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Abstract

While species interactions are fundamental for linking biodiversity to ecosystem functioning and for 

conservation, large-scale empirical data are lacking for most species and ecosystems. Accumulating 

evidence suggests that trophic interactions are predictable from available functional trait information, 

but we have yet to understand how well we can predict interactions across large spatial scales and food 

webs. Here, we built a model predicting predator-prey interactions based on functional traits for 

European vertebrates. We found that even models calibrated with very few known interactions (100 out

of 71k) estimated the entire food web reasonably well. However, predators were easier to predict than 

prey, with prey in some clades being particularly difficult to predict (e.g., fowls and storks). Local food 

web connectance was also consistently over-estimated. Our results demonstrate the potential for filling 

gaps in sparse food webs, an important step towards a better description of biodiversity with strong 

implications for conservation planning.

3

28

29

30

31

32

33

34

35

36

37

38

39



Introduction

Food webs are collections of trophic interactions describing both the composition and structure of 

communities. Trophic interactions influence ecosystems at all levels including how energy flows 

through ecosystems (Thompson et al. 2012), how populations respond to perturbations through time 

(Zhao et al. 2019), and how species are distributed in space (Wisz et al. 2013). Trophic interactions are 

disrupted by human pressures, with interactions being lost at a higher rate than species, which lead to 

simplified food webs that have fewer trophic levels, are more homogeneous and less redundant 

(Laliberté & Tylianakis 2010; Estes et al. 2011; Valiente-Banuet et al. 2015). Therefore, knowing the 

structure of a food web is critical to maintain ecosystem functions (Harvey et al. 2017) and anticipate 

species extinctions (McDonald-Madden et al. 2016). Despite these key roles and threats on food webs, 

empirical data on trophic interactions remain particularly limited.

The Eltonian shortfall – “the lack of knowledge about interactions among species or among groups of 

species” – is perhaps the biggest of all biodiversity shortfalls (Hortal et al. 2015). Available data on 

food webs are mostly restricted to the United States and Europe similar to other types of species 

interaction networks (Hortal et al. 2015; Cameron et al. 2019; Poisot et al. 2021). Compounding the 

problem even further, the sampling effort to detect interactions far exceeds the effort needed to detect 

species (Chacoff et al. 2012; Jordano 2016), meaning that rare interactions are often missed while those

of dominant species are overestimated. So, even when available, food web datasets are often 

incomplete and biased. It is possible to fill gaps in empirical food webs with expert knowledge and 

literature review (e.g., Maiorano et al., 2020; Piechnik et al., 2008). While this solution is promising, it 

remains limited to well-studied systems, prone to biases, time-consuming and expensive. Ultimately, 

these gaps and biases in food web datasets limit the scale of food web research and are major hurdles 
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toward the needed shift in focus from species to interaction networks in conservation (Harvey et al. 

2017; Pollock et al. 2020).

Despite the size of the problem, there is reason to be optimistic about the potential for predicting 

species interactions to fill gaps in food web databases. In some cases, trophic interactions can be 

reasonably well predicted if they conform to a predictable set of phylogenetic and functional traits 

(Morales-Castilla et al. 2015). Niche theory predicts that two species interact if the foraging traits of 

the predator match the vulnerability traits of the prey (Williams & Martinez 2000; Gravel et al. 2016). 

This trait-matching framework serves as the basis for most studies aiming to predict interactions (e.g., 

Bartomeus et al., 2016; Gravel et al., 2013; Pichler et al., 2020), which have shown promising results. 

Notably, Eklöf et al., (2013) found that 3-5 traits suffice to predict most trophic interactions, whereas 

Gravel et al., (2013) showed that predictions of trophic interactions in marine ecosystems are robust to 

sampling effort. These findings suggest that we can potentially predict missing trophic interactions 

even when data are sparse.

Yet, there has been no large-scale, multi-clade test of predictive models of species interactions. Most 

studies have used trait-matching models in systems where the relationships between the traits of 

predators and their prey are expected to be strong, such as marine food webs (e.g., Albouy et al., 2019; 

Gravel et al., 2013; Laigle et al., 2018). Other studies built more complex models which outperform 

simpler models (e.g., Rohr et al., 2016). Although these more complex models are often more realistic, 

they have many more parameters and are more sensitive to sampling biases, thus relying on large 

amounts of data, which are rarely available. Therefore, only models based on relatively simple trait-

matching relationships are now possible for a wide range of taxa that have available trait data, but are 
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they realistic enough to make good predictions across a diverse set of taxa and ecosystems? We need a 

better understanding of the amount data needed to make reliable predictions and how general the 

matching rules are across clades and space.

Here, we build a model to predict trophic interactions based on functional traits that are widely 

available. We designed our model to be useful even when data are sparse as it is a Bayesian linear 

model relating trophic interaction (and non-interactions) to a small number of predictor variables 

describing the foraging ability of the predator, the vulnerability of the prey, and the trait-match of 

interacting species. We test our model using the recently assembled food web of all terrestrial 

vertebrates in Europe (Maiorano et al. 2020) and use the model to determine: (1) how much data are 

needed to accurately predict the entire European food web, (2) which traits make the best predictions, 

(3) how input data (empirical versus multi-sourced data) influence predictions, (4) which taxa are 

easier or harder to make predictions for, and (5) how well the properties of local food webs can be 

predicted across space.

Materials and methods

Study area, species, and functional traits

Our study focuses on trophic interactions among all terrestrial vertebrates of Europe: mammals, 

breeding birds, reptiles, and amphibians. For each species, we extracted five functional traits from 

Thuiller et al. (2015): diet (17 binary variables), nesting habitat (10 binary variables), activity time (4 

binary variables), foraging behavior (4 binary variables), and body mass (continuous). Because body 

mass was missing for many amphibians - 52% missing for frogs (Anura) and 46% for salamanders 

(Caudata) - we imputed missing body mass from available body length information for these two 
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groups separately. These imputations were justified by the strong relationship between body mass and 

length in our study (r2 = 0.75 and 0.84 for frogs and salamanders respectively; Appendix S1), and 

others (Deichmann et al. 2008). In all, we gathered these five functional traits for 1055 species: 101 

amphibians, 507 birds, 267 mammals, and 180 reptiles.

Using diet, nesting habitat, activity time, foraging behavior, and body mass, we calculated ten predictor

variables for each species pair (Table 1). These predictors of predator-prey interactions can be 

categorized into three types: foraging traits, vulnerability traits, and matching traits (Gravel et al. 2016; 

Rohr et al. 2016). Foraging traits (body mass of the predator and its foraging behavior) influence the 

number of prey of a given predator, whereas vulnerability traits (body mass of the prey) influence the 

number of predators of a given prey. Matching traits influence the feasibility of the interaction 

(difference in body mass and diet match) or the encounter rate of species (activity time and habitat 

match).

Interaction data

We extracted interaction data from the trophic metaweb of European terrestrial vertebrates (referred 

later as the Metaweb; Maiorano et al., 2020). A metaweb documents all potential interactions between 

all species at the regional scale (Dunne 2006). The Metaweb was built from multiple sources and 

contains all potential trophic interactions and non-interactions between all terrestrial vertebrates of 

Europe. The interactions were compiled by Maiorano et al. (2020) from guide books, published papers,

and completed by expert opinion. We extracted the interactions and non-interactions between all of the 

1 055 species for which we had functional traits. This represents 71 417 potential interactions and 1 

041 608 non-interactions.
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Because the Metaweb documents potential trophic interactions, we also used a database of empirical 

observations of species interactions. We extracted all interactions reported in the Global Biotic 

Interactions (GloBI) platform (Poelen et al. 2014). The Metaweb and GloBI are very different in terms 

of data coverage. While the Metaweb documents only trophic interactions in Europe, GloBI aggregates 

trophic (and non-trophic) interactions from anywhere in the world. The absences of interactions in the 

Metaweb can be interpreted as true absences (i.e., low false negative rate), whereas absences of 

interactions in GloBI cannot (i.e., high false negative rate). Conversely, the presences of interactions in 

the Metaweb are more uncertain (i.e., higher false positive rate) than in GloBI. We used the package 

rglobi of the R software to extract all trophic interactions between any of the focal 1 055 species. In all,

we extracted 291 trophic interactions from GloBI involving 194 different species (75 predator species 

and 146 prey species).

Predictive model

We modelled the occurrence of a food web interaction for each pair of species as a function of their 

traits (see Table 1 for predictors) using Bayesian generalized linear models (GLM). We assumed that 

the occurrence of interaction between species i and j, Lij, is Bernouilli distributed. The corresponding 

probability of interaction was modelled as the inverse logit of a linear function with a common 

intercept, α, and a set of linear coefficients β  associated with predictors Tij:

(Eq. 1)

We measured the predictive performance of each model on independent validation datasets using the 

area under the receiver operating characteristic curve (AUC). AUC varies from 0.5 to 1 where 0.5 
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indicates that the model failed to rank interactions higher than non-interactions (i.e., random 

prediction), and 1 indicates that the model systematically ranked interactions higher than non-

interactions (i.e., perfect prediction). 

Before fitting the GLMs, we scaled each continuous predictor by subtracting it by its mean and 

dividing by two times its standard deviation, so that the coefficients of the scaled continuous predictors 

are directly comparable to coefficients of unscaled binary predictors (Gelman 2008). We used Bayesian

inference and Markov chain Monte Carlo algorithm to estimate the model parameters (α and βk). We 

used weakly informative priors for the parameters:

(Eq. 2)

(Eq. 3)

where sd is the standard deviation of the prior distribution. We ran 3 chains, each with 1000 warm-up 

iterations, followed by 5 000 iterations for inference. We diagnosed convergence visually of a few test 

runs, and calculated the potential scale reduction factor, , for all runs (Gelman & Rubin, 1992; 

Appendix S2). We conducted the Bayesian analyses using the package greta in R (Golding 2019). 

Predicting trophic interactions with models trained on the Metaweb

We used the model described above to make predictions for predator-prey pairs in the Metaweb, and 

determine the information needed to make reliable predictions. More specifically, we determined (1) 

which of the predictors (Table 1) made the most important contribution, and (2) the number of trophic 

interactions needed to calibrate models that could recover most of the Metaweb. First, we used the 

estimated mean coefficient value to assess variable importance, which we could do as we scaled 
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predictor variables (Gelman 2008). Second, we trained the model described above with progressively 

more trophic interactions from the Metaweb going from 2 to 5000 pairwise interactions, with 10 000 

non-interactions. We then measured how well these models predicted the Metaweb by comparing the 

predictions generated by the model to an independent validation dataset (Metaweb validation dataset). 

We created the Metaweb validation dataset by sampling 1% of the entire Metaweb. 

We also measured how well each of the models described above predict the empirical interactions in 

GloBi. To do so, we compared predictions generated by each model to the 291 trophic interactions we 

extracted from GloBi. Because GloBI only includes interactions, we added 3 845 non-interactions 

extracted from the Metaweb to the GloBI validation dataset. This number of non-interactions makes the

prevalence of interactions in the GloBI validation dataset comparable to the prevalence in the Metaweb

validation dataset.

Predicting trophic interactions with models trained on GloBI

We were also interested in how well we could predict the entire European Metaweb without using any 

information from the Metaweb itself (i.e., species traits and interactions from GloBI). Similar to the 

models described in the previous paragraph, we fitted predictive models using a progressively 

increasing number of trophic interactions extracted from GloBI: from 2 to 291 trophic interactions 

combined with 10 000 pseudo-absences. We randomly drew pseudo-absences among the pairs of 

species for which no interaction was documented in GloBI. We used pseudo-absences to avoid using 

any information from the European Metaweb. We measured performance of these models with respect 

to the Metaweb validation dataset, and to the GloBI validation dataset.
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Predictions of interactions for different taxa

In addition to the overall predictive performance of the models, we wanted to identify whether 

interactions between certain species, certain clades and different types of species (e.g., specialists 

versus generalists) were more or less predictable with our model. To do this, we first trained a model 

(master model) with 10% of the European Metaweb (sufficient based on the results of previous 

sections) and predicted all trophic interactions and non-interactions in the entire food web. We 

measured the performance of the model to predict all interactions (i.e., the prey and predators) of every 

species. We further compared these performances for individual species to the position of that species 

in the food web to ask whether interactions of specialists (i.e., species interacting with few species) 

were harder to predict than interactions of generalists (i.e., species interacting with many species). 

Specifically, we modelled the performance for each species (the AUC value) as a function of the 

species generality using generalized linear mixed models (GLMMs) with random intercepts and slopes 

for the species group (i.e., order), and a logit-link function. All species were included in each model, 

but different representations of generality (the number of total interactions, the number of prey and of 

predators for each species) were included as fixed effects in three separate models. The fixed effects 

were log-transformed and scaled before running the GLMMs. We conducted the GLMMs using the 

package lme4 in R.

Finally, we performed a miscalibration analysis to investigate the ecological differences making the 

trophic interactions of some groups less predictable than others. We first trained group-specific models 

for each order of predators. For example, considering frogs (Anura), we trained a predictive model only

using interactions (and non-interactions) involving a frog species as predator. For many order, most 

species shared very similar foraging behaviors. This caused some group-specific models not to 
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converge or to over-fit the data. For this reason, we excluded foraging behaviors from the predictors in 

the miscalibration analysis. We compared the group-specific models to a general model trained on the 

entire Metaweb. Specifically, we calculated the differences between the parameters inferred for the 

general model to the parameters inferred for the group-specific models to measure the miscalibration of

the general model for each group. By doing so, we identified the miscalibrated coefficients causing the 

general model to incorrectly predict the prey of specific predator groups. Conversely to the master 

model, the general model did not include foraging behaviors as predictors to make it comparable to 

group-specific models.

Predictions of interactions across space

In addition to predicting interactions for the entire set of species, it is also possible to predict trophic 

interactions for any local or regional food web with a species list or occurrence data. This a separate but

important test of these models because it investigates whether predictive models are useful to recover 

potential food webs at a finer scale, and whether environmental gradients might influence the 

ecological constraints driving local and regional trophic interactions. To do this, we used the master 

model described above to make predictions for: 1- regional food webs based on species occurrences in 

bioregions and 2- ‘local’ food webs based on distribution data for each 5km pixel across Europe. In 

both cases, we used the distribution data from Maiorano et al. (2013). Here, species distributions are 

determined by the presence of primary habitat within the known species distribution range, and 

validated by field data. Species habitat relationships are based on expert knowledge, and species ranges

are extracted from atlases. The original data are 300-m cell range maps with three levels: unsuitable, 

secondary and primary habitat. We upscaled the distributions data to a 5km pixel equal-area grid, and 

considered a species present in a cell if it had at least one occurrence of primary habitat. 
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We created bioregional food webs by extracting the species from the European metaweb for which the 

range intersected in at least 1 % of the European bioregions (see O’Connor et al., 2020). Using these 

bioregional food webs, we trained models for each bioregion. To investigate the transferability of 

predictive models across bioregions, we compared the parameters of the models trained in each 

bioregion, and how well they could predict the food webs of other bioregions.

In addition to bioregional food webs, we created ‘local’ food webs for each 5km pixel across Europe. 

We pruned the European metaweb in every pixel using the species present in that pixel. We compared 

the pruned local webs to the predicted local webs given the master model described earlier to look at 

how the predictability of food webs varies across space. 

Results

How much data are needed to accurately predict the entire European food web?

Most pairwise interactions in the Metaweb were predicted reasonably well by models trained on few 

interactions. Predictive performance increased when more interactions were used to train the model, 

but performance stabilized around AUC=0.92 at 100 training interactions  (0.14% of the total number 

of interactions in the Metaweb; Fig 1a). Even with as low as 10 interactions (0.014% of all interactions 

in the Metaweb; Fig 1a), the AUC was over 0.90. Training the model on a lot more presences and 

absences did not improve substantially model performance. The master model, which we trained on 

10% of the entire Metaweb to predict the interactions of every species, resulted in an AUC of 0.92, well

above the 0.5 expected from a null model. 

13

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269



Which traits best predict interactions? 

All of the traits used as predictor variables in the models were important for predicting interactions: all 

corresponding linear coefficients were significantly different from 0 (i.e., 95% credible interval did not 

include 0). The most important predictors were the match between the diet of the predator and the type 

of prey (median = 2.29, 95%CI = [2.27, 2.32]), the body mass of the predator (median = 2.08, 95%CI =

[2.04, 2.12]), the body mass of the prey (median = -2.00, 95%CI = [-2.03, -1.96]), and the match 

between the body mass of the predator and the body mass of the prey (median = -1.75, 95%CI = [-1.79,

-1.70]). All parameter estimates with their 95% credible interval are available in Appendix S4.

How input data (empirical versus multi-sourced data) influences predictions?

We found that results from models trained on the European Metaweb were consistent with models 

trained on interactions from GloBI. Models fitted using all GloBI interactions (291 interactions) 

predicted the metaweb well (AUC=0.91; Fig 1a). Also, all models performed similarly in predicting the

realized interactions from GloBI compared to the potential interactions of the European Metaweb (Fig 

1b).

Which taxa are easier or harder to make predictions for? 

Overall, the master model performed well for all groups (AUC > 0.75 for all groups; Fig 2). The 

variation between groups was mostly due to variation in the ability of the model to predict prey (Fig 2).

For example, prey of carnivorans (Carnivora), fowls (Galliformes and Anseriformes), pelicans 

(Pelicaniformes), storks (Ciconiformes), and birds of prey (Falconiformes, Charadriformes, and 

Strigiformes) were harder to predict on average (Fig 2). In contrast, predicting predators was similarly 

easy across all prey groups (AUC > 0.9). One exception to this pattern was amphibians (both Caudata 
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and Anura). Predictive models performed better than average when amphibians were the predator, but 

worse when amphibians were the prey.

Interactions of specialists tended to be more predictable than interactions of generalists (Fig 3). After 

controlling for the group-level variation, the number of interactions explained 25% (marginal R2
GLMM) 

of the variation in the logit-AUC (fixed effect estimate = -0.48; 95%CI = [-0.63, -0.32]). In general, it 

is easier to predict species predators than its prey (Fig 3). Prey of generalist predators tended to be 

harder to predict (fixed effect estimate = -0.15), although not significantly (95%CI = [-0.31, 0.04]). 

Conversely, predators of generalist prey tended to be easier to predict (fixed effect estimate = 0.10), but

again not significantly (95%CI = [-0.08, 0.27]).

For most groups in which potential prey were difficult to predict, the group-specific model performed 

much better, with the AUC increasing by 0.1 or more (Appendix S5). Our models highlight how some 

bird groups (e.g., Galliformes, Anseriformes, Pelicaniformes) tend to feed on prey active at different 

times during the day and nest in different habitats than the focal predator. This contrasts with the 

general model, for which species are more likely to interact when they share similar habitat and 

activity time. It also contrasts with woodpeckers (Piciformes). For this group, the matches of activity 

times and nesting habitats of the prey and the predator are especially important. For other groups (e.g., 

Rodentia, Eulipotyphla, Strigiformes, Passeriformes) the relation between the body mass of the 

predator and the prey is more important to explain interactions than average. We also found that, for 

carnivorans (Carnivora), the predictive performance of the group-specific model remained low (AUC 

= 0.63). The coefficients of the different predictors were mostly lower than the general model (i.e., 
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closer to 0), suggesting that the interactions of carnivorans are difficult to predict from our set of traits. 

The complete results of the miscalibration analysis are available in the Appendix S5.

How well the properties of local food webs can be predicted across space?

Overall, local food webs with more trophic interactions were less predictable than simpler ones (Fig 4).

This trend resulted in a slight latitudinal gradient in the predictability of local food webs (Fig 4). True 

positive rates were higher than true negative rates across the entire continent which caused the 

predicted connectance (i.e., proportion of possible links that are realized) to be systematically 

overestimated (Fig 4). All bioregional food webs were similarly predictable (0.89 < AUC < 0.92) by the

master model and models transferred from one bioregion to another were also well predicted 

(Appendix S6). Similarly, trait parameters of each bioregional predictive models did not diverge greatly

from the master model (Appendix S6).

Discussion

In this study, we recovered a large-scale food web with minimal data and widely available species 

traits. We were able to recover most trophic interactions (~71k) between terrestrial vertebrates of 

Europe from a model calibrated on less than 100 known species interactions. In general, the most 

important predictors were the body masses of the prey and the predator, and the diet category of the 

predator. Our predictive model performed similarly well when trained using interactions from a 

combination of data sources (i.e., European Metaweb) or from empirical data (i.e., GloBI). Our 

predictive model was as successful for predicting potential interactions (i.e., European Metaweb) as for

realized interactions (i.e., GloBI). However, not all interactions were well-predicted, especially the prey

of some predator orders, and trophic interactions of generalist species. Finally, the models tended to 
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predict more interactions than observed - an effect that scaled up to result in over-estimating 

connectance in local food webs, especially in areas with more complex food webs. 

Our results are further evidence of the promise of predictive models to help fill the Eltonian shortfall, 

but they also highlight taxa and situations in which we likely will need more information to make 

accurate predictions. This is important as directly monitoring interactions is especially hard, and it is 

virtually impossible to inventory all of them (Chacoff et al. 2012; Jordano 2016). Trophic interaction 

data remain scarce, but initiatives are emerging to make species interactions data more accessible (e.g., 

Poelen et al., 2014; Poisot et al., 2016). Given that we made relatively accurate predictions of a large-

scale and diverse food web with only a small fraction of all interactions and a few predictors, we 

should already be able to make initial predictions even in data-poor systems. Many trait databases 

already exist for a large array of organisms and functional traits (e.g., Kattge et al., 2011; Myhrvold et 

al., 2015; Oliveira et al., 2017; Schneider et al., 2019; Wilman et al., 2014). When functional traits are 

not available, many methods exist to impute missing data (Penone et al., 2014; Pollock et al., 2020). 

Although imputation models are generally robust (Debastiani et al. 2021), they should be used with 

caution as they can bias predictions, especially for taxa that are rare, poorly studied, or with extreme 

traits. Alternatively, phylogenies, which are also available for many taxa, can be useful proxies to 

predict interactions (e.g., Jetz et al., 2012; Jetz & Pyron, 2018; Tonini et al., 2016; Upham et al., 2019). 

However, this phylogenetic approach does not allow the interpretation of the ecological constraints that

drive the trophic interactions and miss variation between closely related species, making it less 

generalizable across taxa (Morales-Castilla et al. 2015; Gravel et al. 2016).
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We also found that ecological constraints driving trophic interactions did not vary greatly in space. For 

example, the parameters of all bioregional models were all similar, and the predictive performance of 

bioregional models did not decrease when used to predict other bioregional food webs. So, our 

predictive models could be used to transfer information from data-rich bioregions to data-poor 

bioregions. Similar to our results, Wenger & Olden (2012) previously found that simpler models, such 

as our generalized linear model, tended to have better out-of-sample performance than more complex 

ones for modelling species distributions. In this study, we showed how models can transfer information

at one scale (i.e., bioregion food webs) and within one continent, but we need more studies on the 

factors influencing model transferability in food web interactions to fully appreciate the potential of 

trait-based models to predict interactions in data-poor system or under future conditions (Yates et al. 

2018).

While the generality and overall performance of these models is promising, we also highlight some 

systematic biases and needed improvements. For example, our predictive model systematically 

overestimated the number of links in local food webs (Fig 4). Our models were better at predicting 

interactions (true positive rate ≈ 0.9) than non-interactions (true negative rate ≈ 0.8; Appendix S7), 

meaning most interactions that are realized in the system are among the predicted interactions. 

However, among the predicted interactions are also a large number of incorrectly predicted non-

interactions. This is caused by the lower true negative rate combined with the typical low connectance 

of food webs, meaning there is a lot more non-interactions than interactions to predict. Thus, our 

predictive model should be viewed as a first step toward a correct description of a regional and local 

food webs by reducing the millions of possible interactions to thousands of feasible ones. Our 
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predictions could be used to inform targeted sampling or initiate expert elicitation approaches to get a 

more accurate picture of the true food web.

We also show that not all taxonomic groups are equivalent. The prey of some taxonomic groups were 

harder to predict than others using a general model (Fig 2). Our miscalibration analysis helped 

understand where the general model failed for these groups and highlighted some ecological 

differences in how predator groups choose their prey (Appendix S5). For example, while the match in 

nesting habitat and activity time of the predator and the prey were not among the important predictors 

in the general model, these predictors were particularly important for some groups. Woodpeckers 

(Piciformes) tend to feed on prey that share similar nesting habitats and are active at similar times. 

Conversely, fowls (Galliformes and Anseriformes), pelicans (Pelicaniforms) and storks (Ciconiformes) 

tend to feed on prey that nest in different habitats and active at different times during the day. These are

not surprising results: woodpeckers generally both forage and nest in and on trees, while many fowls 

and storks forage on water but nest in different habitats (Svensson & Grant 2009). We also found that 

the prey of other predator groups, such as carnivorans (Carnivora), falcons (Falconiformes), and owls 

(Strigiformes), were harder to predict on average. These groups include many relatively generalist 

predators that feed on many prey types (small herbivores, but also ungulates, birds, or other carnivores)

(Svensson & Grant 2009; Hackländer & Zachos 2020). The functional diversity of the diet of generalist

predators is larger which make it harder to find general matching rules that explain how these generalist

predators choose their prey. Alternatively, other traits excluded from our model (e.g., speed, physical or

chemical defences) may be important in how species of these groups choose their prey. 
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So how could we improve the predictive model we presented here? Because we showed that predators 

tend to vary in how they choose their prey between taxonomic groups, hierarchical models are good 

candidates to improve predictions. Hierarchical models allow some variation in the regression 

coefficients between groups (Gelman et al., 2020; Ovaskainen et al., 2017). These coefficients are 

drawn from a common distribution, and we can include external information to specify how the 

coefficients vary across groups. Because how species choose their prey results from evolution, 

phylogenetic relationships could inform how regression coefficients correlate across clades (Gómez et 

al. 2010). Other options are machine learning algorithms which already have been used to predict 

interactions and oftentimes outperformed linear models (e.g., Desjardins-Proulx et al., 2017; Pichler et 

al., 2020). Hierarchical and nonlinear models typically have more parameters to infer, therefore rely on 

a larger volume of data. The scarcity of species interaction data limits these complex models to well-

studied or smaller-scale systems. 

Conclusion

Predictive models have a role in filling the Eltonian shortfall. By predicting a large-scale, multi-clade 

food web, we were able to identify which interactions are feasible and which are not. Having potential 

food web interactions that can be spatially explicit could serve as a basis for a better understanding of 

community and ecosystem dynamics. One promising avenue of research is to combine predictive 

models of trophic interactions to other methods, such as expert elicitation or bio-energetic models, to 

downscale regional metaweb into local quantitative food webs. This would allow us to investigate how 

food webs and species interactions vary in space and time, and to forecast the consequences of global 

changes on the composition and structure of ecosystems. Ultimately, predicting large-scale food webs 

20

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425



of potential interactions is the first step toward a better understanding of how ecosystems function and 

can help to maximize conservation outcomes, even in a scenario of extremely sparse data. 
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Table 1: Variables used to predict trophic interactions between all species pairs. The variables are 

grouped as foraging traits, vulnerability traits and matching traits. BM stands for body mass.

* We calculated the Jaccard similarity coefficient for the activity time and nesting habitat of the 

predator and the prey. Activity time and nesting habitat are a set of binary variables.
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Foraging Vulnerability Matching

Diet Activity time
Operation log log

Variable type Continuous Continuous Binary Continuous Continuous Continuous

Predator body 
mass

Predator 
foraging 
behavior

Prey body 
mass

Nesting 
habitat

Body mass 
difference

Does the diet 
of the predator 
match the type 
of prey (1) or 
not (0) ?

Jaccard 
similarity*

Jaccard 
similarity*

(log 
(BMpredator) – 
log(BMprey))2

4 binary 
variables
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Figure 1: Effect of the number of interactions sampled on the predictive performance of the model. In 

(a), we measured performance using the European Metaweb validation dataset. In (b), we measured 

performance with interactions using the GloBI validation dataset. In red and blue are the predictive 

models trained with interactions sampled from the European metaweb and GloBI, respectively.

29

445

447

448

449

450



Figure 2: Differences in predictive performance among groups. Predictive performance is measured 

with the AUC. Each grey point is the predictive performance of the general model for a single species. 

The white points are the group mean, with the associated standard error. From left to right, the panels 

represent the performance of the general model to predict all trophic interactions, the prey, and the 

predators of the focal species. From top to bottom, the groups are Caudata, Anura, Eulipotyphla, 

Carnivora, Rodentia, Squamata, Galliformes, Pelecaniformes, Ciconiiformes, Charadriiformes, 

Falconiformes, Strigiformes, Piciformes, and Passeriformes.
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Figure 3: Effect of generality on model performance. Each grey point is the predictive performance of 

the master model to predict all interactions (left), the prey (center), and the predators (right) of a 

single species. We measured generality as the number of interactions (left), the number of prey 

(center), and the number of predators (right) of a given species. The trend lines are the mean effect of 

the scaled generality (log transformed) on the logit-AUC.
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Figure 4: Spatial variation in predictability of local food webs. The left panel shows the overestimation

of connectance of each 5km-cell food web. The right panels show the true positive rate (TPR; top), the 

true negative rate (TNR; middle), and area under the receiver operating curve (AUC; bottom) in 

relation to the complexity of the local web. 

32

466


