Literature Cited
Arias, M., le Poul, Y., Chouteau, M., Boisseau, R., Rosser, N., Théry, M., & Llaurens, V. (2016). Crossing fitness valleys: empirical estimation of a fitness landscape associated with polymorphic mimicry. Proceedings. Biological sciences283(1829), 20160391. https://doi.org/10.1098/rspb.2016.0391 Aubier, T.G. and Sherratt, T.N. (2015). Diversity in Müllerian mimicry: The optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution, 69: 2831-2845. doi:10.1111/evo.12790Avril, A., Purcell, J., Brelsford, A., & Chapuisat, M. (2019). Asymmetric assortative mating and queen polyandry are linked to a supergene controlling ant social organization. Molecular Ecology, 28, 1428– 1438.https://doi.org/10.1111/mec.14793Bates, H. W. (1862). Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidae. Transactions of the Linnean Society London. 23:495-566. Benson W. W. (1971). Evidence for the evolution of unpalatability through kin selection in the Heliconiinae (Lepidoptera). Am. Nat. 105, 213–226. doi:10.1086/282719 Benson W. W. (1972). Natural Selection for Müllerian Mimicry in Heliconius erato in Costa Rica. Science (New York, N.Y.)176 (4037), 936–939. https://doi.org/10.1126/science.176.4037.936 Blum M. J. (2008). Ecological and genetic associations across a Heliconius hybrid zone. Journal of evolutionary biology21(1), 330–341. https://doi.org/10.1111/j.1420-9101.2007.01440.x Boppré, M., Vane-Wright, R. I., & Wickler, W. (2016). A hypothesis to explain accuracy of wasp resemblances. Ecology and evolution, 7(1), 73–81.https://doi.org/10.1002/ece3.2586Borer, M., Van Noort, T., Rahier, M., & Naisbit, R. E. (2010). Positive frequency-dependent selection on warning color in Alpine leaf beetles. Evolution; international journal of organic evolution64(12), 3629–3633. https://doi.org/10.1111/j.1558-5646.2010.01137.x Brower A. (1996). Parallel race formation and the evolution of mimicry in Heliconius butterflies: a phylogenetic hypothesis from mitochondrial DNA sequences. Evolution; international journal of organic evolution50(1), 195–221. https://doi.org/10.1111/j.1558-5646.1996.tb04486.x Brown, K. S., and W. W. Benson. (1974). Adaptive polymorphism associated with multiple Müllerian mimicry in Heliconius numata. Biotropica6:205–228. Bulmer, M.G. (1972). Multiple niche polymorphism. Am. Nat. 106, 254–257 Cain A.J. & Sheppard PM. (1954). Natural selection in Cepaea.Genetics 39: 89–116. Chai P. (1986). Field observations and feeding experiments on the responses of rufous-tailed jacamars (Galbula ruficauda) to free-flying butterflies in a tropical rainforest. Biol. J. Linn. Soc. 29, 161–189. https://doi:10.1111/j.1095-8312.1986.tb01772. Chouteau, M., Arias, M., & Joron, M. (2016). Warning signals are under positive frequency-dependent selection in nature. Proceedings of the National Academy of Sciences of the United States of America113(8), 2164–2169. https://doi.org/10.1073/pnas.1519216113 Chouteau, M., Llaurens V., Piron-Prunier F., Joron M. (2017). Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proceedings of the National Academy of Sciences, 201702482; https://doi.org/.1073/pnas.1702482114 Concha, C., Wallbank, R. W. R., Hanly, J. J., Fenner, J., Livraghi, L., Rivera, E. S., Paulo D.S., Arias C., Vargas M., Sanjeev M., Morrison C., Tian D., Aguirre P., Ferrara S., Foley J., Pardo-Diaz C., Salazar C., Linares M., Massardo D., Counterman B.A., Scott M.J., Jiggins C.D., Papa R., Martin A., McMillan W.O. (2019). Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Current biology : CB29(23), 3996–4009.e4. https://doi.org/10.1016/j.cub.2019.10.010 Constantino, L.M., Zulma N. and Corredor G. (2005). Chromatic polymorphism of Laparus doris obscurus and determination of the phenotypic frequency through intraspecific crosses of three populations in the departments of Valle and Caldas, Colombia. Boletín científico. Museo de Historia Natural. Universidad de Caldas 9: 222-237. Dell’Aglio, D.D., Stevens, M. and Jiggins, C.D. (2016), Avoidance of an aposematically colored butterfly by wild birds in a tropical forest.Ecol Entomol, 41: 627-632.https://doi.org/10.1111/een.12335Doktorovová, L., Exnerová, A., Hotová Svádová, K., Štys, P., Adamová-Ježová, D., Zverev, V., Kozlov, M.V., Zvereva, et al., (2019). Differential Bird Responses to Colour Morphs of an Aposematic Leaf Beetle may Affect Variation in Morph Frequencies in Polymorphic Prey Populations. Evol Biol 46, 35–46.https://doi.org/10.1007/s11692-018-9465-8Dumbacher, J. P., & Fleischer, R. C. (2001). Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds?. Proceedings. Biological sciences268(1480), 1971–1976. https://doi.org/10.1098/rspb.2001.1717 Edelman, N. B., Frandsen, P. B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R. B., García-Accinelli, G., Van Belleghem, S. M., Patterson, N., Neafsey, D. E., Challis, R., Kumar, S., Moreira, G., Salazar, C., Chouteau, M., Counterman, B. A., Papa, R., Blaxter, M., Reed, R. D., Dasmahapatra, K. K., … Mallet, J. (2019). Genomic architecture and introgression shape a butterfly radiation. Science (New York, N.Y.)366(6465), 594–599. https://doi.org/10.1126/science.aaw2090 Fisher, K. A. (1958). The Genetical Theory of Natural Selection. 2nd Ed. Dover, N.Y Finkbeiner, S. D., Briscoe, A. D., & Reed, R. D. (2012). The benefit of being a social butterfly: communal roosting deters predation. Proceedings. Biological sciences279(1739), 2769–2776. https://doi.org/10.1098/rspb.2012.0203 Finkbeiner, S. D., Briscoe, A. D., & Reed, R. D. (2014). Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution; international journal of organic evolution68(12), 3410–3420. https://doi.org/10.1111/evo.12524 Finkbeiner, S. D., P. A. Salazar, S., Nogales, C. E. Rush, A. D. Briscoe, R. I. Hill, M. R. Kronforst, K. R. Willmott, and S. P. Mullen. (2018). Frequency‐dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proceedings of the Royal Society. B 285. https://doi.org/10.1098/rspb.2017.2786 Forsman, A., Ahnesjö, J., Caesar, S., & Karlsson, M. (2008). A model of ecological and evolutionary consequences of color polymorphism. Ecology89(1), 34–40. https://doi.org/10.1890/07-0572.1 Galeotti, P. and Rubolini, D. (2004). The niche variation hypothesis and the evolution of color polymorphism in birds: a comparative study of owls, nightjars and raptors. Biol. J. Linn. Soc. 82, 237–248 Gilbert L.E., Futuyma D.M., Slatkin M. (1983). Coevolution and mimicry.Coevolution. pp. 263–281. Sunderland: Sinauer Associates Inc. Gomez D. (2006). AVICOL, a program to analyse spectrometric data. Available at https://sites.google.com/site/avicolprogram/. Accessed September 28 2018. Getty T. (1985). Discriminability and the sigmoid functional response: how optimal foragers could stabilize model–mimic complexes. Am. Nat. 125, 239–256. https://doi.org/10.1086/284339 Harper, G. R., & Pfennig, D. W. (2007). Mimicry on the edge: why do mimics vary in resemblance to their model in different parts of their geographical range?. Proceedings. Biological sciences, 274(1621), 1955–1961.https://doi.org/10.1098/rspb.2007.0558Hart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology186(4), 375–387. https://doi.org/10.1007/s003590050437 Hart N. S. (2004). Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics. The Journal of experimental biology207(Pt 7), 1229–1240. https://doi.org/10.1242/jeb.00857 Hedrick, P. W., Smith, D. W., & Stahler, D. R. (2016). Negative-assortative mating for color in wolves. Evolution; international journal of organic evolution70(4), 757–766. https://doi.org/10.1111/evo.12906 Hendrickx, F., Vanthournout, B. and Taborsky, M. (2015), Selection for costly sexual traits results in a vacant mating niche and male dimorphism. Evolution, 69: 2105-2117.https://doi.org/10.1111/evo.12720Hines, H. M., Counterman, B. A., Papa, R., Albuquerque de Moura, P., Cardoso, M. Z., Linares, M., Mallet, J., Reed, R. D., Jiggins, C. D., Kronforst, M. R., & McMillan, W. O. (2011). Wing patterning gene redefines the mimetic history of Heliconius butterflies. Proceedings of the National Academy of Sciences of the United States of America108(49), 19666–19671. https://doi.org/10.1073/pnas.1110096108 Hughes, K., Houde, A., Price, A. Rodd, H. (2013). Mating advantage for rare males in wild guppy populations. Nature 503, 108–110. https://doi.org/10.1038/nature12717 Jamie, G., Meier, J. (2020). The Persistence of Polymorphisms across Species Radiations. Trends In Ecology and Evolution. Cell Press.https://doi.org/10.1016/j.tree.2020.04.007Jay P., Whibley A., Frézal L., Rodríguez de Cara M. Á., Nowell R. W., Mallet J., DasmahapatraK. K., Joron M. (2018). Supergene evolution triggered by the introgression of a chromosomal inversion. Current Biology. 28, 1839–1845.e3. https://doi.org/10.1016/j.cub.2018.04.072pmid:29804810 Jay P., Chouteau M., Whibley A., Bastide H., Parrinello H., Llaurens V., Joron M. (2021). Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat Genet.53(3):288-293. https://doi.org/10.1038/s41588-020-00771-1 Joron M., Papa R., Beltrán M., Chamberlain N., Mavárez J., Baxter S., Abanto M., Bermingham E., Humphrey S.J., Rogers J., Beasley H., Barlow K., ffrench-Constant R.H., Mallet., McMillan W.O., Jiggins C.D. (2006). A Conserved Supergene Locus Controls Colour Pattern Diversity inHeliconius Butterflies. PLoS Biol 4(10): e303.https://doi.org/10.1371/journal.pbio.0040303Joron M., Frezal L, Jones R.T., Chamberlain N.L., Lee S.F., Haag C.R., Whibley A., Becuwe M., Baxter S.W., Ferguson L., Wilkinson P.A., Salazar C., Davidson C., Clark R., Quail M.A., Beasley H., Glithero R., Lloyd C., Sims S., Jones M.C., Rogers J., Jiggins C.D., ffrench-Constant R.H. (2011). Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature, 477(7363), 203–206. https://doi.org/10.1038/nature10341 Joron, M., & Mallet, J. L. (1998). Diversity in mimicry: paradox or paradigm?. Trends in ecology & evolution13(11), 461–466. https://doi.org/10.1016/s0169-5347(98)01483-9 Kapan, D. (2001) Three-butterfly system provides a field test of Müllerian mimicry . Nature 409, 338–340 https://doi.org/10.1038/35053066 Kawecki, T.J.; Ebert, D. (2004) Conceptual issues in local adaptation. D Journal: ECOL LETT, 7 (12): 1225-1241  Kokko H, Mappes J, Lindström L. (2003) Alternative prey can change model–mimic dynamics between parasitism and mutualism. Ecol. Lett. 6, 1068–1076. https://doi.org/10.1046/j.1461-0248.2003.00532.x Kozak, K. M., Wahlberg, N., Neild, A. F., Dasmahapatra, K. K., Mallet, J., & Jiggins, C. D. (2015). Multilocus species trees show the recent adaptive radiation of the mimetic heliconius butterflies. Systematic biology64(3), 505–524. https://doi.org/10.1093/sysbio/syv007 Kronforst, M. R., Young, L. G., Kapan, D. D., McNeely, C., O’Neill, R. J., & Gilbert, L. E. (2006). Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proceedings of the National Academy of Sciences of the United States of America103(17), 6575–6580. https://doi.org/10.1073/pnas.0509685103 Kronforst, M. R., & Papa, R. (2015). The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics200(1), 1–19. https://doi.org/10.1534/genetics.114.172387 Küpper, C., Stocks, M., Risse, J. E., Dos Remedios, N., Farrell, L. L., McRae, S. B., Morgan, T. C., Karlionova, N., Pinchuk, P., Verkuil, Y. I., Kitaysky, A. S., Wingfield, J. C., Piersma, T., Zeng, K., Slate, J., Blaxter, M., Lank, D. B., & Burke, T. (2016). A supergene determines highly divergent male reproductive morphs in the ruff. Nature genetics, 48(1), 79–83.https://doi.org/10.1038/ng.3443Langham G. M. (2004). Specialized avian predators repeatedly attack novel color morphs of Heliconius butterflies. Evolution;international journal of organic evolution, 58(12), 2783–2787. https://doi.org/10.1111/j.0014-3820.2004.tb01629.x Le Poul Y., Whibley A., Chouteau M., Prunier F., LLaurens V., Joron M. (2014). Evolution of dominance mechanisms at a butterfly mimicry supergene. Nature Communications 5, 5644 https://doi.org/10.1038/ncomms6644 Llaurens, V., Whibley, A., & Joron, M. (2017). Genetic architecture and balancing selection: the life and death of differentiated variants. Molecular ecology26(9), 2430–2448. https://doi.org/10.1111/mec.14051 Maisonneuve, L., Chouteau, M., Joron, M., & Llaurens, V. (2021). Evolution and genetic architecture of disassortative mating at a locus under heterozygote advantage. Evolution; international journal of organic evolution75(1), 149–165. https://doi.org/10.1111/evo.14129 Mallet, J. (1986a). Dispersal and gene flow in a butterfly with home range behavior: Heliconius erato (Lepidoptera: Nymphalidae).Oecologia 68, 210–217.https://doi.org/10.1007/BF00384789Mallet, J. (1986b). Hybrid zones in Heliconius butterflies in Panama, and the stability and movement of warning color dines. Heredity,56, 191—202. Mallet, J. (1989). The genetics of warning color in Peruvian hybrid zones of Heliconius erato and H. melpomene. Proc R Soc B. 236:163–185. Mallet, J., & Barton, N. H. (1989). STRONG NATURAL SELECTION IN A WARNING-COLOR HYBRID ZONE. Evolution; international journal of organic evolution43(2), 421–431. https://doi.org/10.1111/j.1558-5646.1989.tb04237.x Mallet, J., Barton, N., Lamas, G., Santisteban, J., Muedas, M., & Eeley, H. (1990). Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in heliconius hybrid zones. Genetics124(4), 921–936. Mallet, J. (1993). Speciation, raciation, and color pattern evolution inHeliconius butterflies: the evidence from hybrid zones. Pp. 226– 260 in R. G. Harrison, ed. Hybrid zones and the evolutionary process. Oxford Univ. Press, New York Mallet, J. (1999). Causes and Consequences of a Lack of Coevolution in Müllerian mimicry. Evolutionary Ecology, 13(7-8), 777–806. https://doi.org/10.1023/a:1011060330515 Mallet, J. and M. Joron (1999). Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Annual Review of Ecology and Systematics 30: 201–233.  Mallet, J. (2010). Shift happens! Shifting balance and the evolution of diversity in warning color and mimicry. Ecological Entomology, 35, 90-104 Martin, A., McCulloch, K. J., Patel, N. H., Briscoe, A. D., Gilbert, L. E., & Reed, R. D. (2014). Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations. EvoDevo5(1), 7. https://doi.org/10.1186/2041-9139-5-7 Merrill, R. M., Wallbank, R. W., Bull, V., Salazar, P. C., Mallet, J., Stevens, M., & Jiggins, C. D. (2012). Disruptive ecological selection on a mating cue. Proceedings. Biological sciences279(1749), 4907–4913. https://doi.org/10.1098/rspb.2012.1968 Merrill, R. M., Dasmahapatra, K. K., Davey, J. W., Dell’Aglio, D. D., Hanly, J. J., Huber, B., Jiggins, C. D., Joron, M., Kozak, K. M., Llaurens, V., Martin, S. H., Montgomery, S. H., Morris, J., Nadeau, N. J., Pinharanda, A. L., Rosser, N., Thompson, M. J., Vanjari, S., Wallbank, R. W., & Yu, Q. (2015). The diversification of Heliconius butterflies: what have we learned in 150 years?. Journal of evolutionary biology28(8), 1417–1438. https://doi.org/10.1111/jeb.12672 Miller AM, Pawlik JR (2013). Do coral reef fish learn to avoid unpalatable prey using visual cues? Anim Behav 85(2):339–347. Moest M., Van Belleghem S.M., James J.E., Salazar C., Martin S.H., Barker S.L., Moreira G.R.P., Mérot C., Joron, M., Nadeau N.J., Steiner F.M. & Jiggins C.D. (2020) Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation.PLoS Biol 18(2): e3000597. https://doi.org/10.1371/journal.pbio.3000597 Müller, F. (1879). Ituna and Thyridia: a remarkable case of mimicry in butterflies. Transactions of the Entomological Society of London 1879: 20–29. Noonan B.P., Comeault A., A. (2008). The role of predator selection on polymorphic aposematic poison frogs. Biol. Lett.551–54http://doi.org/10.1098/rsbl.2008.0586O’Donald, P., Pilecki, C. (1970). Polymoprhic mimicry and natural selection. Evolution; international journal of organic evolution24(2), 395–401. https://doi.org/10.1111/j.1558-5646.1970.tb01770.x Pinheiro, C. E. G. (1996). Palatablility and escaping ability in Neotropical butterflies: Tests with wild kingbirds (Tyrannus melancholicus, Tyrannidae). Biological Journal of the Linnean Society, 59(4), 351–365. https://doi.org/10.1111/j.1095-8312.1996.tb01471.x Pinheiro C. E. G.. (2011). On the evolution of warning coloration, Batesian and Müllerian mimicry in Neotropical butterflies: the role of jacamars (Galbulidae) and tyrant-flycatchers (Tyrannidae). J. Avian Biol. 42, 277–281. http://doi.org/10.1111/j.1600-048X.2011.05435 Roland, A. B., Santos, J. C., Carriker, B. C., Caty, S. N., Tapia, E. E., Coloma, L. A., & O’Connell, L. A. (2017). Radiation of the polymorphic Little Devil poison frog (Oophaga sylvatica) in Ecuador. Ecology and evolution7(22), 9750–9762. https://doi.org/10.1002/ece3.3503 Rosser, N., Dasmahapatra, K.K. and Mallet, J. (2014). StableHeliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin. Evolution, 68: 3470-3484. http://doi.org/10.1111/evo.12539RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA Saenko S.V., Chouteau M., Piron-Prunier F., Blugeon C., Joron M., Llaurens V. (2019) Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly Heliconius numata.EvoDevo 10, 16 .https://doi.org/10.1186/s13227-019-0129-2Sanders, K.L.; Malhotra, A.; Thorpe, R.S. (May 2006). ”Evidence for a Müllerian mimetic radiation in Asian pitvipers”. Proceedings. Biological Sciences. 273 (1590): 1135–1141.doi:10.1098/rspb.2005.3418. Seymoure, B. M., Raymundo, A., McGraw, K., Owen Mcmillan, W., & Rutowski, R. L. (2018). Environment-dependent attack rates of cryptic and aposematic butterflies. Current Zoology, 64(5), 663-669.https://doi.org/10.1093/cz/zox062Sheppard PM. (1963). Some genetic studies of Müllerian mimics in butterflies of the Heliconius genus. Zoologica. 48:145–154. Speed, M.P. and Turner, J.R.G. (1999). Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biol. J. Linn. Soc. 67, 281±312. Su, S., Lim, M., & Kunte, K. (2015). Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective. Evolution; international journal of organic evolution69(11), 2985–2994. https://doi.org/10.1111/evo.12800 Supple, M. A., Hines, H. M., Dasmahapatra, K. K., Lewis, J. J., Nielsen, D. M., Lavoie, C., Ray, D. A., Salazar, C., McMillan, W. O., & Counterman, B. A. (2013). Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies. Genome research23(8), 1248–1257. https://doi.org/10.1101/gr.150615.112 Symula, R., Schulte R., Summers K., (2001). Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc. R. Soc. Lond. B.2682415–2421http://doi.org/10.1098/rspb.2001.1812Thery M, Pincebourde S, Feer F (2008). Dusk light environment optimizes visual perception of conspecifics in a crepuscular horned beetle. Behav Ecol 19(3):627–634. Turner, J. R. G. (1975). A tale of two butterflies. Natural History 84, 28-37. Tuttle, E. M., Bergland, A. O., Korody, M. L., Brewer, M. S., Newhouse, D. J., Minx, P., Stager, M., Betuel, A., Cheviron, Z. A., Warren, W. C., Gonser, R. A., & Balakrishnan, C. N. (2016). Divergence and Functional Degradation of a Sex Chromosome-like Supergene. Current biology : CB26(3), 344–350. https://doi.org/10.1016/j.cub.2015.11.069 Van Belleghem S.M., Alicea Roman P.A., Carbia Gutierrez H., Counterman B.A., Papa R. (2020). Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc. R. Soc. B287: 20201267. http://dx.doi.org/10.1098/rspb.2020.1267 Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings. Biological sciences265(1394), 351–358. https://doi.org/10.1098/rspb.1998.0302 West-Eberhard M. J. (1986). Alternative adaptations, speciation, and phylogeny (A Review). Proceedings of the National Academy of Sciences of the United States of America83(5), 1388–1392. https://doi.org/10.1073/pnas.83.5.1388 Wee J.L.Q. & Monteiro A. (2017). Yellow and the Novel Aposematic Signal, Red, Protect Delias Butterflies from Predators. PLoS ONE12(1): e0168243.https://doi.org/10.1371/journal.pone.0168243Williams P. (2007). The distribution of bumblebee color patterns worldwide: possible significance for thermoregulation, crypsis, and warning mimicry. Biological Journal of the Linnean Society, Volume 92, Issue 1, September 2007, Pages 97–118,https://doi.org/10.1111/j.1095-8312.2007.00878.xYoung, F.J., Montgomery S.H. (2020). Pollen feeding in Heliconiusbutterflies: the singular evolution of an adaptive suite. Proc. R. Soc. B.2872020130420201304http://doi.org/10.1098/rspb.2020.1304