391. https://doi.org/10.1098/rspb.2016.0391
Aubier, T.G. and Sherratt, T.N. (2015). Diversity in Müllerian mimicry:
The optimal predator sampling strategy explains both local and regional
polymorphism in prey. Evolution, 69: 2831-2845.
doi:10.1111/evo.12790Avril, A., Purcell, J., Brelsford, A., & Chapuisat, M. (2019).
Asymmetric assortative mating and queen polyandry are linked to a
supergene controlling ant social organization. Molecular Ecology,
28, 1428– 1438.https://doi.org/10.1111/mec.14793Bates, H. W. (1862). Contributions to an insect fauna of the Amazon
Valley. Lepidoptera: Heliconidae. Transactions of the Linnean
Society London. 23:495-566.
Benson W. W. (1971). Evidence for the evolution of unpalatability
through kin selection in the Heliconiinae (Lepidoptera). Am. Nat.
105, 213–226. doi:10.1086/282719
Benson W. W. (1972). Natural Selection for Müllerian Mimicry in
Heliconius erato in Costa Rica. Science (New York,
N.Y.), 176 (4037), 936–939.
https://doi.org/10.1126/science.176.4037.936
Blum M. J. (2008). Ecological and genetic associations across a
Heliconius hybrid zone. Journal of evolutionary
biology, 21(1), 330–341.
https://doi.org/10.1111/j.1420-9101.2007.01440.x
Boppré, M., Vane-Wright, R. I., & Wickler, W. (2016). A hypothesis to
explain accuracy of wasp resemblances. Ecology and evolution,
7(1), 73–81.https://doi.org/10.1002/ece3.2586Borer, M., Van Noort, T., Rahier, M., & Naisbit, R. E. (2010). Positive
frequency-dependent selection on warning color in Alpine leaf
beetles. Evolution; international journal of organic
evolution, 64(12), 3629–3633.
https://doi.org/10.1111/j.1558-5646.2010.01137.x
Brower A. (1996). Parallel race formation and the evolution of mimicry
in Heliconius butterflies: a phylogenetic hypothesis from
mitochondrial DNA sequences. Evolution; international journal of
organic evolution, 50(1), 195–221.
https://doi.org/10.1111/j.1558-5646.1996.tb04486.x
Brown, K. S., and W. W. Benson. (1974). Adaptive polymorphism associated
with multiple Müllerian mimicry in Heliconius numata. Biotropica6:205–228.
Bulmer, M.G. (1972). Multiple niche polymorphism. Am. Nat. 106,
254–257
Cain A.J. & Sheppard PM. (1954). Natural selection in Cepaea.Genetics 39: 89–116.
Chai P. (1986). Field observations and feeding experiments on the
responses of rufous-tailed jacamars (Galbula ruficauda) to
free-flying butterflies in a tropical rainforest. Biol. J. Linn.
Soc. 29, 161–189. https://doi:10.1111/j.1095-8312.1986.tb01772.
Chouteau, M., Arias, M., & Joron, M. (2016). Warning signals are under
positive frequency-dependent selection in nature. Proceedings of
the National Academy of Sciences of the United States of
America, 113(8), 2164–2169.
https://doi.org/10.1073/pnas.1519216113
Chouteau, M., Llaurens V., Piron-Prunier F., Joron M. (2017).
Polymorphism at a mimicry supergene maintained by opposing
frequency-dependent selection pressures. Proceedings of the
National Academy of Sciences, 201702482;
https://doi.org/.1073/pnas.1702482114
Concha, C., Wallbank, R. W. R., Hanly, J. J., Fenner, J., Livraghi, L.,
Rivera, E. S., Paulo D.S., Arias C., Vargas M., Sanjeev M., Morrison C.,
Tian D., Aguirre P., Ferrara S., Foley J., Pardo-Diaz C., Salazar C.,
Linares M., Massardo D., Counterman B.A., Scott M.J., Jiggins C.D., Papa
R., Martin A., McMillan W.O. (2019). Interplay between Developmental
Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing
Patterns. Current biology : CB, 29(23), 3996–4009.e4.
https://doi.org/10.1016/j.cub.2019.10.010
Constantino, L.M., Zulma N. and Corredor G. (2005). Chromatic
polymorphism of Laparus doris obscurus and determination of the
phenotypic frequency through intraspecific crosses of three populations
in the departments of Valle and Caldas, Colombia. Boletín científico.
Museo de Historia Natural. Universidad de Caldas 9: 222-237.
Dell’Aglio, D.D., Stevens, M. and Jiggins, C.D. (2016), Avoidance of an
aposematically colored butterfly by wild birds in a tropical forest.Ecol Entomol, 41: 627-632.https://doi.org/10.1111/een.12335Doktorovová, L., Exnerová, A., Hotová Svádová, K., Štys, P.,
Adamová-Ježová, D., Zverev, V., Kozlov, M.V., Zvereva, et al., (2019).
Differential Bird Responses to Colour Morphs of an Aposematic Leaf
Beetle may Affect Variation in Morph Frequencies in Polymorphic Prey
Populations. Evol Biol 46,
35–46.https://doi.org/10.1007/s11692-018-9465-8Dumbacher, J. P., & Fleischer, R. C. (2001). Phylogenetic evidence for
colour pattern convergence in toxic pitohuis: Müllerian mimicry in
birds?. Proceedings. Biological sciences, 268(1480),
1971–1976. https://doi.org/10.1098/rspb.2001.1717
Edelman, N. B., Frandsen, P. B., Miyagi, M., Clavijo, B., Davey, J.,
Dikow, R. B., García-Accinelli, G., Van Belleghem, S. M., Patterson, N.,
Neafsey, D. E., Challis, R., Kumar, S., Moreira, G., Salazar, C.,
Chouteau, M., Counterman, B. A., Papa, R., Blaxter, M., Reed, R. D.,
Dasmahapatra, K. K., … Mallet, J. (2019). Genomic architecture
and introgression shape a butterfly radiation. Science (New York,
N.Y.), 366(6465), 594–599.
https://doi.org/10.1126/science.aaw2090
Fisher, K. A. (1958). The Genetical Theory of Natural Selection. 2nd Ed.
Dover, N.Y
Finkbeiner, S. D., Briscoe, A. D., & Reed, R. D. (2012). The benefit of
being a social butterfly: communal roosting deters
predation. Proceedings. Biological sciences, 279(1739),
2769–2776. https://doi.org/10.1098/rspb.2012.0203
Finkbeiner, S. D., Briscoe, A. D., & Reed, R. D. (2014). Warning
signals are seductive: relative contributions of color and pattern to
predator avoidance and mate attraction in Heliconius
butterflies. Evolution; international journal of organic
evolution, 68(12), 3410–3420.
https://doi.org/10.1111/evo.12524
Finkbeiner, S. D., P. A. Salazar, S., Nogales, C. E. Rush, A. D.
Briscoe, R. I. Hill, M. R. Kronforst, K. R. Willmott, and S. P. Mullen.
(2018). Frequency‐dependence shapes the adaptive landscape of imperfect
Batesian mimicry. Proceedings of the Royal Society. B 285.
https://doi.org/10.1098/rspb.2017.2786
Forsman, A., Ahnesjö, J., Caesar, S., & Karlsson, M. (2008). A model of
ecological and evolutionary consequences of color
polymorphism. Ecology, 89(1), 34–40.
https://doi.org/10.1890/07-0572.1
Galeotti, P. and Rubolini, D. (2004). The niche variation hypothesis and
the evolution of color polymorphism in birds: a comparative study of
owls, nightjars and raptors. Biol. J. Linn. Soc. 82, 237–248
Gilbert L.E., Futuyma D.M., Slatkin M. (1983). Coevolution and mimicry.Coevolution. pp. 263–281. Sunderland: Sinauer Associates Inc.
Gomez D. (2006). AVICOL, a program to analyse spectrometric data.
Available at https://sites.google.com/site/avicolprogram/. Accessed
September 28 2018.
Getty T. (1985). Discriminability and the sigmoid functional response:
how optimal foragers could stabilize model–mimic complexes. Am.
Nat. 125, 239–256. https://doi.org/10.1086/284339
Harper, G. R., & Pfennig, D. W. (2007). Mimicry on the edge: why do
mimics vary in resemblance to their model in different parts of their
geographical range?. Proceedings. Biological sciences, 274(1621),
1955–1961.https://doi.org/10.1098/rspb.2007.0558Hart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. (2000).
Visual pigments, oil droplets, ocular media and cone photoreceptor
distribution in two species of passerine bird: the blue tit (Parus
caeruleus L.) and the blackbird (Turdus merula L.). Journal of
comparative physiology. A, Sensory, neural, and behavioral
physiology, 186(4), 375–387.
https://doi.org/10.1007/s003590050437
Hart N. S. (2004). Microspectrophotometry of visual pigments and oil
droplets in a marine bird, the wedge-tailed shearwater Puffinus
pacificus: topographic variations in photoreceptor spectral
characteristics. The Journal of experimental
biology, 207(Pt 7), 1229–1240.
https://doi.org/10.1242/jeb.00857
Hedrick, P. W., Smith, D. W., & Stahler, D. R. (2016).
Negative-assortative mating for color in wolves. Evolution;
international journal of organic evolution, 70(4), 757–766.
https://doi.org/10.1111/evo.12906
Hendrickx, F., Vanthournout, B. and Taborsky, M. (2015), Selection for
costly sexual traits results in a vacant mating niche and male
dimorphism. Evolution, 69: 2105-2117.https://doi.org/10.1111/evo.12720Hines, H. M., Counterman, B. A., Papa, R., Albuquerque de Moura, P.,
Cardoso, M. Z., Linares, M., Mallet, J., Reed, R. D., Jiggins, C. D.,
Kronforst, M. R., & McMillan, W. O. (2011). Wing patterning gene
redefines the mimetic history of Heliconius
butterflies. Proceedings of the National Academy of Sciences of
the United States of America, 108(49), 19666–19671.
https://doi.org/10.1073/pnas.1110096108
Hughes, K., Houde, A., Price, A. Rodd, H. (2013). Mating advantage for
rare males in wild guppy populations. Nature 503, 108–110.
https://doi.org/10.1038/nature12717
Jamie, G., Meier, J. (2020). The Persistence of Polymorphisms across
Species Radiations. Trends In Ecology and Evolution. Cell Press.https://doi.org/10.1016/j.tree.2020.04.007Jay P., Whibley A., Frézal L., Rodríguez de Cara M. Á., Nowell R. W.,
Mallet J., DasmahapatraK. K., Joron M. (2018). Supergene evolution
triggered by the introgression of a chromosomal inversion. Current
Biology. 28, 1839–1845.e3.
https://doi.org/10.1016/j.cub.2018.04.072pmid:29804810
Jay P., Chouteau M., Whibley A., Bastide H., Parrinello H., Llaurens V.,
Joron M. (2021). Mutation load at a mimicry supergene sheds new light on
the evolution of inversion polymorphisms. Nat Genet.53(3):288-293. https://doi.org/10.1038/s41588-020-00771-1
Joron M., Papa R., Beltrán M., Chamberlain N., Mavárez J., Baxter S.,
Abanto M., Bermingham E., Humphrey S.J., Rogers J., Beasley H., Barlow
K., ffrench-Constant R.H., Mallet., McMillan W.O., Jiggins C.D. (2006).
A Conserved Supergene Locus Controls Colour Pattern Diversity inHeliconius Butterflies. PLoS Biol 4(10): e303.https://doi.org/10.1371/journal.pbio.0040303Joron M., Frezal L, Jones R.T., Chamberlain N.L., Lee S.F., Haag C.R.,
Whibley A., Becuwe M., Baxter S.W., Ferguson L., Wilkinson P.A., Salazar
C., Davidson C., Clark R., Quail M.A., Beasley H., Glithero R., Lloyd
C., Sims S., Jones M.C., Rogers J., Jiggins C.D., ffrench-Constant R.H.
(2011). Chromosomal rearrangements maintain a polymorphic supergene
controlling butterfly mimicry. Nature, 477(7363), 203–206.
https://doi.org/10.1038/nature10341
Joron, M., & Mallet, J. L. (1998). Diversity in mimicry: paradox or
paradigm?. Trends in ecology & evolution, 13(11),
461–466. https://doi.org/10.1016/s0169-5347(98)01483-9
Kapan, D. (2001) Three-butterfly system provides a field test of
Müllerian mimicry . Nature 409, 338–340
https://doi.org/10.1038/35053066
Kawecki, T.J.; Ebert, D. (2004) Conceptual issues in local adaptation. D
Journal: ECOL LETT, 7 (12): 1225-1241
Kokko H, Mappes J, Lindström L. (2003) Alternative prey can change
model–mimic dynamics between parasitism and mutualism. Ecol. Lett. 6,
1068–1076. https://doi.org/10.1046/j.1461-0248.2003.00532.x
Kozak, K. M., Wahlberg, N., Neild, A. F., Dasmahapatra, K. K., Mallet,
J., & Jiggins, C. D. (2015). Multilocus species trees show the recent
adaptive radiation of the mimetic heliconius
butterflies. Systematic biology, 64(3), 505–524.
https://doi.org/10.1093/sysbio/syv007
Kronforst, M. R., Young, L. G., Kapan, D. D., McNeely, C., O’Neill, R.
J., & Gilbert, L. E. (2006). Linkage of butterfly mate preference and
wing color preference cue at the genomic location of
wingless. Proceedings of the National Academy of Sciences of the
United States of America, 103(17), 6575–6580.
https://doi.org/10.1073/pnas.0509685103
Kronforst, M. R., & Papa, R. (2015). The functional basis of wing
patterning in Heliconius butterflies: the molecules behind
mimicry. Genetics, 200(1), 1–19.
https://doi.org/10.1534/genetics.114.172387
Küpper, C., Stocks, M., Risse, J. E., Dos Remedios, N., Farrell, L. L.,
McRae, S. B., Morgan, T. C., Karlionova, N., Pinchuk, P., Verkuil, Y.
I., Kitaysky, A. S., Wingfield, J. C., Piersma, T., Zeng, K., Slate, J.,
Blaxter, M., Lank, D. B., & Burke, T. (2016). A supergene determines
highly divergent male reproductive morphs in the ruff. Nature
genetics, 48(1), 79–83.https://doi.org/10.1038/ng.3443Langham G. M. (2004). Specialized avian predators repeatedly attack
novel color morphs of Heliconius butterflies. Evolution;international journal of organic evolution, 58(12), 2783–2787.
https://doi.org/10.1111/j.0014-3820.2004.tb01629.x
Le Poul Y., Whibley A., Chouteau M., Prunier F., LLaurens V., Joron M.
(2014). Evolution of dominance mechanisms at a butterfly mimicry
supergene. Nature Communications 5, 5644
https://doi.org/10.1038/ncomms6644
Llaurens, V., Whibley, A., & Joron, M. (2017). Genetic architecture and
balancing selection: the life and death of differentiated
variants. Molecular ecology, 26(9), 2430–2448.
https://doi.org/10.1111/mec.14051
Maisonneuve, L., Chouteau, M., Joron, M., & Llaurens, V. (2021).
Evolution and genetic architecture of disassortative mating at a locus
under heterozygote advantage. Evolution; international journal of
organic evolution, 75(1), 149–165.
https://doi.org/10.1111/evo.14129
Mallet, J. (1986a). Dispersal and gene flow in a butterfly with home
range behavior: Heliconius erato (Lepidoptera: Nymphalidae).Oecologia 68, 210–217.https://doi.org/10.1007/BF00384789Mallet, J. (1986b). Hybrid zones in Heliconius butterflies in Panama,
and the stability and movement of warning color dines. Heredity,56, 191—202.
Mallet, J. (1989). The genetics of warning color in Peruvian hybrid
zones of Heliconius erato and H. melpomene. Proc R
Soc B. 236:163–185.
Mallet, J., & Barton, N. H. (1989). STRONG NATURAL SELECTION IN A
WARNING-COLOR HYBRID ZONE. Evolution; international journal of
organic evolution, 43(2), 421–431.
https://doi.org/10.1111/j.1558-5646.1989.tb04237.x
Mallet, J., Barton, N., Lamas, G., Santisteban, J., Muedas, M., &
Eeley, H. (1990). Estimates of selection and gene flow from measures of
cline width and linkage disequilibrium in heliconius hybrid
zones. Genetics, 124(4), 921–936.
Mallet, J. (1993). Speciation, raciation, and color pattern evolution inHeliconius butterflies: the evidence from hybrid zones. Pp. 226–
260 in R. G. Harrison, ed. Hybrid zones and the evolutionary process.
Oxford Univ. Press, New York
Mallet, J. (1999). Causes and Consequences of a Lack of Coevolution in
Müllerian mimicry. Evolutionary Ecology, 13(7-8), 777–806.
https://doi.org/10.1023/a:1011060330515
Mallet, J. and M. Joron (1999). Evolution of diversity in warning color
and mimicry: polymorphisms, shifting balance, and speciation. Annual
Review of Ecology and Systematics 30: 201–233.
Mallet, J. (2010). Shift happens! Shifting balance and the evolution of
diversity in warning color and mimicry. Ecological Entomology, 35,
90-104
Martin, A., McCulloch, K. J., Patel, N. H., Briscoe, A. D., Gilbert, L.
E., & Reed, R. D. (2014). Multiple recent co-options of Optix
associated with novel traits in adaptive butterfly wing
radiations. EvoDevo, 5(1), 7.
https://doi.org/10.1186/2041-9139-5-7
Merrill, R. M., Wallbank, R. W., Bull, V., Salazar, P. C., Mallet, J.,
Stevens, M., & Jiggins, C. D. (2012). Disruptive ecological selection
on a mating cue. Proceedings. Biological
sciences, 279(1749), 4907–4913.
https://doi.org/10.1098/rspb.2012.1968
Merrill, R. M., Dasmahapatra, K. K., Davey, J. W., Dell’Aglio, D. D.,
Hanly, J. J., Huber, B., Jiggins, C. D., Joron, M., Kozak, K. M.,
Llaurens, V., Martin, S. H., Montgomery, S. H., Morris, J., Nadeau, N.
J., Pinharanda, A. L., Rosser, N., Thompson, M. J., Vanjari, S.,
Wallbank, R. W., & Yu, Q. (2015). The diversification of Heliconius
butterflies: what have we learned in 150 years?. Journal of
evolutionary biology, 28(8), 1417–1438.
https://doi.org/10.1111/jeb.12672
Miller AM, Pawlik JR (2013). Do coral reef fish learn to avoid
unpalatable prey using visual cues? Anim Behav 85(2):339–347.
Moest M., Van Belleghem S.M., James J.E., Salazar C., Martin S.H.,
Barker S.L., Moreira G.R.P., Mérot C., Joron, M., Nadeau N.J., Steiner
F.M. & Jiggins C.D. (2020) Selective sweeps on novel and introgressed
variation shape mimicry loci in a butterfly adaptive radiation.PLoS Biol 18(2): e3000597.
https://doi.org/10.1371/journal.pbio.3000597
Müller, F. (1879). Ituna and Thyridia: a remarkable case of mimicry in
butterflies. Transactions of the Entomological Society of London 1879:
20–29.
Noonan B.P., Comeault A., A. (2008). The role of predator selection on
polymorphic aposematic poison frogs. Biol. Lett.551–54http://doi.org/10.1098/rsbl.2008.0586O’Donald, P., Pilecki, C. (1970). Polymoprhic mimicry and natural
selection. Evolution; international journal of organic
evolution, 24(2), 395–401.
https://doi.org/10.1111/j.1558-5646.1970.tb01770.x
Pinheiro, C. E. G. (1996). Palatablility and escaping ability in
Neotropical butterflies: Tests with wild kingbirds (Tyrannus
melancholicus, Tyrannidae). Biological Journal of the Linnean
Society, 59(4), 351–365.
https://doi.org/10.1111/j.1095-8312.1996.tb01471.x
Pinheiro C. E. G.. (2011). On the evolution of warning coloration,
Batesian and Müllerian mimicry in Neotropical butterflies: the role of
jacamars (Galbulidae) and tyrant-flycatchers (Tyrannidae). J.
Avian Biol. 42, 277–281.
http://doi.org/10.1111/j.1600-048X.2011.05435
Roland, A. B., Santos, J. C., Carriker, B. C., Caty, S. N., Tapia, E.
E., Coloma, L. A., & O’Connell, L. A. (2017). Radiation of the
polymorphic Little Devil poison frog (Oophaga sylvatica) in
Ecuador. Ecology and evolution, 7(22), 9750–9762.
https://doi.org/10.1002/ece3.3503
Rosser, N., Dasmahapatra, K.K. and Mallet, J. (2014). StableHeliconius butterfly hybrid zones are correlated with a local
rainfall peak at the edge of the Amazon basin. Evolution, 68:
3470-3484.
http://doi.org/10.1111/evo.12539RStudio Team (2020). RStudio: Integrated Development for R. RStudio,
PBC, Boston, MA
Saenko S.V., Chouteau M., Piron-Prunier F., Blugeon C., Joron M.,
Llaurens V. (2019) Unravelling the genes forming the wing pattern
supergene in the polymorphic butterfly Heliconius numata.EvoDevo 10, 16 .https://doi.org/10.1186/s13227-019-0129-2Sanders, K.L.; Malhotra, A.; Thorpe, R.S. (May 2006). ”Evidence for a
Müllerian mimetic radiation in Asian pitvipers”. Proceedings.
Biological Sciences. 273 (1590): 1135–1141.doi:10.1098/rspb.2005.3418.
Seymoure, B. M., Raymundo, A., McGraw, K., Owen Mcmillan, W., &
Rutowski, R. L. (2018). Environment-dependent attack rates of cryptic
and aposematic butterflies. Current Zoology, 64(5), 663-669.https://doi.org/10.1093/cz/zox062Sheppard PM. (1963). Some genetic studies of Müllerian mimics in
butterflies of the Heliconius genus. Zoologica.
48:145–154.
Speed, M.P. and Turner, J.R.G. (1999). Learning and memory in mimicry:
II. Do we understand the mimicry spectrum? Biol. J. Linn. Soc. 67,
281±312.
Su, S., Lim, M., & Kunte, K. (2015). Prey from the eyes of predators:
Color discriminability of aposematic and mimetic butterflies from an
avian visual perspective. Evolution; international journal of
organic evolution, 69(11), 2985–2994.
https://doi.org/10.1111/evo.12800
Supple, M. A., Hines, H. M., Dasmahapatra, K. K., Lewis, J. J., Nielsen,
D. M., Lavoie, C., Ray, D. A., Salazar, C., McMillan, W. O., &
Counterman, B. A. (2013). Genomic architecture of adaptive color pattern
divergence and convergence in Heliconius butterflies. Genome
research, 23(8), 1248–1257.
https://doi.org/10.1101/gr.150615.112
Symula, R., Schulte R., Summers K., (2001). Molecular phylogenetic
evidence for a mimetic radiation in Peruvian poison frogs supports a
Müllerian mimicry hypothesis. Proc. R. Soc. Lond. B.2682415–2421http://doi.org/10.1098/rspb.2001.1812Thery M, Pincebourde S, Feer F (2008). Dusk light environment optimizes
visual perception of conspecifics in a crepuscular horned beetle. Behav
Ecol 19(3):627–634.
Turner, J. R. G. (1975). A tale of two butterflies. Natural History 84,
28-37.
Tuttle, E. M., Bergland, A. O., Korody, M. L., Brewer, M. S., Newhouse,
D. J., Minx, P., Stager, M., Betuel, A., Cheviron, Z. A., Warren, W. C.,
Gonser, R. A., & Balakrishnan, C. N. (2016). Divergence and Functional
Degradation of a Sex Chromosome-like Supergene. Current biology :
CB, 26(3), 344–350.
https://doi.org/10.1016/j.cub.2015.11.069
Van Belleghem S.M., Alicea Roman P.A., Carbia Gutierrez H., Counterman
B.A., Papa R. (2020). Perfect mimicry between Heliconius butterflies is
constrained by genetics and development. Proc. R. Soc. B287: 20201267. http://dx.doi.org/10.1098/rspb.2020.1267
Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of
colour thresholds. Proceedings. Biological
sciences, 265(1394), 351–358.
https://doi.org/10.1098/rspb.1998.0302
West-Eberhard M. J. (1986). Alternative adaptations, speciation, and
phylogeny (A Review). Proceedings of the National Academy of
Sciences of the United States of America, 83(5), 1388–1392.
https://doi.org/10.1073/pnas.83.5.1388
Wee J.L.Q. & Monteiro A. (2017). Yellow and the Novel Aposematic
Signal, Red, Protect Delias Butterflies from Predators. PLoS ONE12(1): e0168243.https://doi.org/10.1371/journal.pone.0168243Williams P. (2007). The distribution of bumblebee color patterns
worldwide: possible significance for thermoregulation, crypsis, and
warning mimicry. Biological Journal of the Linnean Society,
Volume 92, Issue 1, September 2007, Pages 97–118,https://doi.org/10.1111/j.1095-8312.2007.00878.xYoung, F.J., Montgomery S.H. (2020). Pollen feeding in Heliconiusbutterflies: the singular evolution of an adaptive suite. Proc. R.
Soc. B.2872020130420201304http://doi.org/10.1098/rspb.2020.1304