References
Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., Troch, P. A., and Huxman, T. E., 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. PNAS, 106 (17), 7063–7066.
Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S. L., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., Baker, T. R., Gvozdevaite, A., Hubau, W., Moore, S., Peprah, T., Ziemi, K., Phillips, O. L., and Oliveras, I., 2020. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 11, 3346.
Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Smith, C. M., Trierweiler, A., Van Bloem, S. J., Waring, B. G., Xu, X., and Powers, J. S., 2017. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters, 12 (2), 023001.
Álvarez-Yépiz, J. C., Martínez-Yrízar, A., and Fredericksen, T. S., 2018. Special Issue: Resilience of tropical dry forests to extreme disturbance events. Forest Ecology and Management, 426 (15), 1–6.
Anderegg, W. R. L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F. A., Choat, B., and Jansen, S., 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences, 113 (18), 5024–5029.
Anderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbitas, R., Karp, D. S., Pacala, S., Sperry, J. S., Sulman, B. N., and Zenes, N., 2018. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561 (7724), 538–541.
Anderegg, W. R. L., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., Litvak, M., Ogle, K., Shaw, J. D., Shevliakova, E., Williams, A. P., Wolf, A., Ziaco, E., and Pacala, S., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349 (6247), 528–532.
Barlow, J. and Peres, C. A., 2008. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), 1787–1794.
Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., and Courchamp, F., 2014. Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23 (12), 1376–1386.
Bennett, A. C., Dargie, G. C., Cuni-Sanchez, A., Tshibamba Mukendi, J., Hubau, W., Mukinzi, J. M., Phillips, O. L., Malhi, Y., Sullivan, M. J. P., Cooper, D. L. M., Adu-Bredu, S., Affum-Baffoe, K., Amani, C. A., Banin, L. F., Beeckman, H., Begne, S. K., Bocko, Y. E., Boeckx, P., Bogaert, J., Brncic, T., Chezeaux, E., Clark, C. J., Daniels, A. K., de Haulleville, T., Djuikouo Kamdem, M.-N., Doucet, J.-L., Evouna Ondo, F., Ewango, C. E. N., Feldpausch, T. R., Foli, E. G., Gonmadje, C., Hall, J. S., Hardy, O. J., Harris, D. J., Ifo, S. A., Jeffery, K. J., Kearsley, E., Leal, M., Levesley, A., Makana, J.-R., Mbayu Lukasu, F., Medjibe, V. P., Mihindu, V., Moore, S., Nssi Begone, N., Pickavance, G. C., Poulsen, J. R., Reitsma, J., Sonké, B., Sunderland, T. C. H., Taedoumg, H., Talbot, J., Tuagben, D. S., Umunay, P. M., Verbeeck, H., Vleminckx, J., White, L. J. T., Woell, H., Woods, J. T., Zemagho, L., and Lewis, S. L., 2021. Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences, 118 (21), e2003169118.
Boeck, H. J. De, Bloor, J. M. G., Kreyling, J., Ransijn, J. C. G., Nijs, I., Jentsch, A., and Zeiter, M., 2017. Patterns and drivers of biodiversity – stability relationships under climate extremes. Jornal of Ecology, 106 (3), 890–902.
Cartwright, J. M., Littlefield, C. E., Michalak, J. L., Lawler, J. J., and Dobrowski, S. Z., 2020. Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Scientific Reports, 10, 18486.
Costa, F. R. C., Zuanon, J. A. S., Baccaro, F. B., de Almeida, J. S., Menger, J. da S., Souza, J. L. P., Borba, G. C., Esteban, E. J. L., Bertin, V. M., Gerolamo, C. S., Nogueira, A., and de Castilho, C. V., 2020. Effects of climate change on central amazonian forests: a two decades synthesis of monitoring tropical biodiversity. Oecologia Australis, 24 (2), 317–335.
Dai, A., 2011. Drought under global warming: a review. WIREs Climate Change, 2 (1), 45–65.
Dantas de Paula, M., Alves Costa, C. P., and Tabarelli, M., 2011. Carbon storage in a fragmented landscape of Atlantic forest: The role played by edge-affected habitats and emergent trees. Tropical Conservation Science, 4 (3), 349–358.
Das, A. J., Stephenson, N. L., and Davis, K. P., 2016. Why do trees die? characterizing the drivers of background tree mortality. Ecology, 97 (10), 2616–2627.
Diaz, S. and Cabido, M., 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16 (11), 646–655.
Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L., and Hubbell, S. P., 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447 (3), 80–83.
Fatichi, S., Leuzinger, S., and Körner, C., 2014. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytologist, 201 (4), 1086–1095.
Fauset, S., Baker, T. R., Lewis, S. L., Feldpausch, T. R., Affum-Baffoe, K., Foli, E. G., Hamer, K. C., and Swaine, M. D., 2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 15 (10), 1120–1129.
Fyllas, N. M., Bentley, L. P., Shenkin, A., Asner, G. P., Atkin, O. K., Díaz, S., Enquist, B. J., Farfan-Rios, W., Gloor, E., Guerrieri, R., Huasco, W. H., Ishida, Y., Martin, R. E., Meir, P., Phillips, O., Salinas, N., Silman, M., Weerasinghe, L. K., Zaragoza-Castells, J., and Malhi, Y., 2017. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 20 (6), 730–740.
Garbin, M. L., Carrijo, T. T., Sansevero, J. B. B., Sánchez-Tapia, A., and Scarano, F. R., 2012. Subordinate, not dominant, woody species promote the diversity of climbing plants. Perspectives in Plant Ecology, Evolution and Systematics, 14 (4), 257–265.
Garbin, M. L., Guidoni-martins, K. G., Hollunder, R. K., Mariotte, P., Scarano, F. R., and Carrijo, T. T., 2016. Spatial segregation of subordinate species is not controlled by the dominant species in a tropical coastal plant community. Perspectives in Plant Ecology, Evolution and Systematics, 18, 23–32.
Gartner, T. B. and Cardon, Z. G., 2004. Decomposition dynamics in mixed-species leaf litter. Oikos, 104 (2), 230–246.
Gazol, A. and Camarero, J. J., 2016. Functional diversity enhances silver fir growth resilience to an extreme drought. Journal of Ecology, 104 (4), 1063–1075.
Gazol, A., Camarero, J. J., Anderegg, W. R. L., and Vicente-Serrano, S. M., 2017. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26 (2), 166–176.
Gessler, A., Schaub, M., and McDowell, N. G., 2017. The role of nutrients in drought-induced tree mortality and recovery. New Phytologist, 214 (2), 513–520.
Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S., Uriarte, M., and Gentine, P., 2018. Tall Amazonian forests are less sensitive to precipitation variability. Nature Geoscience, 11 (6), 405–409.
Gibbons, J. M. and Newbery, D. M., 2002. Drought avoidance and the effect of local topography on trees in the understorey of Bornean lowland rain forest. Plant Ecology, 164, 1–18.
Greenwood, S., Ruiz-Benito, P., Martınez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., and Jump, A. S., 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20 (4), 539–553.
Grime, J. P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86 (6), 902–910.
Grossiord, C., Sevanto, S., Adams, H. D., Collins, A. D., Dickman, L. T., McBranch, N., Michaletz, S. T., Stockton, E. A., Vigil, M., and McDowell, N. G., 2016. Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems. Journal of Ecology, 105, 163–175.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K., Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska, S. R., Berry, J., Joiner, J., and Lyapustin, A. I., 2015. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 8 (4), 284–289.
Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., and Ewers, R. M., 2015. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201 (15), 187–195.
Hof, C., Levinsky, I., Araújo, M. B., and Rahbek, C., 2011. Rethinking species’ ability to cope with rapid climate change. Global Change Biology, 17 (9), 2987–2990.
Hoffmann, W. A., Marchin, R. M., Abit, P., and Lau, O. L., 2011. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Global Change Biology, 17 (8), 2731–2742.
Hollunder, R. K., Mariotte, P., Carrijo, T. T., Holmgren, M., Luber, J., Stein-Soares, B., Guidoni-Martins, K. G., Ferreira-Santos, K., Scarano, F. R., and Garbin, M. L., 2021. Topography and vegetation structure mediate drought impacts on the understory of the South American Atlantic Forest. Science of the Total Environment, 766 (20), 144234.
Hollunder, R. K., Martins, K. G. G., Luber, J., Ferreira, R. S., Carrijo, T. T., Mendonça, E. S., and Garbin, M. L., 2014. Associaçao entre espécies de sub-bosque e variação topografica em um fragmento de Floresta Atlântica no Estado do Espírito Santo. Acta Scientiae & Technicae, 2 (2), 35–41.
Holmgren, M., Gómez-Aparicio, L., Quero, J. L., and Valladares, F., 2012. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities. Oecologia, 169 (2), 293–305.
Huang, M., Wang, X., Keenan, T. F., and Piao, S., 2018. Drought timing influences the legacy of tree growth recovery. Global Change Biology, 24 (8), 3546–3559.
IPCC. 2018: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In press.
Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Davies, S. J., and Yamakura, T., 2012. The effect of habitat association and edaphic conditions on tree mortality during El Niño-induced drought in a bornean dipterocarp forest. Biotropica, 44 (5), 606–617.
Joly, C. A., Metzger, J. P., and Tabarelli, M., 2014. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist, 204 (3), 459–473.
Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., and Coomes, D. A., 2018. Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21 (7), 989–1000.
Jucker, T., Hardwick, S. R., Both, S., Elias, D. M. O., Ewers, R. M., Milodowski, D. T., Swinfield, T., and Coomes, D. A., 2018. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Global Change Biology, 24 (11), 5243–5258.
Kannenberg, S. A., Schwalm, C. R., and Anderegg, W. R. L., 2020. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 23 (5), 891–901.
Khalil, M. I., Gibson, D. J., and Baer, S. G., 2019. Functional response of subordinate species to intraspecific trait variability within dominant species. Journal of Ecology, 107 (5), 2040–2053.
Kogan, F. and Guo, W., 2017. Strong 2015–2016 El Niño and implication to global ecosystems from space data. International Journal of Remote Sensing, 38 (1), 161–178.
Lambers, H., Chapin, F. S., and Pons, T. L., 2008. Plant Physiological Ecology. Second. New York.
Laughlin, D. C., 2014. The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102 (1), 186–193.
Laurance, W. F., Camargo, J. L. C., Fearnside, P. M., Lovejoy, T. E., Williamson, G. B., Mesquita, R. C. G., Meyer, C. F. J., Bobrowiec, P. E. D., and Laurance, S. G. W., 2018. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews, 93 (1), 223–247.
Lavorel, S. and Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16 (5), 545–556.
Li, L., McCormack, M. L., Ma, C., Kong, D., Zhang, Q., Chen, X., Zeng, H., Niinemets, Ü., and Guo, D., 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 18 (9), 899–906.
Li, X., Piao, S., Wang, K., Wang, X., Wang, T., Ciais, P., Chen, A., Lian, X., Peng, S., and Peñuelas, J., 2020. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology & Evolution, 4, 1075–1083.
Liu, H., Gleason, S. M., Hao, G., Hua, L., He, P., Goldstein, G., and Ye, Q., 2019. Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 5 (2), eaav1332.
Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., Bloom, A. A., Wunch, D., Frankenberg, C., Sun, Y., O’Dell, C. W., Gurney, K. R., Menemenlis, D., Gierach, M., Crisp, D., and Eldering, A., 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 358 (6360), eaam5690.
Maire, V., Gross, N., Börger, L., Proulx, R., Wirth, C., Pontes, L. D. S., Soussana, J. F., and Louault, F., 2012. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytologist, 196 (2), 497–509.
Mariotte, P., 2014. Do subordinate species punch above their weight? Evidence from above- and below-ground. New Phytologist, 203 (1), 16–21.
Mariotte, P., Canarini, A., and Dijkstra, F. A., 2017. Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought. Jornal of Ecology, 105 (4), 958–967.
Mariotte, P., Cresswell, T., Johansen, M. P., Harrison, J. J., Keitel, C., and Dijkstra, F. A., 2020. Plant uptake of nitrogen and phosphorus among grassland species affected by drought along a soil available phosphorus gradient. Plant and Soil, 448, 121–132.
Mariotte, P., Robroek, B. J. M., Jassey, V. E. J., and Buttler, A., 2015. Subordinate plants mitigate drought effects on soil ecosystem processes by stimulating fungi. Functional Ecology, 29 (12), 1578–1586.
Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F., and Buttler, A., 2013. Subordinate plant species enhance community resistance against drought in semi-natural grasslands. Journal of Ecology, 101 (3), 763–773.
Martinez-Vilalta, J., Anderegg, W. R. L., Sapes, G., and Sala, A., 2019. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytologist, 223 (1), 22–32.
Mattson, W. J. and Haack, R. A., 1987. The role of drought in outbreaks of plant-eating insects. BioScience, 37 (2), 110–118.
McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K. F., and Stitt, M., 2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology and Evolution, 26 (10), 523–532.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., Yepez, E. A., Mcdowell, N., Pockman, W. T., Allen, C. D., David, D., Mcdowell, N., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., and Yepez, E. A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178 (4), 719–739.
Meakem, V., Tepley, A. J., Gonzalez-Akre, E. B., Herrmann, V., Muller-Landau, H. C., Wright, S. J., Hubbell, S. P., Condit, R., and Anderson-Teixeira, K. J., 2018. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytologist, 219 (3), 947–958.
Meir, P., Mencuccini, M., Binks, O., Da Costa, A. L., Ferreira, L., and Rowland, L., 2018. Short-term effects of drought on tropical forest do not fully predict impacts of repeated or long-term drought: Gas exchange versus growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 373 (1760), 20170311.
Meir, P., Mencuccini, M., and Dewar, R. C., 2015. Drought-related tree mortality: addressing the gaps in understanding and prediction. New Phytologist, 207 (1), 28–33.
Moser, G., Schuldt, B., Hertel, D., Horna, V., Coners, H., Barus, H., and Leuschner, C., 2014. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Global Change Biology, 20 (5), 1481–1497.
Nakagawa, M., Tanaka, K., Nakashizuka, T., Ohkubo, T., Kato, T., Maeda, T., Sato, K., Miguchi, H., Hidetoshi Nagamasu, K. O., Teo, S., Hamid, A. A., and Seng, L. H., 2000. Impact of severe drought associated with the 1997 – 1998 El Niño in a tropical forest in Sarawak. Journal of Tropical Ecology, 16 (3), 355–367.
Nepstad, D. C., Moutinho, P., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Vianna, N., Chambers, J., Ray, D., Guerreiros, J. B., Lefebvre, P., Sternberg, L., Moreira, M., Barros, L., Ishida, F. Y., Tohlver, I., Belk, E., Kalif, K., and Schwalbe, K., 2002. The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 107 (20), 1–18.
Nettesheim, F. C., Garbin, M. L., Pereira, M. G., Araujo, D. S. D. de, and Grelle, C. E. de V., 2018. Local-scale elevation patterns of Atlantic Forest tree community variation and assembly drivers in a conservation hotspot in southeastern Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 248, 61–69.
Nishimua, T. B., Suzuki, E., Kohyama, T., and Tsuyuzaki, S., 2007. Mortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought. Plant Ecology, 188 (2), 165–177.
Nunes, M. H., Both, S., Bongalov, B., Brelsford, C., Khoury, S., Burslem, D. F. R. P., Philipson, C., Majalap, N., Riutta, T., Coomes, D. A., and Cutler, M. E. J., 2019. Changes in leaf functional traits of rainforest canopy trees associated with an El Nino event in Borneo. Environmental Research Letters, 14 (8), 085005.
O’Brien, M. J. O., Engelbrecht, B. M. J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., Kattge, J., Landhäusser, S. M., Levick, S. R., Preisler, Y., Väänänen, P., and Macinnis-Ng, C., 2017. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. Journal of Applied Ecology, 54 (6), 1669–1686.
Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., and Poorter, L., 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221 (3), 1457–1465.
Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L., Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M., Martín-López, B., Woodcock, B. A., and Bullock, J. M., 2015. Biodiversity and resilience of ecosystem functions. Trends in Ecology and Evolution, 30 (11), 673–684.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R., 2001. Terrestrial ecoregions of the world: a new map of life on earth. BioScience, 51 (11), 933–938.
Otto, F. E. L., Coelho, C. A. S., King, A., Perez, E. C. DE, Wada, Y., Oldenborgh, G. J. VAN, Haarsma, R., Haustein, K., Uhe, P., Aalst, M. VAN, Aravequia, J. A., Almeida, W., and Cullen, H., 2015. Factors other than climate change, main drivers of 2014/15 water shortage in southeast Brazil. American Meteorological Society, 96 (12), 35–40.
Pennington, R. T., Lavin, M., and Oliveira-filho, A., 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. The Annual Review of Ecology, Evolution, and Systematics, 40, 437–457.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., Ter Steege, H., Van Der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S., and Cornelissen, J. H. C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61 (3), 167–234.
Pezzola, E., Mancuso, S., and Karban, R., 2017. Precipitation affects plant communication and defense. Ecology, 98 (6), 1693–1699.
Phillips, O. L., Heijden, G. van der, Lewis, S. L., López-González, G., Aragão, L. E. O. C., Lloyd, J., Malhi, Y., Monteagudo, A., Almeida, S., Dávila, E. A., Amaral, I., Andelman, S., Andrade, A., Arroyo, L., Aymard, G., Baker, T. R., Blanc, L., Bonal, D., Oliveira, Á. C. A. de, Chao, K.-J., Cardozo, N. D., Costa, L. da, Feldpausch, T. R., Fisher, J. B., Fyllas, N. M., Freitas, M. A., Galbraith, D., Gloor, E., Higuchi, N., Honorio, E., Jiménez, E., Keeling, H., Killeen, T. J., Lovett, J. C., Meir, P., Mendoza, C., Morel, A., Vargas, P. N., Patiño, S., Peh, K. S.-H., Cruz, A. P., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez, H., Rudas, A., Salamão, R., Schwarz, M., Silva, J., Silveira, M., Slik, J. W. F., Sonké, B., Thomas, A. S., Stropp, J., Taplin, J. R. D., Vásquez, R., and Vilanova, E., 2010. Drought–mortality relationships for tropical forests. New Phytologist, 187 (3), 631–646.
Poorter, L. and Bongers, F., 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87 (7), 1733–1743.
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S., Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., Espírito-Santo, M. M., Fandino, M. C., César, R. G., Hall, J. S., Hernandez-Stefanoni, J. L., Jakovac, C. C., Junqueira, A. B., Kennard, D., Letcher, S. G., Licona, J.-C., Lohbeck, M., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P., Meave, J. A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y. R. F., Ochoa-Gaona, S., de Oliveira, A. A., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E. A., Piotto, D., Powers, J. S., Rodríguez-Velázquez, J., Romero-Pérez, I. E., Ruíz, J., Saldarriaga, J. G., Sanchez-Azofeifa, A., Schwartz, N. B., Steininger, M. K., Swenson, N. G., Toledo, M., Uriarte, M., van Breugel, M., van der Wal, H., Veloso, M. D. M., Vester, H. F. M., Vicentini, A., Vieira, I. C. G., Bentos, T. V., Williamson, G. B., and Rozendaal, D. M. A., 2016. Biomass resilience of Neotropical secondary forests. Nature, 530 (7589), 211–214.
Potts, M. D., 2003. Drought in a Bornean everwet rain forest. Journal of Ecology, 91 (3), 467–474.
Powell, T. L., Wheeler, J. K., de Oliveira, A. A. R., da Costa, A. C. L., Saleska, S. R., Meir, P., and Moorcroft, P. R., 2017. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biology, 23 (10), 4280–4293.
Powers, J. S., Vargas‐G, G., Brodribb, T. J., Schwartz, N. B., Perez‐Aviles, D., Smith‐Martin, C. M., Becknell, J. M., Aureli, F., Blanco, R., Calderón‐Morales, E., Calvo‐Alvarado, J. C., Calvo‐Obando, A. J., Chavarría, M. M., Carvajal‐Vanegas, D., Dionisio Jiménez‐Rodríguez, C., Murillo Chacon, E., Schaffner, C. M., Werden, L. K., Xu, X., and Medvigy, D., 2020. A catastrophic tropical drought kills hydraulically vulnerable tree species. Global Change Biology, 26 (5), 3122–3133.
Prado-Junior, J. A., Schiavini, I., Vale, V. S., Raymundo, D., Lopes, S. F., and Poorter, L., 2017. Functional traits shape size-dependent growth and mortality rates of dry forest tree species. Journal of Ecology, 10 (6), 895–906.
Redmond, M. D., Weisberg, P. J., Cobb, N. S., and Clifford, M. J., 2018. Woodland resilience to regional drought: Dominant controls on tree regeneration following overstorey mortality. Journal of Ecology, 106 (2), 625–639.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M., 2013. Climate extremes and the carbon cycle. Nature, 500 (7462), 287–295.
Reyer, C. P. O., Brouwers, N., Rammig, A., Brook, B. W., Epila, J., Grant, R. F., Holmgren, M., Langerwisch, F., Leuzinger, S., Lucht, W., Medlyn, B., Pfeifer, M., Steinkamp, J., Vanderwel, M. C. H., Verbeeck, H., and Villela, D. M., 2015. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. Journal of Ecology, 103 (1), 5–15.
Rocha, S. J. S. S. da, Torres, C. M. M. E., Villanova, P. H., Schettini, B. L. S., Jacovine, L. A. G., Leite, H. G., Gelcer, E. M., Reis, L. P., Neves, K. M., Comini, I. B., and Silva, L. F. da, 2020. Drought effects on carbon dynamics of trees in a secondary Atlantic Forest. Forest Ecology and Management, 465, 118097.
Rodrigues, A. C., Villa, P. M., and Neri, A. V., 2019. Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecological Indicators, 102, 208–217.
Rodrigues, R. R., Haarsma, R. J., Campos, E. J. D., and Ambrizzi, T., 2011. The impacts of inter-El Niño variability on the tropical Atlantic and northeast Brazil climate. Journal of Climate, 24 (13), 3402–3422.
Rüger, N., Condit, R., Dent, D. H., DeWalt, S. J., Hubbell, S. P., Lichstein, J. W., Lopez, O. R., Wirth, C., and Farrior, C. E., 2020. Demographic trade-offs predict tropical forest dynamics. Science, 368 (6487), 165–168.
Sánchez-Salguero, R., Camarero, J. J., Rozas, V., Génova, M., Olano, J. M., Arzac, A., Gazol, A., Caminero, L., Tejedor, E., de Luis, M., and Linares, J. C., 2018. Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in Pinus pinaster. Journal of Biogeography, 45 (5), 1126–1139.
Sansevero, J. B. B., Garbin, M. L., Sánchez-Tapia, A., Valladares, F., and Scarano, F. R., 2020. Fire drives abandoned pastures to a savanna-like state in the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 18 (1), 31–36.
Van Schaik, E., Killaars, L., Smith, N. E., Koren, G., Van Beek, L. P. H., Peters, W., and Laan-Luijkx, I. T. van der, 2018. Changes in surface hydrology, soil moisture and gross primary production in the Amazon during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B, 373 (1760), 20180084.
Schwartz, N. B., Budsock, A. M., and Uriarte, M., 2019. Fragmentation, forest structure, and topography modulate impacts of drought in a tropical forest landscape. Ecology, 100 (6), e02677.
Schwartz, N. B., Feng, X., Muscarella, R., Swenson, N. G., Umaña, M. N., Zimmerman, J. K., and Uriarte, M., 2020. Topography and traits modulate tree performance and drought response in a tropical forest. Frontiers in Forests and Global Change, 3, 596256.
Sercu, B. K., Baeten, L., van Coillie, F., Martel, A., Lens, L., Verheyen, K., and Bonte, D., 2017. How tree species identity and diversity affect light transmittance to the understory in mature temperate forests. Ecology and Evolution, 7 (24), 10861–10870.
Shenkin, A., Bolker, B., Peña-Claros, M., Licona, J. C., Ascarrunz, N., and Putz, F. E., 2018. Interactive effects of tree size, crown exposure and logging on drought-induced mortality. Philosophical Transactions of the Royal Society B: Biological Sciences, 373 (1760), 20180189.
Silva, C. E., Kellner, J. R., Clark, D. B., and Clark, D. A., 2013. Response of an old-growth tropical rainforest to transient high temperature and drought. Global Change Biology, 19 (11), 3423–3434.
Silva, F. D. S., Carvalheiro, L. G., Aguirre-Gutiérrez, J., Lucotte, M., Guidoni-Martins, K., and Mertens, F., 2021. Virtual pollination trade uncovers global dependence on biodiversity of developing countries. Science Advances, 7 (11), eabe6636.
da Silva, P. M., Nascimento, E., Reis, F., Briones, M. J. I., Brussaard, L., and Sousa, J. P., 2020. More frequent droughts slow down litter decomposition across European agroecosystems and increase the importance of earthworm functional diversity. Applied Soil Ecology, 153, 103628.
Singh, K. P. and Kushwaha, C. P., 2016. Deciduousness in tropical trees and its potential as indicator of climate change: a review. Ecological Indicators, 69, 699–706.
Slik, J. W. F., 2004. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141 (1), 114–120.
Smith, M. N., Stark, S. C., Taylor, T. C., Ferreira, M. L., Oliveira, E. De, Restrepo-coupe, N., Chen, S., Woodcock, T., Bentes, D., Alves, L. F., Falk, D. A., McMahon, S. M., Huxman, T. E., and Saleska, S. R., 2019. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist, 222 (3), 1284–1297.
Soong, J. L., Janssens, I. A., Grau, O., Margalef, O., Stahl, C., Van Langenhove, L., Urbina, I., Chave, J., Dourdain, A., Ferry, B., Freycon, V., Herault, B., Sardans, J., Peñuelas, J., and Verbruggen, E., 2020. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 10 (1), 2302.
Stephenson, N. L., 1990. Climatic control of vegetation distribution: the role of the water balance. The American Naturalist, 135 (5), 649–670.
Tanentzap, A. J., Mountford, E. P., Cooke, A. S., and Coomes, D. A., 2012. The more stems the merrier: advantages of multi-stemmed architecture for the demography of understorey trees in a temperate broadleaf woodland. Journal of Ecology, 100 (1), 171–183.
Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W., Doughty, C. E., Dobrowski, S. Z., and Townsend, A. R., 2017. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 20 (6), 779–788.
Torres-Leite, F., Cavatte, P. C., Garbin, M. L., Hollunder, R. K., Ferreira-Santos, K., Capetine, T. B., Soares, B. S., and Carrijo, T. T., 2019. Surviving in the shadows: light responses of co-occurring Rubiaceae species within a tropical forest understory. Flora, 261, 151487.
Verbesselt, J., Umlauf, N., Hirota, M., Holmgren, M., Nes, E. H. Van, Herold, M., Zeileis, A., and Scheffer, M., 2016. Remotely sensed resilience of tropical forests. Nature Climate Change, 6, 1028–1031.
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E., 2007. Let the concept of trait be functional! Oikos, 116 (5), 882–892.
Vitória, A. P., Alves, L. F., and Santiago, L. S., 2019. Atlantic forest and leaf traits: an overview. Trees, 33 (6), 1535–1547.
WCMC, 1992. Global Biodiversity: status of the earth’s living resources. London: Chapman & Hali.
Wei, S., Li, L., Lian, J., Nielsen, S. E., Wang, Z., Mao, L., Ouyang, X., Cao, H., and Ye, W., 2020. Role of the dominant species on the distributions of neighbor species in a subtropical forest. Forests, 11 (3), 352.
Werner, F. A. and Homeier, J., 2015. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology, 29 (3), 430–440.
Whittaker, R. H., 1965. Dominance and diversity in land plant communities. Science, 147 (3655), 250–260.
Wigneron, J. P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J., Saatchi, S., Baccini, A., and Fensholt, R., 2020. Tropical forests did not recover from the strong 2015–2016 El Niño event. Science Advances, 6 (6), eaay4603.
Wolfe, B. T., Sperry, J. S., and Kursar, T. A., 2016. Does leaf shedding protect stems from cavitation during seasonal droughts? a test of the hydraulic fuse hypothesis. New Phytologist, 212 (4), 1007–1018.
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., and Zanne, A. E., 2010. Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91 (12), 3664–3674.
Xu, C., McDowell, N. G., Sevanto, S., and Fisher, R. A., 2013. Our limited ability to predict vegetation dynamics under water stress. New Phytologist, 200 (2), 298–300.
Zellweger, F., Frenne, P. De, Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Calster, H. Van, Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Malicki, M., Naaf, T., Nagel, T. A., Ortmann-Ajkai, A., Petrík, P., Pielech, R., Reczynska, K., Schmidt, W., Standovár, T., Swierkosz, K., Teleki, B., Vild, O., Wulf, M., and Coomes, D., 2020. Forest microclimate dynamics drive plant responses to warming. Science, 368 (6492), 772–775.
Zhang, J., Zhao, N., Liu, C., Yang, H., Li, M., Yu, G., Wilcox, K., Yu, Q., and He, N., 2017. C:N:P stoichiometry in China’s forests: from organs to ecosystems. Functional Ecology, 32, 50–60.
Zhang, S. B., Zhang, J. L., Slik, J. W. F., and Cao, K. F., 2012. Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology and Biogeography, 21 (8), 809–818.
Zhu, Y., Hogan, J. A., Cai, H., Xun, Y., Jiang, F., and Jin, G., 2017. Biotic and abiotic drivers of the tree growth and mortality trade-off in an old-growth temperate forest. Forest Ecology and Management, 404, 354–360.
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., and Davies, S. J., 2017. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98 (0), 2538–2546.
Table 1 . Studies that identified differences in drought resistance between valley and ridge of woody plants in tropical forests. Most of the studies have found that woody plants occurring in valleys are more resistant than those from the ridges.