
Speed determinacy of the traveling waves for a three

species time-periodic Lotka-Volterra competition

system

Qiong Wu∗ Chaohong Pan† and Hongyong Wang‡

Abstract

In this paper, speed selection of the time periodic traveling waves for a three species time-periodic

Lotka-Volterra competition system is studied via the upper-lower solution method as well as the com-

parison principle. Through constructing specific types of upper and lower solutions to the system, the

speed selection of the minimal wave speed can be determined under some sets of sufficient conditions

composed of the parameters in the system.
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1 Introduction

The competition system of Lotka-Volterra type
ut = uxx + u(r1(t)− b11(t)u− b12(t)v − b13(t)w),

vt = d1(t)vxx + v(r2(t)− b21(t)u− b22(t)v),

wt = d2(t)wxx + w(r3(t)− b31(t)u− b33(t)w), x ∈ R, t ∈ R+,

(1.1)

models the population dynamics in a time periodic environment. In (1.1), the unknown functions u(t, x),

v(t, x) and w(t, x) account for respectively the population densities of three species; di(t), i = 1, 2 are

the diffusive coefficients; bii(t), i = 1, 2, 3 are the interspecific competition coefficients, which are used

to quantify a numerical indicator of the degree of competition between the same species; b1j(t), bj1(t),

j = 2, 3 are the interspecific competition coefficients; the coefficients ri(t), i = 1, 2, 3 represent the growth
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rates. Moreover, all of the coefficients in (1.1) are assumed to be T -periodic, positive and continuous

functions.

In recent years, two-dimensional competition models have been extensively studied. Specially, the

existence, uniqueness and stability of the corresponding traveling wave solutions as well as the persistence

issues, etc were addressed perfectly or in part in the literatures, for examples, [12–19, 35, 36] and more

references therein. For three-dimensional competition models like (1.1), the study of the aforementioned

problems becomes more challenging due to the higher phase space dimension. This aspect of research

also has attracted much attention from scientist community. Among them, we refer the reader to some

references for showing the permanence [21–23], extinction [24], existence [25, 27], coexistence [28] and

more references therein.

Particularly, we remark that the speed determinacy keeps its activity among the groups of mathe-

matician and biologist for a long time. For such a topic, we refer the reader to [2–4, 13] for a diffusive

Lotka-Volterra model with constant coefficients, [5] for a integro-difference model, [6] for cooperative

models, [7, 8] for lattice system, [9, 36] for a spatial and time periodic Lotka-Volterra competition model

and so on.

Yet, much less is known for the speed selection for a three-species Lotka-Volterra competition system

except for the work [10]. Since the coefficients of the model considered in [10] are constant, it is a au-

tonomous system. However, the model (1.1) is non-autonomous, which makes the analysis more delicate.

Moreover, we shall investigate the nonlinear selection which seems to be not addressed in the existing

publications (to the best of our knowledge). In this paper, we make an effort in this direction. Speed

selection of the system (1.1) is closely related to the time-periodic traveling wave solutions which are

assumed to have the following form of
u(t, x)

v(t, x)

w(t, x)

 =


X(t, x− ct)

Y (t, x− ct)

Z(t, x− ct)

 :=


X(t, z)

Y (t, z)

Z(t, z)

 ,

obeying the condition 
X(t+ T, z)

Y (t+ T, z)

Z(t+ T, z)

 =


X(t, z)

Y (t, z)

Z(t, z)

 ,

where z = x− ct, the constant c is the wave speed. The dynamic behaviors of the kinetic system of (1.1)

is very complicate, and it has at least five equilibrium points as below

e0 = (0, 0, 0), e1 = (p(t), 0, 0), e2 = (0, q(t), s(t)), e3 = (0, q(t), 0), e4 = (0, 0, s(t)),

where p(t), q(t) and s(t) are the solutions of the following differential equations

dθ

dt
= θ(ri(t)− bii(t)θ), i = 1, 2, 3, (1.2)

respectively. Noticing the differential equations (1.2) are Bernoulli equation, one can obtain the explicit

expressions for p(t), q(t), s(t) as follows

p(t) =
p0

∫ t
0
r1(s)ds

1 + p0

∫ t
0
b11(s)e

∫ s
0
r1(τ)dτds

, p0 =

∫ T
0
r1(s)ds− 1∫ T

0
b11(s)e

∫ s
0
r1(τ)dτds

,
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q(t) =
q0

∫ t
0
r2(s)ds

1 + q0

∫ t
0
b22(s)e

∫ s
0
r2(τ)dτds

, q0 =

∫ T
0
r2(s)ds− 1∫ T

0
b22(s)e

∫ s
0
r2(τ)dτds

,

s(t) =
s0

∫ t
0
r3(s)ds

1 + s0

∫ t
0
b33(s)e

∫ s
0
r3(τ)dτds

, s0 =

∫ T
0
r3(s)ds− 1∫ T

0
b33(s)e

∫ s
0
r3(τ)dτds

.

It is direct to check that under the conditions∫ T

0

r2(t)dt <

∫ T

0

b21(t)p(t)dt,

∫ T

0

r3(t)dt <

∫ T

0

b31(t)p(t)dt, (1.3)

the equilibrium e1 is linearly stable, and the condition∫ T

0

r1(t)dt >

∫ T

0

(b12(t)q(t) + b13(t)s(t))dt, (1.4)

ensures e2 is unstable. Throughout this paper, we always assume that (1.3) and (1.4) hold true and are

interested in such time periodic traveling wave solutions which connect e1 to e2. This means (X,Y, Z)(t, z)

satisfies the boundary conditions
X(t,−∞)

Y (t,−∞)

Z(t,−∞)

 := lim
z→−∞


X(t, z)

Y (t, z)

Z(t, z)

 =


p(t)

0

0

 ,


X(t,∞)

Y (t,∞)

Z(t,∞)

 := lim
z→∞


X(t, z)

Y (t, z)

Z(t, z)

 =


0

q(t)

s(t)

 . (1.5)

To get a cooperative system so that it is more convenient for analysis, we introduce a pair of new

variables U(t, z), V (t, z),W (t, z), which are defined by

U(t, z) =
X(t, z)

p(t)
, V (t, z) = 1− Y (t, z)

q(t)
, W (t, z) = 1− Z(t, z)

s(t)
. (1.6)

Substituting (1.6) into (1.1) leads to the following wave profile system

Ut = Uzz + cUz + U [b11(t)p(t)(1− U)− b12(t)q(t)(1− V )− b13(t)s(t)(1−W )],

Vt = d1(t)Vzz + cVz + (1− V )[b21(t)p(t)U − b22(t)q(t)V ],

Wt = d2(t)Wzz + cWz + (1−W )[b31(t)p(t)U − b33(t)s(t)W ],

(U, V,W )(t, z) = (U, V,W )(t+ T, z),

(U, V,W )(t,−∞) = (1, 1, 1), (U, V,W )(t,∞) = (0, 0, 0), z ∈ R, t ∈ R+.

(1.7)

By use of the abstract results in [29], it follows that there exists a critical number cmin (In most references,

it is usually called as the minimal wave speed of (1.1)) such that system (1.7) admits a solution for each

c satisfying c ≥ cmin. Upon this critical number and another speed c0 (see (4.4)) solved from the linear

equation of U -equation in (1.7), one can give the concept of linear or nonlinear selection of the minimal

wave speed cmin, see for example [3, 14]. More precisely, the minimal wave speed is said to be linear

selected provided that cmin = c0, and nonlinear selected provided that cmin > c0.

The present paper is arranged as follows. In section 2, we present the results about nonlinear selection.

The results of linear selection are showed in section 3. In section 4, we add an appendix concluding some

primary conclusions.
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2 The nonlinear selection for the minimal wave speed

In this section, we take an insight to the nonlinear selection for the minimal wave speed. Firstly, we

give the following lemma which can be proved with a slight modification by employing the ideas in [36].

Lemma 2.1 If U(t, z) = U(t, x−ct) is continuous in t and z, non-increasing in z and T -periodic in t for

c ≥ c0 = 2

√
Θ(t), and satisfies U(t,+∞) = 0, U(t,−∞) > max

{
b22(t)q(t)
b21(t)p(t) ,

b33(t)s(t)
b31(t)p(t)

}
, then the following

system 
Vt = d1(t)Vzz + cVz + (1− V )[b21(t)p(t)U − b22(t)q(t)V ],

Wt = d2(t)Wzz + cWz + (1−W )[b31(t)p(t)U − b33(t)s(t)W ],

(V,W )(t, z) = (V,W )(t+ T, z), (V,W )(t,+∞) = 0, (V,W )(t,−∞) = 1,

(2.1)

has a pair of solutions (V,W )(t, z). Furthermore, if we think of V and W as functions of U , then V (U)

and W (U) are monotone increasing in U .

To proceed, we need the following theorem saying that the faster decaying rate (at the right far end)

of the time periodic wave solution plays a crucial role in determining the nonlinear selection.

Theorem 2.2 Assume (1.7) has a continuous lower solution (U, V ,W )(t, z) ≥ 0, z = x − c1t with

c1 > c0, and is T -periodic in t. Moreover, the first component U(t, z) is further supposed to be monotone

decreasing in z and satisfies

lim
z→−∞

supU(t, z) < 1, U(t, z) ∼ ϕ1,µ2(t)e−µ2z, as z →∞, (2.2)

where µ2 is defined in (4.3). Then system (1.7) has no traveling wave solution for the speed c in [c0, c1).

Proof. For the given initial values (u, v, w)(0, x), suppose (1.7) has a traveling wave solution for some

constants c satisfying c0 ≤ c < c1. It follows from

lim
z→−∞

supU(t, z) < 1, andU(t,−∞) = 1,

that there exists a sufficiently large negative number x1 such that U(0, x) < u(0, x) for any x ∈ (−∞, x1).

In addition, the assumption U(t, z) ∼ ϕ1,µ2(t)e−µ2z as z →∞ implies that there exists another number

x2 such that U(0, x) < u(0, x) for any x ∈ (x2,∞), since µ2(c) is monotone increasing in c. Hence, one

can get the inequality

U(0, x) < u(0, x),

holds for all x ∈ (−∞,∞), by a shift if it is necessary. From the monotonicities of V (U) and W (U) in U

explored in the Lemma 2.1, we can infer that (U, V ,W )(0, x) < (U, V,W )(0, x),∀x ∈ (−∞,∞). Recalling

(U, V ,W )(t, x − c1t) is a lower solution of the system (1.7) and making use of the comparison principle

enable us to get
U(t, x− c1t) ≤ U(t, x− ct),

V (t, x− c1t) ≤ V (t, x− ct),

W (t, x− c1t) ≤W (t, x− ct),

(2.3)

where (t, x) ∈ (0,∞)× (−∞,∞). Owing to the continuity of U(t, z) in z for each t and (2.2), we can take

a point σ1 in the range so that U(t, σ1) > 0. As a consequence of the first equation of (2.3), we have

U(t, σ1) ≤ U(t, x− ct) = U(t, σ1 + (c1 − c)t)→ 0, as z →∞.
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However, this is contradicted to U(t, σ1) > 0. Thus, the proof is accomplished. �

Remark 2.3 Theorem 2.2 implies that the system (1.7) does not admit traveling wave solution when c

falls in the interval [c0, c1), which in turn means that the wave speed is nonlinear selected.

According to Theorem 2.2, to establish a principle for nonlinear selection, it is sufficient to find a

suitable lower solution with faster decay rate at the positive infinity. With this aim, we set

U1(t, z) =
k

1 + eµ2z

ϕ(t)

, V 1(t, z) = W 1(t, z) =
U1(t, z)

k
, (2.4)

where µ2 = µ2(c1) is the constant defined in (4.3) with c1 = c0 + ε (ε is a sufficiently small number),

ϕ(t) := ϕ1,µ2
(t) (see (4.4)) and k is a constant satisfying 0 < k < 1.

Theorem 2.4 If the following inequality

max

{
max
t∈[0,T ]

N1(t), max
t∈[0,T ]

N2(t)

}
< min
t∈[0,T ]

{
1− 2Θ(t)

b11(t)p(t)

}
,

where

N1(t) =
(d1(t) + 1)Θ(t) + b22(t)q(t) + Θ(t)

b21(t)p(t)
,

N2(t) =
(d2(t) + 1)Θ(t) + b33(t)s(t) + Θ(t)

b31(t)p(t)
,

holds true, then the minimal wave speed is nonlinearly selected.

Proof. By the assumption, we can assume that the range of the constant k satisfies the following

conditions

max

{
max
t∈[0,T ]

N1(t), max
t∈[0,T ]

N2(t)

}
< k < min

t∈[0,T ]

{
1− 2Θ(t)

b11(t)p(t)

}
. (2.5)

Plugging (2.4) into the first equation of (1.7), we have

(U1)zz + c1(U1)z + U1[b11(t)p(t)(1− U1)− b12(t)q(t)(1− V 1)− b13(t)s(t)(1−W 1)]− (U1)t

=
U2

1

k

(
1− U1

k

)[
−2µ2

2 +
b11(t)p(t)(1− k)

1− U1

k

]

≥ U2
1

k

(
1− U1

k

)[
−2µ2

2 + b11(t)p(t)(1− k)
]
.

Let ε→ 0+, then it follows that µ2 →
√

Θ(t). One can derive from the right part of (2.5) that

−2µ2
2 + b11(t)p(t)(1− k) > 0.

Therefore,

(U1)zz + c1(U1)z + U1[b11(t)p(t)(1− U1)− b12(t)q(t)(1− V 1)− b13(t)s(t)(1−W 1)]− (U1)t ≥ 0. (2.6)
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As for the second equation of (1.7), a straightforward computation gives

d1(t)(V 1)zz + c1(V 1)z + (1− V 1)[b21(t)p(t)U1 − b22(t)q(t)V 1]− (V 1)t

=
U1

k

(
1− U1

k

)[
d1(t)µ2

2 − 2d1(t)µ2
2

U1

k
− c1µ2 −

ϕ′(t)

ϕ(t)
+ kb21(t)p(t)− b22(t)q(t)

]
≥ U1

k

(
1− U1

k

)[
−d1(t)µ2

2 − c1µ2 −
ϕ′(t)

ϕ(t)
+ kb21(t)p(t)− b22(t)q(t)

]
.

Note that c1 → 2

√
Θ(t) and µ2 →

√
Θ(t) as ε→ 0+. The left part of (2.5) and (4.2) ensure that

d1(t)(V 1)zz + c1(V 1)z + (1− V 1)[b21(t)p(t)V 1 − b22(t)q(t)V 1]− (V 1)t ≥ 0, (2.7)

and

d2(t)(W 1)zz + c1(W 1)z + (1−W 1)[b31(t)p(t)U1 − b33(t)s(t)W 1]− (W 1)t ≥ 0. (2.8)

Therefore, it can be seen from (2.6), (2.7) and (2.8) that the set of functions defined in (2.4) is a lower

solution that satisfies all of the assumptions in Theorem 2.2. So the proof is done. �

3 The linear selection for the minimal wave speed

As far as the linear selection is concerned, one can immediately get a result by adapting the ideas

of [30]. To present our results, for conciseness, we use the following notations hereafter

Θ(t) : = b11(t)p(t)− b12(t)q(t)− b13(t)s(t), Θ(t) :=
1

T

∫ T

0

Θ(t)dt,

Θ1(t) : = b21(t)p(t)− b22(t)q(t), Θ2(t) := b31(t)p(t)− b33(t)s(t),

(3.1)

where T is the smallest positive period, and make the following assumption:

(H) bij ∈ Cθ(R) for some θ with 0 < θ < 1.

Theorem 3.1 Suppose that the assumptions (1.3)-(1.4) and (H) hold. Then the minimal wave speed

of (1.1) is linear selected provided that 0 < di(t) ≤ 1, i = 1, 2 and Θ(t) ≥ Θ1(t) ≥ Θ2(t) ≥ 0 for any

t ∈ [0, T ].

Proof. As mentioned above, the proof follows similarly from [30, Theorems 2.5 and 2.6]. We state it

here for completeness. We firstly focus on the case c > c0, and set

ϕ1(t) := exp

(∫ t

0

Θ(τ)dτ − tΘ(t)

)
, ν(t, z) := mϕ1(t)e−µ1z, (3.2)

where µ1 =
c−
√
c2−4Θ(t)

2 . For each c > c0, it is easy to see that µ1 > 0. By a simple calculation, one can

obtain

ϕ′1(t) = Θ(t)ϕ1(t)−Θ(t)ϕ1(t).

Next, we apply the upper/lower method to show the existence of the traveling wave solutions of (1.7).

Take (U, V ,W ) := min{(ν, ν, ν)(t, z), (1, 1, 1)}. Firstly, we want to show that (U, V ,W ) is an upper
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solution to the system (1.7). It is sufficient to prove that (U, V ,W ) satisfies
U t ≥ Uzz + cUz + U [b11(t)p(t)(1− U)− b12(t)q(t)(1− V )− b13(t)s(t)(1−W )],

V t ≥ d1(t)V zz + cV z + (1− V )[b21(t)p(t)U − b22(t)q(t)V ],

W t ≥ d2(t)W zz + cW z + (1−W )[b31(t)p(t)U − b33(t)s(t)W ].

(3.3)

In fact, when ν(t, z) ≥ 1, we have (U, V ,W ) = (1, 1, 1) and clearly (3.3) holds in this case. When

ν(t, z) ≤ 1, we have (U, V ,W ) = (ν, ν, ν)(t, z) and

νzz + cνz − νt + ν(1− ν)Θ(t) ≤ ν(µ2
1 − cµ1 + Θ(t)) = 0,

d1νzz + cνz − νt + ν(1− ν)Θ1(t) ≤ ν(µ2
1 − cµ1 + Θ(t)) = 0,

d2νzz + cνz − νt + ν(1− ν)Θ2(t) ≤ ν(µ2
1 − cµ1 + Θ(t)) = 0,

which indicates that (U, V ,W ) is an upper solution.

For the construction of a lower solution of (3.3), we let ψd1(t) and ψd2(t) be defined as the periodic

solutions of the following two equations respectively,

b21(t)p(t)ϕ1(t)− (b22(t)q(t) + Θ(t) + (1− d1(t))µ2
1)α− dα

dt
= 0, (3.4)

b31(t)p(t)ϕ1(t)− (b33(t)s(t) + Θ(t) + (1− d2(t))µ2
1)β − dβ

dt
= 0. (3.5)

In view of b22(t)q(t) + Θ(t) + (1− d1(t))µ2
1 > 0 and b33(t)q(t) + Θ(t) + (1− d2(t))µ2

1 > 0, the solutions

ψd1(t) and ψd2(t) are unique. In particular, we denote the solutions of (3.4) and (3.5) as d1(t) = 1 and

d2(t) = 1 respectively by ψ1(t) and ψ2(t). Let ϑ = −[(µ1 + ε)2 − c(µ1 + ε) + Θ(t)], where ε is a sufficient

small positive number. It can be seen that ϑ > 0. Fix n1, n2, n3 such that n1 ≥ 1 and

n2 = max

{
n1, n1 max

t∈R+

ψd1
ψ1

}
, n3 = max

{
n1, n1 max

t∈R+

ψd2
ψ2

}
.

Set
Λ(t) := [b11(t) + b21(t) + b31(t)]p(t) + b12(t)q(t) + b13(t)s(t),

Mϑ :=
ϑmin{n1 mint ϕ, n2 mint ψ1, n3 mint ψ2}

(1 + n2 maxt{ ψ1

ψd1
}+ n3 maxt{ ψ2

ψd2
}) maxt{ϕ2 + ψ2

d1
+ ψ2

d2
}maxt{Λ(t)})

,

and define
U(t, z) = min{σe−µ1zϕ1(t)(1− n1e

−εz), 0},

V (t, z) = min

{
σe−µ1zψd1(t)

(
1− n2

ψ1(t)

ψd1(t)
e−εz

)
, 0

}
,

W (t, z) = min

{
σe−µ1zψd2(t)

(
1− n3

ψ2(t)

ψd2(t)
e−εz

)
, 0

}
,

(3.6)

where σ ∈ (0,Mϑ]. According to (3.6), it is easy to see that (U, V ,W ) ≤ (0, 0, 0) for all (t, z) in the region

{(t, z)|t ∈ R+, z < z0 = lnn1

ε }. When (t, z) ∈ R+ × [z0,∞), upon the substitution of (U, V,W )(t, z) =

(U, V ,W )(t, z) into (3.6), one has
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U [b11(t)p(t)(1− U)− b12(t)q(t)(1− V )− b13(t)s(t)(1−W )] + Uzz + cUz − U t

= σe−µ1z

{
Θ(t)ϕ1(t)(1− n1e

−εz)− b11(t)p(t)e−µ1z[ϕ1(t)(1− n1e
−εz)]2 − ϕ′1(t)(1− n1e

−εz)

+ (d1(t)µ2
1 − cµ1)ϕ1(t)− n1ϕ1(t)e−εz[(µ1 + ε)2 − c(µ1 + ε)]

}
+ b12(t)q(t)U · V + b13(t)s(t)U ·W

≥ σe−µ1z

{
[Θ(t)−Θ(t)]ϕ1(t)− ϕ′1(t)− n1e

−εz[Θ(t)ϕ1(t) + d1(t)(µ1 + ε)2ϕ1(t)− c(µ1 + ε)ϕ1(t)

− ϕ′1(t)]− σϕ1(t)e−µ1z(1− n1e
−εz)

[
b11(t)p(t)ϕ1(t)(1− n1e

−εz)

+ b12(t)q(t)ψd1(t)

(
1− n2

ψ1(t)

ψd1(t)
e−εz

)
+ b13(t)s(t)ψd2(t)

(
1− n3

ψ2(t)

ψd2(t)
e−εz

)]}
= σϕ1(t)e−µ1z

{
n1ϑe

−εz − σe−µ1z(1− n1e
−εz)

[
b11(t)p(t)ϕ1(t)(1− n1e

−εz)

+ b12(t)q(t)ψd1(t)

(
1− n2

ψ1(t)

ψd1(t)
e−εz

)
+ b13(t)s(t)ψd2(t)

(
1− n3

ψ2(t)

ψd2(t)
e−εz

)]}
≥ 0,

for the U -equation. For the V -equation, we have

(1− V )[b21(t)p(t)U − b22(t)q(t)V ] + d1(t)V zz + cV z − V t

= σe−µ1z

{
b21(t)p(t)ϕ1(t)(1− n1e

−εz)− b22(t)q(t)(ψd1(t)− n2ψ1(t)e−εz)

− σb21(t)p(t)e−µ1z

[
ϕ1(t)(1− n1e

−εz)ψd1(t)

(
1− n2

ψ1(t)

ψd1(t)
e−εz

)]
+ (d1(t)µ2

1 − cµ1)ψd1(t)

− n2ψ1(t)e−εz[d1(t)(µ1 + ε)2 − c(µ1 + ε)]− (ψ′d1(t)− n2ψ
′
1(t)e−εz)

}
+ b22(t)q(t)(V )2

≥ σe−µ1z

{
b21(t)p(t)ϕ1(t)− (b22(t)q(t) + Θ(t) + (1− d1(t))µ2

1)ψd1(t)− ψ′d1(t)

− σb21(t)p(t)e−µ1z

[
ϕ1(t)(1− n1e

−εz)ψd1(t)

(
1− n2

ψ1(t)

ψd1(t)
e−εz

)]}
− n2σe

−(µ1+ε)z

{
b21(t)p(t)ϕ1(t)− [b22(t)q(t) + (µ1 + ε)2 − c(µ1 + ε)]ψ1(t)

− ψ′1(t) + (d1(t)− 1)(µ1 + ε)2ψ1(t)

}
≥ σe−µ1z

{
n2ϑψ1(t)e−εz − σb21(t)p(t)e−µ1z

[
ϕ1(t)(1− n1e

−εz)ψd1(t)

(
1− n2

ψ1(t)

ψd1(t)
e−εz

)]}
≥ 0.

The calculation of lower solution on the W -equation is similar to the V -equation, we omit it for conve-

nience. Therefore, we get

(1−W )[b31(t)p(t)U − b33(t)s(t)W ] + d2(t)W zz + cW z −W t

≥ σe−µ1z

{
n3ϑψ2(t)e−εz − σb31(t)p(t)e−µ1z

[
ϕ1(t)(1− n1e

−εz)ψd2(t)

(
1− n3

ψ2(t)

ψd2(t)
e−εz

)]}
≥ 0.

Thus, (U, V ,W ) satisfies (3.3).
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Noticing that (U, V ,W ) and (U, V ,W ) are periodic in t, one can increase m such that (U, V ,W ) ≥
(U, V ,W ) for all (t, z) ∈ R+ ×R. By [30, Lemma 2.4], there exists a time periodic solution (U c, V c,W c)

for (1.7) for each c > c0. For the verification that the derived solution (U c, V c,W c) satisfies the boundary

conditions involved in (1.7), we refer the reader to [30, Theorems 2.5]. Moreover, for the existence of the

solution of (1.7) as c = c0, we can follow the same lines presented in [30, Theorems 2.6]. Since there is

no essential difference, we omit the details. The proof is thus complete. �

By taking a look at the proof of Theorem 3.1, we find that the pair of functions (U, V ,W ) to be

a lower solution needs the requirements di(t) ∈ (0, 1], i = 1, 2 for all t ∈ [0, T ]. Hence, for the sake of

simplicity, we always assume (1.3)-(1.4) and (H) hold as well as di(t) ∈ (0, 1], i = 1, 2 for all t ∈ [0, T ].

Theorem 3.2 Assume that

b21(t)p(t)

Q1(t)
< M1 <

Θ(t)

b(t)
,

b31(t)p(t)

Q2(t)
< M2 <

Θ(t)

b(t)
, (3.7)

where
b(t) = max{b12(t)q(t), b13(t)s(t)},

Q1(t) = (1− d1(t))Θ(t) + Θ(t) + b22(t)q(t),

Q2(t) = (1− d2(t))Θ(t) + Θ(t) + b33(t)s(t).

The functions Θ(t) and Θ(t) are the ones defined in (3.1). Then the minimal wave speed of system (1.7)

is linearly selected.

Proof. Define

U(t, z) =
1

1 + eµ1z

ϕ1(t)

, (3.8)

where z = x − c0t, µ1 := µ1(c0) with c0 = 2

√
Θ(t) (see (4.4)) and ϕ1(t) = ϕ1,µ1(t) is a positive

characteristic function defined in (4.3). Let

V (t, z) = min{1,M1U(t, z)} =

{
1, z ≤ z2(t),

M1U(t, z), z > z2(t),

W (t, z) = min{1,M2U(t, z)} =

{
1, z ≤ z3(t),

M2U(t, z), z > z3(t).

Without loss of generality, we suppose that z3(t) > z2(t) which indicates that U(t, z2) > U(t, z3) and

M2 > M1 > 1. While z3(t) ≤ z2(t), we can obtain the same results and so we omit it for conciseness. We

shall prove that (U, V ,W ) is a generalized upper solution for three cases.

(i). When z ≤ z2(t), we have V (t, z) = W (t, z) = 1. It is easy to check that the V -equation and

W -equation hold true.

(ii). When z2(t) < z < z3(t), it follows that V (t, z) = M1U(t, z), where U ∈ [0, 1
M1

]. Substituting it

into V -equation, we have

d1(t)V zz + c0V z + (1− V )[b21(t)p(t)U − b22(t)q(t)V ]− V t =: M1U ·D1(U), (3.9)
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where

D1(U) = (1− U)

[
d1(t)µ2

1 − c0µ1 −
ϕ′1(t)

ϕ1(t)
− 2d1(t)µ2

1U

]
+ (1−M1U)

(
b21(t)p(t)

M1
− b22(t)q(t)

)
.

It is direct to calculate that D′′1 (U) = 4d1(t)µ2
1 > 0. Therefore, for each t ∈ R+, D1(U) is a concave

function in U ∈ [0, 1
M1

] and D1(U) exists a minimum. Thus we only need to verify that the values of U

at the boundary are negative. Upon substitution of U = 0 and U = 1
M1

in D1(U), we have

D1(0) = d1(t)µ2
1 − c0µ1 −

ϕ′1(t)

ϕ1(t)
+
b21(t)p(t)

M1
− b22(t)q(t),

D1

(
1

M1

)
=

(
1− 1

M1

)[
d1(t)µ2

1 − c0µ1 −
ϕ′1(t)

ϕ1(t)
− 2d1(t)µ2

1

1

M1

]
.

(3.10)

Keeping µ1 =

√
Θ(t) and c0 = 2

√
Θ(t) as well as

ϕ′
1(t)
ϕ1(t) = µ2

1−c0µ1 +Θ(t) (see (4.2)) in mind, the wanted

inequality D1(0) < 0 results in the left side of the first condition of (3.7). So the left of (3.9) is less than

zero. While D1( 1
M1

) < 0 is always valid since d1(t) < 1. Thus, D1(U) < 0, that is

d1(t)V zz + c0V z + (1− V )[b21(t)p(t)U − b22(t)q(t)V ]− V t < 0. (3.11)

On the other side, thanks to W (t, z) = 1 in this case, the W -equation holds true.

(iii). When z ≥ z3(t), we have V (t, z) = M1U(t, z), W (t, z) = M2U(t, z). Due to U ∈ [0, 1
M2

] ⊂
[0, 1

M1
], we know that (3.11) is still true. By performing a similar discussion, it follows from the second

condition of (3.7) that

d2(t)W zz + c0W z + (1−W )[b31(t)p(t)U − b33(t)s(t)W ]−W t < 0.

Finally, for the U -equation, we can easily verify that

Uzz + c0Uz + U [b11(t)p(t)(1− U)− b12(t)q(t)(1− V )− b13(t)s(t)(1−W )]− (U)t

= U
2
(1− U)

[
−2µ2

1 +
b12(t)q(t)(V − U) + b13(t)s(t)(W − U)

U(1− U)

]
< U

2
(1− U)[−2Θ(t) + b(t)G(t, z)],

where

b(t) = max{b12(t)q(t), b13(t)s(t)}, G(t, z) =
V − U +W − U

U(1− U)
.

G(t, z) can be estimated as

G(t, z) =



2

U
≤ 2M1, z ≤ z2(t),

M1 − 1

1− U
+

1

U
≤ 2M2, z2(t) < z < z3(t),

M1 +M2 − 2

1− U
≤ 2M2, z ≥ z3(t).

As a result, we can get

Uzz + c0Uz + U [b11(t)p(t)(1− U)− b12(t)q(t)(1− V )− b13(t)s(t)(1−W )]− U t < 0.
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By a standard argument of the upper-lower solution (see for example [2]), one can see that the time

periodic traveling wave exists under the assumptions in this theorem when c = c0. This means the

minimal wave speed is linearly selected. �

Theorem 3.3 If

b11(t)p(t) ≤ 3

2
Θ(t), (3.12)

and 

(
d1(t)

4
− 1

2

)
Θ(t)− b22(t)q(t)− 1

2
Θ(t) < 0,(

d2(t)

4
− 1

2

)
Θ(t)− b33(t)s(t)− 1

2
Θ(t) < 0,

b21(t)p(t)− d1(t)

2
Θ(t) < 0,

b31(t)p(t)− d2(t)

2
Θ(t) < 0,

(3.13)

or 

b21(t)p(t)− d1(t)

2
Θ(t) > 0,

b31(t)p(t)− d2(t)

2
Θ(t) > 0,(

−d1(t)

4
− 1

2

)
Θ(t)− b22(t)q(t)− 1

2
Θ(t) + b21(t)p(t) ≤ 0,(

−d2(t)

4
− 1

2

)
Θ(t)− b33(t)s(t)− 1

2
Θ(t) + b31(t)p(t) ≤ 0,

(3.14)

then the minimal wave speed of system (1.7) is linearly selected, where Θ(t) and Θ(t) are defined in (3.1).

Proof. Let V (t, z) = W (t, z) = U
1
2 (t, z), where U(t, z) is defined by (3.8). By a simple calculation, we

have

Uzz + c0Uz + U [b11(t)p(t)(1− U)− b12(t)q(t)(1− V )− b13(t)s(t)(1−W )]− U t

= U
3
2 (1− U

1
2 )

[
−3

2
Θ(t) + b11(t)p(t)

]
,

d1(t)V zz + c0V z + (1− V )[b21(t)p(t)U − b22(t)q(t)V ]− V t

= V (1− V )

{[(
d1(t)

4
− 1

2

)
Θ(t)− b22(t)q(t)− 1

2
Θ(t)

]
+

(
b21(t)p(t)− d1(t)

2
Θ(t)

)
V

}
,

d2(t)W zz + c0W z + (1−W )[b31(t)p(t)U − b33(t)s(t)W ]−W t

= W (1−W )

{[(
d2(t)

4
− 1

2

)
Θ(t)− b33(t)s(t)− 1

2
Θ(t)

]
+

(
b31(t)p(t)− d2(t)

2
Θ(t)

)
W

}
.

(3.15)

If the conditions (3.12)-(3.14) hold, the right sides of three equations of (3.15) are negative. Therefore,

(U(t, z), V (t, z),W (t, z)) is an upper solution which indicates that the minimal wave speed is linear

selected. The proof is complete. �

From Theorems 3.2 and 3.3, one can see that once the lower solution is found, then the linear selection

is totally dependent on the expression of upper solution. Roughly speaking, an upper solution leads to

a sufficient condition such that the minimal wave speed is linearly selected. We will end this section by

giving another upper solution.
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Theorem 3.4 If there is m = 1
n (n ∈ Z, n ≥ 2) such that(

1− 1

m

)
Θ(t)− 2

(
1− 1

m

)
Θ(t)− Θ(t)

m
+
b11(t)p(t)

m
< 0, (3.16)

and 
(
2d1(t)m2 − 2

)
Θ(t)− 4(m− 1)Θ(t)

3
2 − 2Θ(t)−Θ1(t) < 0,(

2d2(t)m2 − 2
)

Θ(t)− 4(m− 1)Θ(t)
3
2 − 2Θ(t)−Θ2(t) < 0,

(3.17)

then the minimal wave speed of system (1.7) is linearly selected, where Θ(t) and Θ(t) are defined in (3.1).

Proof. We first define the functions

U =

(
1 +

emµ1z

ϕ1(t)

)− 1
m

, V = W = 1−
(

1− Um
)2

, (3.18)

where 0 < m ≤ 1
2 . Next, we shall verify that (U, V ,W ) is an upper solution of (1.7). Substituting (3.18)

into the first equation of (1.7), we have

Uzz + c0Uz + U [b11(t)p(t)(1− U)− b12(t)q(t)(1− V )− b13(t)s(t)(1−W )]− U t

= U(1− Um)

[
µ2

1 − c0µ1 + Θ(t)− ϕ′1(t)

mϕ1(t)
− (1 +m)µ2

1U
m

+ (b12(t)q(t) + b13s(t))U
m

+ b11(t)p(t)
U
m − U

1− Um
]

≤ U(1− Um)

[(
1− 1

m

)
µ2

1 −
(

1− 1

m

)
µ1 −

Θ(t)

m
+
b11(t)p(t)

m

]
.

(3.19)

Thanks to µ1 =

√
Θ(t), we get the condition (3.16) to make the last term in (3.19) is non-positive.

Substituting (3.18) into V -equation and W -equation and combining with U
1−m ≤ Um, we have

d1(t)V zz + c0V z + (1− V )[b21(t)p(t)U − b22(t)q(t)V ]− V t

= U
m

(1− Um)2

[
2d1(t)m2µ2

1 − 6d1(t)m2µ2
1U

m − 2mc0µ1 −
2ϕ′1(t)

ϕ1(t)

+ b21(t)p(t)U
1−m − b22(t)q(t)(2− Um)

]
≤ Um(1− Um)2

[
2m2d1(t)Θ(t)− 4mΘ(t)

3
2 − 2ϕ′1(t)

ϕ1(t)
− b22(t)q(t) + b21(t)p(t)

]
,

(3.20)

and
d2(t)W zz + c0W z + (1−W )[b31(t)p(t)U − b33(t)s(t)W ]−W t

= U
m

(1− Um)2

[
2m2d2(t)µ2

1 − 6m2d2(t)µ2
1U

m − 2c0mµ1 −
2ϕ′1(t)

ϕ1(t)

+ b31(t)p(t)U
1−m − b33(t)s(t)(2− Um)

]
≤ Um(1− Um)2

[
2m2d2(t)Θ(t)− 4mΘ(t)

3
2 − 2ϕ′1(t)

ϕ1(t)
− b33(t)s(t) + b31(t)p(t)

]
.

(3.21)

With the help of the conditions (3.17), and we can verify that{
d1(t)V zz + c0V z + (1− V )[b21(t)p(t)U − b22(t)q(t)V ]− V t < 0,

d2(t)W zz + c0W z + (1−W )[b31(t)p(t)U − b33(t)s(t)W ]−W t < 0.
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The above discussions show that (U, V ,W ) is an upper solution of (1.7). Therefore, the proof is completed.

�

4 Appendix: the local behavior of the traveling wavefront around

e1

The minimal wave speed selection relies heavily on the asymptotic behaviors of the traveling wave

solutions near the unstable equilibrium e1 = (0, 0, 0). In fact, the corresponding linearized system is

represented by 
Uzz + cUz + Θ(t)U − Ut = 0,

d1(t)Vzz + cVz + [b21(t)p(t)U − b22(t)q(t)V ]− Vt = 0,

d2(t)Wzz + cWz + [b31(t)p(t)U − b33(t)s(t)W ]−Wt = 0.

(4.1)

Making an ansatz U(t, z) = ϕ(t)e−µz, where ϕ(t) is a T -periodic function. We insert it into the first

equation of (4.1) yield

[µ2 − cµ+ Θ(t)]ϕ(t)− ϕ′(t) = 0. (4.2)

Dividing by ϕ(t) on both sides and integrating the result from 0 to T , we have

µ2 − cµ+ Θ(t) = 0.

Hence, the characteristic roots are

µ1 := µ1(c) =
c−

√
c2 − 4Θ(t)

2
, µ2 := µ2(c) =

c+

√
c2 − 4Θ(t)

2
. (4.3)

Therefore, one can obtain the linear speed as below

c0 = 2

√
Θ(t). (4.4)

When c = c0 and 0 < µ1(c) < µ2(c), it is clear that µ1 = µ2 =

√
Θ(t). When c > c0, for the constructions

of lower/upper solutions, we need to solve the eigenfunctions ϕ1,µi(t) relating to the eigenvalues µi,

i = 1, 2. Indeed, it can be derived directly from (4.2) that

ϕ1,µi(t) = ϕ1,µi(0) exp

{∫ t

0

(Θ(s)−Θ(t))ds

}
, i = 1, 2. (4.5)

By the way, the asymptotic behaviors of U(t, z) can be described as

U(t, z) ∼ C1ϕ1,µ1
(t)e−µ1z + C2ϕ1,µ2

(t)e−µ2z, z →∞,

where C1 > 0 or C1 = 0, C2 > 0.

5 Discussion

In this paper, by using the upper and lower solution method, the linear and nonlinear selections of the

minimal wave speed of three-species time-periodic Lotka-Volterra competition system are studied. Within
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the context of three-species constant-coefficient Lotka-Volterra competition system, the issue about the

linear selection has been studied and some sufficient conditions were established in [10] and [37]. Here,

we only want to compare our results with the ones obtained in [37], since the works of [37] extend the

previous ones of [10].

The results obtained in [37] can be summarized as follows:

For the system 
ut = uxx + u(1− u− b12 + b12v − b13 + b13w),

vt = d1vxx + α(1− v)(b21u− v),

wt = d2wxx + β(1− w)(b31u− w),

(5.1)

linear selection of the minimal wave speed of (5.1) is realized provided that

0 ≤ d1, d2 ≤ 2, 1− b12 − b13 >
b12b21 + b13b31

2
, (5.2)

or

0 ≤ d1 < 2, b12 <
1− b13

2
, α <

(2− d1)(1− b12 − b13)2

b12b21 − (1− b12 − b13)
,

0 ≤ d2 < 2, b13 <
1− b12

2
, β <

(2− d2)(1− b12 − b13)2

b13b31 − (1− b12 − b13)

(5.3)

is true. While nonlinear selection of the minimal wave speed of (5.1) is realized if

max

{
(d1 + 2)(1− b12 − b13) + α

αb21
,

(d2 + 2)(1− b12 − b13) + β

βb31

}
< 1− 2(1− b12 − b13) (5.4)

is true.

To proceed, we transform the periodic parameters of system (1.1) into the corresponding constants of

system (5.1) as follows

d1(t) = d1, d2(t) = d2, b11(t) = 1, b12(t) = b12, b13(t) = b13, r1(t) = 1,

r2(t) = α, r3(t) = β, b21(t) = b21α, b31(t) = b31β, b22(t) = α, b33(t) = β.
(5.5)

We perform the comparison of the linear selection by three cases.

Case 1. In Theorem 3.2, by taking M1 = b21, M2 = b31, we have

0 < d1, d2 < 1, 1− b12 − b13 > max

{
b21b, b31b,

1− α
2− d1

,
1− β
2− d2

}
, (5.6)

with b = max{b12, b13}. As observed from (5.3) and (5.6), we only need to compare the values of
b12b21+b13b31

2 and max
{
b21b, b31b,

1−α
2−d1 ,

1−β
2−d2

}
. It is easy to calculate that max

{
b21b, b31b,

1−α
2−d1 ,

1−β
2−d2

}
≥

b12b21+b13b31
2 , so the conditions (5.6) is contained in (5.3). Particularly, when max

{
b21b, b31b,

1−α
2−d1 ,

1−β
2−d2

}
=

b12b21+b13b31
2 , (5.6) is the same as (5.3) if di, i = 1, 2 are restricted to 0 < di < 1, i = 1, 2, which gives a

justification of Theorem 3.2.

Case 2. In Theorem 3.2, by choosing M1 = 1−b12−b13
b12

, M2 = 1−b12−b13
b13

, from the left parts of two

inequalities of (3.7), we can obtain

α <
(2− d1)(1− b12 − b13)2

b12b21 − (1− b12 − b13)
, β <

(2− d2)(1− b12 − b13)2

b13b31 − (1− b12 − b13)
, (5.7)
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where 0 < di < 1, i = 1, 2. It is not hard to see that the upper bounds of α and β in our results possess

the same expressions as the ones in (5.3), which also verifies the correctness of Theorem 3.2.

Case 3. According to Theorem 3.4, it follows that

0 < d1, d2 < 1, 1− b12 − b13 ≥
1

m
,α >

(1− b12 − b13)(4m− 2d1m
2)

1− b21
, β >

(1− b12 − b13)(4m− 2d2m
2)

1− b31
.

(5.8)

Next, we shall compare the ranges of α and β in (5.8) with the ones in (5.3). In fact, it is obvious that

α > 4−2d1m
1−b21 , β > 4−2d2m

1−b31 in (5.8). If we take d1 = 0.25, d2 = 0.3, b12 = b13 = 5
12 , b21 = b31 = 1

2 , m = 6,

then we get α < 7
6 , β < 17

15 from (5.3), and α > 2, β > 0.8 from (5.8). Therefore, we are able to conclude

that our results are novel.

For the nonlinear selection, through Theorem 2.4, we get the same conclusion as (5.4), which confirms

the correctness of Theorem 2.4.
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