REFERENCES
1. McGill COVID19 Vaccine Tracker Team, COVID19 Vaccine Tracker;
https://covid19.trackvaccines.org/vaccines/.
2. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the
mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416.
doi:10.1056/NEJMoa2035389
3. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the
BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615.
doi:10.1056/NEJMoa2034577
4. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the
ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim
analysis of four randomised controlled trials in Brazil, South Africa,
and the UK [published correction appears in Lancet. 2021 Jan
9;397(10269):98]. Lancet. 2021;397(10269):99-111.
doi:10.1016/S0140-6736(20)32661-1
5. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and
efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost
COVID-19 vaccine: an interim analysis of a randomised controlled phase 3
trial in Russia [published correction appears in Lancet. 2021 Feb
20;397(10275):670]. Lancet. 2021;397(10275):671-681.
doi:10.1016/S0140-6736(21)00234-8
6. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of
Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med.
2021;384(23):2187-2201. doi:10.1056/NEJMoa2101544
7. Hoffmann M, Arora P, Groß R, et al. SARS-CoV-2 variants B.1.351 and
P.1 escape from neutralizing antibodies. Cell.
2021;184(9):2384-2393.e12. doi:10.1016/j.cell.2021.03.036
8. Tada T, Dcosta BM, Samanovic-Golden M, et al. Neutralization of
viruses with European, South African, and United States SARS-CoV-2
variant spike proteins by convalescent sera and BNT162b2 mRNA
vaccine-elicited antibodies. Preprint. bioRxiv. 2021;2021.02.05.430003.
Published 2021 Feb 7. doi:10.1101/2021.02.05.430003
9. Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2
variants escape neutralization by vaccine-induced humoral immunity
[published correction appears in Cell. 2021 Apr 29;184(9):2523].
Cell. 2021;184(9):2372-2383.e9. doi:10.1016/j.cell.2021.03.013
10. Ikegame S, Siddiquey MNA, Hung CT, et al. Qualitatively distinct
modes of Sputnik V vaccine-neutralization escape by SARS-CoV-2 Spike
variants. Preprint. medRxiv. 2021;2021.03.31.21254660. Published 2021
Apr 3. doi:10.1101/2021.03.31.21254660
11. McCallum M, Bassi J, De Marco A, et al. SARS-CoV-2 immune evasion by
the B.1.427/B.1.429 variant of concern [published online ahead of
print, 2021 Jul 1]. Science. 2021;eabi7994.
doi:10.1126/science.abi7994
12. Cele S, Gazy I, Jackson L, et al. Escape of SARS-CoV-2 501Y.V2 from
neutralization by convalescent plasma. Nature. 2021;593(7857):142-146.
doi:10.1038/s41586-021-03471-w
13. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1
nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med.
2021;384(20):1885-1898. doi:10.1056/NEJMoa2102214
14. Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19
(AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01
(B.1.1.7): an exploratory analysis of a randomised controlled trial.
Lancet. 2021;397(10282):1351-1362. doi:10.1016/S0140-6736(21)00628-0
15. Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of
SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell.
2021;184(9):2348-2361.e6. doi:10.1016/j.cell.2021.02.037
16. Kustin T, Harel N, Finkel U, et al. Evidence for increased
breakthrough rates of SARS-CoV-2 variants of concern in
BNT162b2-mRNA-vaccinated individuals [published online ahead of print,
2021 Jun 14]. Nat Med. 2021;10.1038/s41591-021-01413-7.
doi:10.1038/s41591-021-01413-7
17. Davis C, Logan N, Tyson G, et al. Reduced neutralisation of the
Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination.
Preprint. medRxiv 2021;06.23.21259327. Published 2021 June 28.
doi:10.1101/2021.06.23.21259327
18. Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of
SARS-CoV-2 B.1.617 by vaccine and convalescent serum [published online
ahead of print, 2021 Jun 17]. Cell.
2021;doi:10.1016/j.cell.2021.06.020
19. Earle KA, Ambrosino DM, Fiore-Gartland A, et al. Evidence for
antibody as a protective correlate for COVID-19 vaccines [published
online ahead of print, 2021 May 24]. Vaccine.
2021;S0264-410X(21)00658-7. doi:10.1016/j.vaccine.2021.05.063
20. Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and
CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals
following COVID-19. Nat Immunol. 2020;21(11):1336-1345.
doi:10.1038/s41590-020-0782-6
21. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific
Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with
Age and Disease Severity. Cell. 2020;183(4):996-1012.e19.
doi:10.1016/j.cell.2020.09.038
22. Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of
COVID-19 patients reveals distinct immunotypes with therapeutic
implications. Science. 2020;369(6508):eabc8511.
doi:10.1126/science.abc8511
23. Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T Cell
Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19.
Cell. 2020;183(1):158-168.e14. doi:10.1016/j.cell.2020.08.017
24. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T Cell
Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and
Unexposed Individuals. Cell. 2020;181(7):1489-1501.e15.
doi:10.1016/j.cell.2020.05.015
25. Carragher DM, Kaminski DA, Moquin A, Hartson L, Randall TD. A novel
role for non-neutralizing antibodies against nucleoprotein in
facilitating resistance to influenza virus. J Immunol.
2008;181(6):4168-4176. doi:10.4049/jimmunol.181.6.4168
26. Caddy SL, Vaysburd M, Papa G, et al. Viral nucleoprotein antibodies
activate TRIM21 and induce T cell immunity. EMBO J. 2021;40(5):e106228.
doi:10.15252/embj.2020106228
27. Hsieh CL, Goldsmith JA, Schaub JM, et al. Structure-based design of
prefusion-stabilized SARS-CoV-2 spikes. Science.
2020;369(6510):1501-1505. doi:10.1126/science.abd0826
28. Scheiermann J, Klinman DM. Clinical evaluation of CpG
oligonucleotides as adjuvants for vaccines targeting infectious diseases
and cancer. Vaccine. 2014;32(48):6377-6389.
doi:10.1016/j.vaccine.2014.06.065
29. Shirota H, Klinman DM. Recent progress concerning CpG DNA and its
use as a vaccine adjuvant. Expert Rev Vaccines. 2014 Feb;13(2):299-312.
doi: 10.1586/14760584.2014.863715. Epub 2013 Nov 26. PMID: 24308579;
PMCID: PMC6335645.
30. Ezoe S, Palacpac NMQ, Tetsutani K, et al. First-in-human randomised
trial and follow-up study of Plasmodium falciparum blood-stage malaria
vaccine BK-SE36 with CpG-ODN(K3). Vaccine. 2020;38(46):7246-7257.
doi:10.1016/j.vaccine.2020.09.056
31. Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine
design enabled by prototype pathogen preparedness. Nature.
2020;586(7830):567-571. doi:10.1038/s41586-020-2622-0
32. Pallesen J, Wang N, Corbett KS, et al. Immunogenicity and structures
of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl
Acad Sci U S A. 2017;114(35):E7348-E7357. doi:10.1073/pnas.1707304114
33. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the
2019-nCoV spike in the prefusion conformation. Science.
2020;367(6483):1260-1263. doi:10.1126/science.abb2507
34. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D.
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
Glycoprotein [published correction appears in Cell. 2020 Dec
10;183(6):1735]. Cell. 2020;181(2):281-292.e6.
doi:10.1016/j.cell.2020.02.058
35. Huber VC, McKeon RM, Brackin MN, et al. Distinct contributions of
vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to
protective immunity against influenza. Clin Vaccine Immunol.
2006;13(9):981-990. doi:10.1128/CVI.00156-06
36. Huber VC, Lynch JM, Bucher DJ, Le J, Metzger DW. Fc
receptor-mediated phagocytosis makes a significant contribution to
clearance of influenza virus infections. J Immunol.
2001;166(12):7381-7388. doi:10.4049/jimmunol.166.12.7381
37. Mozdzanowska K, Feng J, Eid M, Zharikova D, Gerhard W. Enhancement
of neutralizing activity of influenza virus-specific antibodies by serum
components. Virology. 2006;352(2):418-426.
doi:10.1016/j.virol.2006.05.008
38. Jayasekera JP, Moseman EA, Carroll MC. Natural antibody and
complement mediate neutralization of influenza virus in the absence of
prior immunity. J Virol. 2007;81(7):3487-3494. doi:10.1128/JVI.02128-06
39. Kim HW, Canchola JG, Brandt CD, et al. Respiratory syncytial virus
disease in infants despite prior administration of antigenic inactivated
vaccine. Am J Epidemiol. 1969;89(4):422-434.
doi:10.1093/oxfordjournals.aje.a120955
40. Bolles M, Deming D, Long K, et al. A double-inactivated severe acute
respiratory syndrome coronavirus vaccine provides incomplete protection
in mice and induces increased eosinophilic proinflammatory pulmonary
response upon challenge. J Virol. 2011;85(23):12201-12215.
doi:10.1128/JVI.06048-11
41. Czub M, Weingartl H, Czub S, He R, Cao J. Evaluation of modified
vaccinia virus Ankara based recombinant SARS vaccine in ferrets.
Vaccine. 2005;23(17-18):2273-2279. doi:10.1016/j.vaccine.2005.01.033
42. Tian JH, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein
vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection
in mice. Nat Commun. 2021;12(1):372. Published 2021 Jan 14.
doi:10.1038/s41467-020-20653-8
43. Matute-Bello G, Downey G, Moore BB, et al. An official American
Thoracic Society workshop report: features and measurements of
experimental acute lung injury in animals. Am J Respir Cell Mol Biol.
2011;44(5):725-738. doi:10.1165/rcmb.2009-0210ST
44. Han K, Blair RV, Iwanaga N, et al. Lung Expression of Human
Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2
Infection. Am J Respir Cell Mol Biol. 2021;64(1):79-88.
doi:10.1165/rcmb.2020-0354OC
45. Meyers LM, Gutiérrez AH, Boyle CM, et al. Highly conserved,
non-human-like, and cross-reactive SARS-CoV-2 T cell epitopes for
COVID-19 vaccine design and validation. NPJ Vaccines. 2021;6(1):71.
Published 2021 May 13. doi:10.1038/s41541-021-00331-6
46. Matchett WE, Joag V, Stolley JM, et al. Nucleocapsid Vaccine Elicits
Spike-Independent SARS-CoV-2 Protective Immunity [published online
ahead of print, 2021 Jun 30]. J Immunol. 2021;ji2100421.
doi:10.4049/jimmunol.2100421
47. Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as
adjuvants for vaccines targeting infectious diseases. Adv Drug Deliv
Rev. 2009;61(3):248-255. doi:10.1016/j.addr.2008.12.012
48. Weeratna RD, Brazolot Millan CL, McCluskie MJ, Davis HL. CpG ODN can
re-direct the Th bias of established Th2 immune responses in adult and
young mice. FEMS Immunol Med Microbiol. 2001;32(1):65-71.
doi:10.1111/j.1574-695X.2001.tb00535.x
49.D5. Davis HL. Novel vaccines and adjuvant systems: the utility of
animal models for predicting immunogenicity in humans. Hum Vaccin.
2008;4(3):246-250. doi:10.4161/hv.4.3.5318
50. Lopez AM, Hecker R, Mutwiri G, van Drunen Littel-van den Hurk S,
Babiuk LA, Townsend HG. Formulation with CpG ODN enhances antibody
responses to an equine influenza virus vaccine. Vet Immunol
Immunopathol. 2006;114(1-2):103-110. doi:10.1016/j.vetimm.2006.07.013