References
Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas,
J. C., Breshears, D. D., Zou, C. B., Troch, P. A., and Huxman, T. E.,
2009. Temperature sensitivity of drought-induced tree mortality portends
increased regional die-off under global-change-type drought. PNAS, 106
(17), 7063–7066.
Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S. L., Fauset, S., Adu-Bredu,
S., Affum-Baffoe, K., Baker, T. R., Gvozdevaite, A., Hubau, W., Moore,
S., Peprah, T., Ziemi, K., Phillips, O. L., and Oliveras, I., 2020.
Long-term droughts may drive drier tropical forests towards increased
functional, taxonomic and phylogenetic homogeneity. Nature
Communications, 11, 3346.
Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano,
C., Salgado-Negret, B., Smith, C. M., Trierweiler, A., Van Bloem, S. J.,
Waring, B. G., Xu, X., and Powers, J. S., 2017. Will seasonally dry
tropical forests be sensitive or resistant to future changes in rainfall
regimes? Environmental Research Letters, 12 (2), 023001.
Álvarez-Yépiz, J. C., Martínez-Yrízar, A., and Fredericksen, T. S.,
2018. Special Issue: Resilience of tropical dry forests to extreme
disturbance events. Forest Ecology and Management, 426 (15), 1–6.
Anderegg, W. R. L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F.
A., Choat, B., and Jansen, S., 2016. Meta-analysis reveals that
hydraulic traits explain cross-species patterns of drought-induced tree
mortality across the globe. Proceedings of the National Academy of
Sciences, 113 (18), 5024–5029.
Anderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D.
R., Gabbitas, R., Karp, D. S., Pacala, S., Sperry, J. S., Sulman, B. N.,
and Zenes, N., 2018. Hydraulic diversity of forests regulates ecosystem
resilience during drought. Nature, 561 (7724), 538–541.
Anderegg, W. R. L., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G.,
Litvak, M., Ogle, K., Shaw, J. D., Shevliakova, E., Williams, A. P.,
Wolf, A., Ziaco, E., and Pacala, S., 2015. Pervasive drought legacies in
forest ecosystems and their implications for carbon cycle models.
Science, 349 (6247), 528–532.
Barlow, J. and Peres, C. A., 2008. Fire-mediated dieback and
compositional cascade in an Amazonian forest. Philosophical Transactions
of the Royal Society B: Biological Sciences, 363 (1498), 1787–1794.
Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller,
W., and Courchamp, F., 2014. Vulnerability of biodiversity hotspots to
global change. Global Ecology and Biogeography, 23 (12), 1376–1386.
Bennett, A. C., Dargie, G. C., Cuni-Sanchez, A., Tshibamba Mukendi, J.,
Hubau, W., Mukinzi, J. M., Phillips, O. L., Malhi, Y., Sullivan, M. J.
P., Cooper, D. L. M., Adu-Bredu, S., Affum-Baffoe, K., Amani, C. A.,
Banin, L. F., Beeckman, H., Begne, S. K., Bocko, Y. E., Boeckx, P.,
Bogaert, J., Brncic, T., Chezeaux, E., Clark, C. J., Daniels, A. K., de
Haulleville, T., Djuikouo Kamdem, M.-N., Doucet, J.-L., Evouna Ondo, F.,
Ewango, C. E. N., Feldpausch, T. R., Foli, E. G., Gonmadje, C., Hall, J.
S., Hardy, O. J., Harris, D. J., Ifo, S. A., Jeffery, K. J., Kearsley,
E., Leal, M., Levesley, A., Makana, J.-R., Mbayu Lukasu, F., Medjibe, V.
P., Mihindu, V., Moore, S., Nssi Begone, N., Pickavance, G. C., Poulsen,
J. R., Reitsma, J., Sonké, B., Sunderland, T. C. H., Taedoumg, H.,
Talbot, J., Tuagben, D. S., Umunay, P. M., Verbeeck, H., Vleminckx, J.,
White, L. J. T., Woell, H., Woods, J. T., Zemagho, L., and Lewis, S. L.,
2021. Resistance of African tropical forests to an extreme climate
anomaly. Proceedings of the National Academy of Sciences, 118 (21),
e2003169118.
Boeck, H. J. De, Bloor, J. M. G., Kreyling, J., Ransijn, J. C. G., Nijs,
I., Jentsch, A., and Zeiter, M., 2017. Patterns and drivers of
biodiversity – stability relationships under climate extremes. Jornal
of Ecology, 106 (3), 890–902.
Cartwright, J. M., Littlefield, C. E., Michalak, J. L., Lawler, J. J.,
and Dobrowski, S. Z., 2020. Topographic, soil, and climate drivers of
drought sensitivity in forests and shrublands of the Pacific Northwest,
USA. Scientific Reports, 10, 18486.
Costa, F. R. C., Zuanon, J. A. S., Baccaro, F. B., de Almeida, J. S.,
Menger, J. da S., Souza, J. L. P., Borba, G. C., Esteban, E. J. L.,
Bertin, V. M., Gerolamo, C. S., Nogueira, A., and de Castilho, C. V.,
2020. Effects of climate change on central amazonian forests: a two
decades synthesis of monitoring tropical biodiversity. Oecologia
Australis, 24 (2), 317–335.
Dai, A., 2011. Drought under global warming: a review. WIREs Climate
Change, 2 (1), 45–65.
Dantas de Paula, M., Alves Costa, C. P., and Tabarelli, M., 2011. Carbon
storage in a fragmented landscape of Atlantic forest: The role played by
edge-affected habitats and emergent trees. Tropical Conservation
Science, 4 (3), 349–358.
Das, A. J., Stephenson, N. L., and Davis, K. P., 2016. Why do trees die?
characterizing the drivers of background tree mortality. Ecology, 97
(10), 2616–2627.
Diaz, S. and Cabido, M., 2001. Vive la différence: plant functional
diversity matters to ecosystem processes. Trends in Ecology and
Evolution, 16 (11), 646–655.
Engelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree,
M. T., Turner, B. L., and Hubbell, S. P., 2007. Drought sensitivity
shapes species distribution patterns in tropical forests. Nature, 447
(3), 80–83.
Fatichi, S., Leuzinger, S., and Körner, C., 2014. Moving beyond
photosynthesis: from carbon source to sink-driven vegetation modeling.
New Phytologist, 201 (4), 1086–1095.
Fauset, S., Baker, T. R., Lewis, S. L., Feldpausch, T. R., Affum-Baffoe,
K., Foli, E. G., Hamer, K. C., and Swaine, M. D., 2012. Drought-induced
shifts in the floristic and functional composition of tropical forests
in Ghana. Ecology Letters, 15 (10), 1120–1129.
Fyllas, N. M., Bentley, L. P., Shenkin, A., Asner, G. P., Atkin, O. K.,
Díaz, S., Enquist, B. J., Farfan-Rios, W., Gloor, E., Guerrieri, R.,
Huasco, W. H., Ishida, Y., Martin, R. E., Meir, P., Phillips, O.,
Salinas, N., Silman, M., Weerasinghe, L. K., Zaragoza-Castells, J., and
Malhi, Y., 2017. Solar radiation and functional traits explain the
decline of forest primary productivity along a tropical elevation
gradient. Ecology Letters, 20 (6), 730–740.
Garbin, M. L., Carrijo, T. T., Sansevero, J. B. B., Sánchez-Tapia, A.,
and Scarano, F. R., 2012. Subordinate, not dominant, woody species
promote the diversity of climbing plants. Perspectives in Plant Ecology,
Evolution and Systematics, 14 (4), 257–265.
Garbin, M. L., Guidoni-martins, K. G., Hollunder, R. K., Mariotte, P.,
Scarano, F. R., and Carrijo, T. T., 2016. Spatial segregation of
subordinate species is not controlled by the dominant species in a
tropical coastal plant community. Perspectives in Plant Ecology,
Evolution and Systematics, 18, 23–32.
Gartner, T. B. and Cardon, Z. G., 2004. Decomposition dynamics in
mixed-species leaf litter. Oikos, 104 (2), 230–246.
Gazol, A. and Camarero, J. J., 2016. Functional diversity enhances
silver fir growth resilience to an extreme drought. Journal of Ecology,
104 (4), 1063–1075.
Gazol, A., Camarero, J. J., Anderegg, W. R. L., and Vicente-Serrano, S.
M., 2017. Impacts of droughts on the growth resilience of Northern
Hemisphere forests. Global Ecology and Biogeography, 26 (2), 166–176.
Gessler, A., Schaub, M., and McDowell, N. G., 2017. The role of
nutrients in drought-induced tree mortality and recovery. New
Phytologist, 214 (2), 513–520.
Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira,
R. S., Uriarte, M., and Gentine, P., 2018. Tall Amazonian forests are
less sensitive to precipitation variability. Nature Geoscience, 11 (6),
405–409.
Gibbons, J. M. and Newbery, D. M., 2002. Drought avoidance and the
effect of local topography on trees in the understorey of Bornean
lowland rain forest. Plant Ecology, 164, 1–18.
Greenwood, S., Ruiz-Benito, P., Martınez-Vilalta, J., Lloret, F.,
Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J.,
Bönisch, G., Kraft, N. J. B., and Jump, A. S., 2017. Tree mortality
across biomes is promoted by drought intensity, lower wood density and
higher specific leaf area. Ecology Letters, 20 (4), 539–553.
Grime, J. P., 1998. Benefits of plant diversity to ecosystems:
immediate, filter and founder effects. Journal of Ecology, 86 (6),
902–910.
Grossiord, C., Sevanto, S., Adams, H. D., Collins, A. D., Dickman, L.
T., McBranch, N., Michaletz, S. T., Stockton, E. A., Vigil, M., and
McDowell, N. G., 2016. Precipitation, not air temperature, drives
functional responses of trees in semi-arid ecosystems. Journal of
Ecology, 105, 163–175.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K.,
Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S.,
Saleska, S. R., Berry, J., Joiner, J., and Lyapustin, A. I., 2015.
Photosynthetic seasonality of global tropical forests constrained by
hydroclimate. Nature Geoscience, 8 (4), 284–289.
Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., and
Ewers, R. M., 2015. The relationship between leaf area index and
microclimate in tropical forest and oil palm plantation: forest
disturbance drives changes in microclimate. Agricultural and Forest
Meteorology, 201 (15), 187–195.
Hof, C., Levinsky, I., Araújo, M. B., and Rahbek, C., 2011. Rethinking
species’ ability to cope with rapid climate change. Global Change
Biology, 17 (9), 2987–2990.
Hoffmann, W. A., Marchin, R. M., Abit, P., and Lau, O. L., 2011.
Hydraulic failure and tree dieback are associated with high wood density
in a temperate forest under extreme drought. Global Change Biology, 17
(8), 2731–2742.
Hollunder, R. K., Mariotte, P., Carrijo, T. T., Holmgren, M., Luber, J.,
Stein-Soares, B., Guidoni-Martins, K. G., Ferreira-Santos, K., Scarano,
F. R., and Garbin, M. L., 2021. Topography and vegetation structure
mediate drought impacts on the understory of the South American Atlantic
Forest. Science of the Total Environment, 766 (20), 144234.
Hollunder, R. K., Martins, K. G. G., Luber, J., Ferreira, R. S.,
Carrijo, T. T., Mendonça, E. S., and Garbin, M. L., 2014. Associaçao
entre espécies de sub-bosque e variação topografica em um fragmento de
Floresta Atlântica no Estado do Espírito Santo. Acta Scientiae &
Technicae, 2 (2), 35–41.
Holmgren, M., Gómez-Aparicio, L., Quero, J. L., and Valladares, F.,
2012. Non-linear effects of drought under shade: reconciling
physiological and ecological models in plant communities. Oecologia, 169
(2), 293–305.
Huang, M., Wang, X., Keenan, T. F., and Piao, S., 2018. Drought timing
influences the legacy of tree growth recovery. Global Change Biology, 24
(8), 3546–3559.
IPCC. 2018: Global Warming of 1.5 °C. An IPCC Special Report on the
Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and
Related Global Greenhouse Gas Emission Pathways, in the Context of
Strengthening the Global Response to the Threat of Climate Change,
Sustainable Development, and Efforts to Eradicate Poverty
[Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea,
P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S.
Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T.
Maycock, M. Tignor, and T. Waterfield (eds.)]. In press.
Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L.,
Davies, S. J., and Yamakura, T., 2012. The effect of habitat association
and edaphic conditions on tree mortality during El Niño-induced drought
in a bornean dipterocarp forest. Biotropica, 44 (5), 606–617.
Joly, C. A., Metzger, J. P., and Tabarelli, M., 2014. Experiences from
the Brazilian Atlantic Forest: Ecological findings and conservation
initiatives. New Phytologist, 204 (3), 459–473.
Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M.,
Lewis, S. L., Phillips, O. L., Qie, L., and Coomes, D. A., 2018.
Topography shapes the structure, composition and function of tropical
forest landscapes. Ecology Letters, 21 (7), 989–1000.
Jucker, T., Hardwick, S. R., Both, S., Elias, D. M. O., Ewers, R. M.,
Milodowski, D. T., Swinfield, T., and Coomes, D. A., 2018. Canopy
structure and topography jointly constrain the microclimate of
human-modified tropical landscapes. Global Change Biology, 24 (11),
5243–5258.
Kannenberg, S. A., Schwalm, C. R., and Anderegg, W. R. L., 2020. Ghosts
of the past: how drought legacy effects shape forest functioning and
carbon cycling. Ecology Letters, 23 (5), 891–901.
Khalil, M. I., Gibson, D. J., and Baer, S. G., 2019. Functional response
of subordinate species to intraspecific trait variability within
dominant species. Journal of Ecology, 107 (5), 2040–2053.
Kogan, F. and Guo, W., 2017. Strong 2015–2016 El Niño and implication
to global ecosystems from space data. International Journal of Remote
Sensing, 38 (1), 161–178.
Lambers, H., Chapin, F. S., and Pons, T. L., 2008. Plant Physiological
Ecology. Second. New York.
Laughlin, D. C., 2014. The intrinsic dimensionality of plant traits and
its relevance to community assembly. Journal of Ecology, 102 (1),
186–193.
Laurance, W. F., Camargo, J. L. C., Fearnside, P. M., Lovejoy, T. E.,
Williamson, G. B., Mesquita, R. C. G., Meyer, C. F. J., Bobrowiec, P. E.
D., and Laurance, S. G. W., 2018. An Amazonian rainforest and its
fragments as a laboratory of global change. Biological Reviews, 93 (1),
223–247.
Lavorel, S. and Garnier, E., 2002. Predicting changes in community
composition and ecosystem functioning from plant traits: revisiting the
Holy Grail. Functional Ecology, 16 (5), 545–556.
Li, L., McCormack, M. L., Ma, C., Kong, D., Zhang, Q., Chen, X., Zeng,
H., Niinemets, Ü., and Guo, D., 2015. Leaf economics and hydraulic
traits are decoupled in five species-rich tropical-subtropical forests.
Ecology Letters, 18 (9), 899–906.
Li, X., Piao, S., Wang, K., Wang, X., Wang, T., Ciais, P., Chen, A.,
Lian, X., Peng, S., and Peñuelas, J., 2020. Temporal trade-off between
gymnosperm resistance and resilience increases forest sensitivity to
extreme drought. Nature Ecology & Evolution, 4, 1075–1083.
Liu, H., Gleason, S. M., Hao, G., Hua, L., He, P., Goldstein, G., and
Ye, Q., 2019. Hydraulic traits are coordinated with maximum plant height
at the global scale. Science Advances, 5 (2), eaav1332.
Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee,
M., Bloom, A. A., Wunch, D., Frankenberg, C., Sun, Y., O’Dell, C. W.,
Gurney, K. R., Menemenlis, D., Gierach, M., Crisp, D., and Eldering, A.,
2017. Contrasting carbon cycle responses of the tropical continents to
the 2015–2016 El Niño. Science, 358 (6360), eaam5690.
Maire, V., Gross, N., Börger, L., Proulx, R., Wirth, C., Pontes, L. D.
S., Soussana, J. F., and Louault, F., 2012. Habitat filtering and niche
differentiation jointly explain species relative abundance within
grassland communities along fertility and disturbance gradients. New
Phytologist, 196 (2), 497–509.
Mariotte, P., 2014. Do subordinate species punch above their weight?
Evidence from above- and below-ground. New Phytologist, 203 (1), 16–21.
Mariotte, P., Canarini, A., and Dijkstra, F. A., 2017. Stoichiometric
N:P flexibility and mycorrhizal symbiosis favour plant resistance
against drought. Jornal of Ecology, 105 (4), 958–967.
Mariotte, P., Cresswell, T., Johansen, M. P., Harrison, J. J., Keitel,
C., and Dijkstra, F. A., 2020. Plant uptake of nitrogen and phosphorus
among grassland species affected by drought along a soil available
phosphorus gradient. Plant and Soil, 448, 121–132.
Mariotte, P., Robroek, B. J. M., Jassey, V. E. J., and Buttler, A.,
2015. Subordinate plants mitigate drought effects on soil ecosystem
processes by stimulating fungi. Functional Ecology, 29 (12), 1578–1586.
Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F., and Buttler,
A., 2013. Subordinate plant species enhance community resistance against
drought in semi-natural grasslands. Journal of Ecology, 101 (3),
763–773.
Martinez-Vilalta, J., Anderegg, W. R. L., Sapes, G., and Sala, A., 2019.
Greater focus on water pools may improve our ability to understand and
anticipate drought-induced mortality in plants. New Phytologist, 223
(1), 22–32.
Mattson, W. J. and Haack, R. A., 1987. The role of drought in outbreaks
of plant-eating insects. BioScience, 37 (2), 110–118.
McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A.,
Raffa, K. F., and Stitt, M., 2011. The interdependence of mechanisms
underlying climate-driven vegetation mortality. Trends in Ecology and
Evolution, 26 (10), 523–532.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N.,
Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., Yepez, E.
A., Mcdowell, N., Pockman, W. T., Allen, C. D., David, D., Mcdowell, N.,
Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G.,
and Yepez, E. A., 2008. Mechanisms of plant survival and mortality
during drought: why do some plants survive while others succumb to
drought? New Phytologist, 178 (4), 719–739.
Meakem, V., Tepley, A. J., Gonzalez-Akre, E. B., Herrmann, V.,
Muller-Landau, H. C., Wright, S. J., Hubbell, S. P., Condit, R., and
Anderson-Teixeira, K. J., 2018. Role of tree size in moist tropical
forest carbon cycling and water deficit responses. New Phytologist, 219
(3), 947–958.
Meir, P., Mencuccini, M., Binks, O., Da Costa, A. L., Ferreira, L., and
Rowland, L., 2018. Short-term effects of drought on tropical forest do
not fully predict impacts of repeated or long-term drought: Gas exchange
versus growth. Philosophical Transactions of the Royal Society B:
Biological Sciences, 373 (1760), 20170311.
Meir, P., Mencuccini, M., and Dewar, R. C., 2015. Drought-related tree
mortality: addressing the gaps in understanding and prediction. New
Phytologist, 207 (1), 28–33.
Moser, G., Schuldt, B., Hertel, D., Horna, V., Coners, H., Barus, H.,
and Leuschner, C., 2014. Replicated throughfall exclusion experiment in
an Indonesian perhumid rainforest: wood production, litter fall and fine
root growth under simulated drought. Global Change Biology, 20 (5),
1481–1497.
Nakagawa, M., Tanaka, K., Nakashizuka, T., Ohkubo, T., Kato, T., Maeda,
T., Sato, K., Miguchi, H., Hidetoshi Nagamasu, K. O., Teo, S., Hamid, A.
A., and Seng, L. H., 2000. Impact of severe drought associated with the
1997 – 1998 El Niño in a tropical forest in Sarawak. Journal of
Tropical Ecology, 16 (3), 355–367.
Nepstad, D. C., Moutinho, P., Davidson, E., Cardinot, G., Markewitz, D.,
Figueiredo, R., Vianna, N., Chambers, J., Ray, D., Guerreiros, J. B.,
Lefebvre, P., Sternberg, L., Moreira, M., Barros, L., Ishida, F. Y.,
Tohlver, I., Belk, E., Kalif, K., and Schwalbe, K., 2002. The effects of
partial throughfall exclusion on canopy processes, aboveground
production, and biogeochemistry of an Amazon forest. Journal of
Geophysical Research, 107 (20), 1–18.
Nettesheim, F. C., Garbin, M. L., Pereira, M. G., Araujo, D. S. D. de,
and Grelle, C. E. de V., 2018. Local-scale elevation patterns of
Atlantic Forest tree community variation and assembly drivers in a
conservation hotspot in southeastern Brazil. Flora: Morphology,
Distribution, Functional Ecology of Plants, 248, 61–69.
Nishimua, T. B., Suzuki, E., Kohyama, T., and Tsuyuzaki, S., 2007.
Mortality and growth of trees in peat-swamp and heath forests in Central
Kalimantan after severe drought. Plant Ecology, 188 (2), 165–177.
Nunes, M. H., Both, S., Bongalov, B., Brelsford, C., Khoury, S.,
Burslem, D. F. R. P., Philipson, C., Majalap, N., Riutta, T., Coomes, D.
A., and Cutler, M. E. J., 2019. Changes in leaf functional traits of
rainforest canopy trees associated with an El Nino event in Borneo.
Environmental Research Letters, 14 (8), 085005.
O’Brien, M. J. O., Engelbrecht, B. M. J., Joswig, J., Pereyra, G.,
Schuldt, B., Jansen, S., Kattge, J., Landhäusser, S. M., Levick, S. R.,
Preisler, Y., Väänänen, P., and Macinnis-Ng, C., 2017. A synthesis of
tree functional traits related to drought-induced mortality in forests
across climatic zones. Journal of Applied Ecology, 54 (6), 1669–1686.
Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A.,
Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C.,
Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti,
J., Rodrigues-Souza, J., and Poorter, L., 2019. Embolism resistance
drives the distribution of Amazonian rainforest tree species along
hydro-topographic gradients. New Phytologist, 221 (3), 1457–1465.
Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D.,
Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O.
L., Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M.,
Martín-López, B., Woodcock, B. A., and Bullock, J. M., 2015.
Biodiversity and resilience of ecosystem functions. Trends in Ecology
and Evolution, 30 (11), 673–684.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D.,
Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand,
H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H.,
Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K.
R., 2001. Terrestrial ecoregions of the world: a new map of life on
earth. BioScience, 51 (11), 933–938.
Otto, F. E. L., Coelho, C. A. S., King, A., Perez, E. C. DE, Wada, Y.,
Oldenborgh, G. J. VAN, Haarsma, R., Haustein, K., Uhe, P., Aalst, M.
VAN, Aravequia, J. A., Almeida, W., and Cullen, H., 2015. Factors other
than climate change, main drivers of 2014/15 water shortage in southeast
Brazil. American Meteorological Society, 96 (12), 35–40.
Pennington, R. T., Lavin, M., and Oliveira-filho, A., 2009. Woody plant
diversity, evolution, and ecology in the tropics: perspectives from
seasonally dry tropical forests. The Annual Review of Ecology,
Evolution, and Systematics, 40, 437–457.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H.,
Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M.,
Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter,
L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C.,
Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K.,
Morgan, H. D., Ter Steege, H., Van Der Heijden, M. G. A., Sack, L.,
Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C.,
Aquino, S., and Cornelissen, J. H. C., 2013. New handbook for
standardised measurement of plant functional traits worldwide.
Australian Journal of Botany, 61 (3), 167–234.
Pezzola, E., Mancuso, S., and Karban, R., 2017. Precipitation affects
plant communication and defense. Ecology, 98 (6), 1693–1699.
Phillips, O. L., Heijden, G. van der, Lewis, S. L., López-González, G.,
Aragão, L. E. O. C., Lloyd, J., Malhi, Y., Monteagudo, A., Almeida, S.,
Dávila, E. A., Amaral, I., Andelman, S., Andrade, A., Arroyo, L.,
Aymard, G., Baker, T. R., Blanc, L., Bonal, D., Oliveira, Á. C. A. de,
Chao, K.-J., Cardozo, N. D., Costa, L. da, Feldpausch, T. R., Fisher, J.
B., Fyllas, N. M., Freitas, M. A., Galbraith, D., Gloor, E., Higuchi,
N., Honorio, E., Jiménez, E., Keeling, H., Killeen, T. J., Lovett, J.
C., Meir, P., Mendoza, C., Morel, A., Vargas, P. N., Patiño, S., Peh, K.
S.-H., Cruz, A. P., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez,
H., Rudas, A., Salamão, R., Schwarz, M., Silva, J., Silveira, M., Slik,
J. W. F., Sonké, B., Thomas, A. S., Stropp, J., Taplin, J. R. D.,
Vásquez, R., and Vilanova, E., 2010. Drought–mortality relationships
for tropical forests. New Phytologist, 187 (3), 631–646.
Poorter, L. and Bongers, F., 2006. Leaf traits are good predictors of
plant performance across 53 rain forest species. Ecology, 87 (7),
1733–1743.
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M.,
Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S.,
Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S.,
Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H.,
DeWalt, S. J., Dupuy, J. M., Durán, S. M., Espírito-Santo, M. M.,
Fandino, M. C., César, R. G., Hall, J. S., Hernandez-Stefanoni, J. L.,
Jakovac, C. C., Junqueira, A. B., Kennard, D., Letcher, S. G., Licona,
J.-C., Lohbeck, M., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P.,
Meave, J. A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes,
Y. R. F., Ochoa-Gaona, S., de Oliveira, A. A., Orihuela-Belmonte, E.,
Peña-Claros, M., Pérez-García, E. A., Piotto, D., Powers, J. S.,
Rodríguez-Velázquez, J., Romero-Pérez, I. E., Ruíz, J., Saldarriaga, J.
G., Sanchez-Azofeifa, A., Schwartz, N. B., Steininger, M. K., Swenson,
N. G., Toledo, M., Uriarte, M., van Breugel, M., van der Wal, H.,
Veloso, M. D. M., Vester, H. F. M., Vicentini, A., Vieira, I. C. G.,
Bentos, T. V., Williamson, G. B., and Rozendaal, D. M. A., 2016. Biomass
resilience of Neotropical secondary forests. Nature, 530 (7589),
211–214.
Potts, M. D., 2003. Drought in a Bornean everwet rain forest. Journal of
Ecology, 91 (3), 467–474.
Powell, T. L., Wheeler, J. K., de Oliveira, A. A. R., da Costa, A. C.
L., Saleska, S. R., Meir, P., and Moorcroft, P. R., 2017. Differences in
xylem and leaf hydraulic traits explain differences in drought tolerance
among mature Amazon rainforest trees. Global Change Biology, 23 (10),
4280–4293.
Powers, J. S., Vargas‐G, G., Brodribb, T. J., Schwartz, N. B.,
Perez‐Aviles, D., Smith‐Martin, C. M., Becknell, J. M., Aureli, F.,
Blanco, R., Calderón‐Morales, E., Calvo‐Alvarado, J. C., Calvo‐Obando,
A. J., Chavarría, M. M., Carvajal‐Vanegas, D., Dionisio
Jiménez‐Rodríguez, C., Murillo Chacon, E., Schaffner, C. M., Werden, L.
K., Xu, X., and Medvigy, D., 2020. A catastrophic tropical drought kills
hydraulically vulnerable tree species. Global Change Biology, 26 (5),
3122–3133.
Prado-Junior, J. A., Schiavini, I., Vale, V. S., Raymundo, D., Lopes, S.
F., and Poorter, L., 2017. Functional traits shape size-dependent growth
and mortality rates of dry forest tree species. Journal of Ecology, 10
(6), 895–906.
Redmond, M. D., Weisberg, P. J., Cobb, N. S., and Clifford, M. J., 2018.
Woodland resilience to regional drought: Dominant controls on tree
regeneration following overstorey mortality. Journal of Ecology, 106
(2), 625–639.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D.,
Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D.
C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M.,
Vicca, S., Walz, A., and Wattenbach, M., 2013. Climate extremes and the
carbon cycle. Nature, 500 (7462), 287–295.
Reyer, C. P. O., Brouwers, N., Rammig, A., Brook, B. W., Epila, J.,
Grant, R. F., Holmgren, M., Langerwisch, F., Leuzinger, S., Lucht, W.,
Medlyn, B., Pfeifer, M., Steinkamp, J., Vanderwel, M. C. H., Verbeeck,
H., and Villela, D. M., 2015. Forest resilience and tipping points at
different spatio-temporal scales: approaches and challenges. Journal of
Ecology, 103 (1), 5–15.
Rocha, S. J. S. S. da, Torres, C. M. M. E., Villanova, P. H., Schettini,
B. L. S., Jacovine, L. A. G., Leite, H. G., Gelcer, E. M., Reis, L. P.,
Neves, K. M., Comini, I. B., and Silva, L. F. da, 2020. Drought effects
on carbon dynamics of trees in a secondary Atlantic Forest. Forest
Ecology and Management, 465, 118097.
Rodrigues, A. C., Villa, P. M., and Neri, A. V., 2019. Fine-scale
topography shape richness, community composition, stem and biomass
hyperdominant species in Brazilian Atlantic forest. Ecological
Indicators, 102, 208–217.
Rodrigues, R. R., Haarsma, R. J., Campos, E. J. D., and Ambrizzi, T.,
2011. The impacts of inter-El Niño variability on the tropical Atlantic
and northeast Brazil climate. Journal of Climate, 24 (13), 3402–3422.
Rüger, N., Condit, R., Dent, D. H., DeWalt, S. J., Hubbell, S. P.,
Lichstein, J. W., Lopez, O. R., Wirth, C., and Farrior, C. E., 2020.
Demographic trade-offs predict tropical forest dynamics. Science, 368
(6487), 165–168.
Sánchez-Salguero, R., Camarero, J. J., Rozas, V., Génova, M., Olano, J.
M., Arzac, A., Gazol, A., Caminero, L., Tejedor, E., de Luis, M., and
Linares, J. C., 2018. Resist, recover or both? Growth plasticity in
response to drought is geographically structured and linked to
intraspecific variability in Pinus pinaster. Journal of Biogeography, 45
(5), 1126–1139.
Sansevero, J. B. B., Garbin, M. L., Sánchez-Tapia, A., Valladares, F.,
and Scarano, F. R., 2020. Fire drives abandoned pastures to a
savanna-like state in the Brazilian Atlantic Forest. Perspectives in
Ecology and Conservation, 18 (1), 31–36.
Van Schaik, E., Killaars, L., Smith, N. E., Koren, G., Van Beek, L. P.
H., Peters, W., and Laan-Luijkx, I. T. van der, 2018. Changes in surface
hydrology, soil moisture and gross primary production in the Amazon
during the 2015/2016 El Niño. Philosophical Transactions of the Royal
Society B, 373 (1760), 20180084.
Schwartz, N. B., Budsock, A. M., and Uriarte, M., 2019. Fragmentation,
forest structure, and topography modulate impacts of drought in a
tropical forest landscape. Ecology, 100 (6), e02677.
Schwartz, N. B., Feng, X., Muscarella, R., Swenson, N. G., Umaña, M. N.,
Zimmerman, J. K., and Uriarte, M., 2020. Topography and traits modulate
tree performance and drought response in a tropical forest. Frontiers in
Forests and Global Change, 3, 596256.
Sercu, B. K., Baeten, L., van Coillie, F., Martel, A., Lens, L.,
Verheyen, K., and Bonte, D., 2017. How tree species identity and
diversity affect light transmittance to the understory in mature
temperate forests. Ecology and Evolution, 7 (24), 10861–10870.
Shenkin, A., Bolker, B., Peña-Claros, M., Licona, J. C., Ascarrunz, N.,
and Putz, F. E., 2018. Interactive effects of tree size, crown exposure
and logging on drought-induced mortality. Philosophical Transactions of
the Royal Society B: Biological Sciences, 373 (1760), 20180189.
Silva, C. E., Kellner, J. R., Clark, D. B., and Clark, D. A., 2013.
Response of an old-growth tropical rainforest to transient high
temperature and drought. Global Change Biology, 19 (11), 3423–3434.
Silva, F. D. S., Carvalheiro, L. G., Aguirre-Gutiérrez, J., Lucotte, M.,
Guidoni-Martins, K., and Mertens, F., 2021. Virtual pollination trade
uncovers global dependence on biodiversity of developing countries.
Science Advances, 7 (11), eabe6636.
da Silva, P. M., Nascimento, E., Reis, F., Briones, M. J. I., Brussaard,
L., and Sousa, J. P., 2020. More frequent droughts slow down litter
decomposition across European agroecosystems and increase the importance
of earthworm functional diversity. Applied Soil Ecology, 153, 103628.
Singh, K. P. and Kushwaha, C. P., 2016. Deciduousness in tropical trees
and its potential as indicator of climate change: a review. Ecological
Indicators, 69, 699–706.
Slik, J. W. F., 2004. El Niño droughts and their effects on tree species
composition and diversity in tropical rain forests. Oecologia, 141 (1),
114–120.
Smith, M. N., Stark, S. C., Taylor, T. C., Ferreira, M. L., Oliveira, E.
De, Restrepo-coupe, N., Chen, S., Woodcock, T., Bentes, D., Alves, L.
F., Falk, D. A., McMahon, S. M., Huxman, T. E., and Saleska, S. R.,
2019. Seasonal and drought-related changes in leaf area profiles depend
on height and light environment in an Amazon forest. New Phytologist,
222 (3), 1284–1297.
Soong, J. L., Janssens, I. A., Grau, O., Margalef, O., Stahl, C., Van
Langenhove, L., Urbina, I., Chave, J., Dourdain, A., Ferry, B., Freycon,
V., Herault, B., Sardans, J., Peñuelas, J., and Verbruggen, E., 2020.
Soil properties explain tree growth and mortality, but not biomass,
across phosphorus-depleted tropical forests. Scientific Reports, 10 (1),
2302.
Stephenson, N. L., 1990. Climatic control of vegetation distribution:
the role of the water balance. The American Naturalist, 135 (5),
649–670.
Tanentzap, A. J., Mountford, E. P., Cooke, A. S., and Coomes, D. A.,
2012. The more stems the merrier: advantages of multi-stemmed
architecture for the demography of understorey trees in a temperate
broadleaf woodland. Journal of Ecology, 100 (1), 171–183.
Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W.,
Doughty, C. E., Dobrowski, S. Z., and Townsend, A. R., 2017. Temperature
and rainfall interact to control carbon cycling in tropical forests.
Ecology Letters, 20 (6), 779–788.
Torres-Leite, F., Cavatte, P. C., Garbin, M. L., Hollunder, R. K.,
Ferreira-Santos, K., Capetine, T. B., Soares, B. S., and Carrijo, T. T.,
2019. Surviving in the shadows: light responses of co-occurring
Rubiaceae species within a tropical forest understory. Flora, 261,
151487.
Verbesselt, J., Umlauf, N., Hirota, M., Holmgren, M., Nes, E. H. Van,
Herold, M., Zeileis, A., and Scheffer, M., 2016. Remotely sensed
resilience of tropical forests. Nature Climate Change, 6, 1028–1031.
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel,
I., and Garnier, E., 2007. Let the concept of trait be functional!
Oikos, 116 (5), 882–892.
Vitória, A. P., Alves, L. F., and Santiago, L. S., 2019. Atlantic forest
and leaf traits: an overview. Trees, 33 (6), 1535–1547.
WCMC, 1992. Global Biodiversity: status of the earth’s living resources.
London: Chapman & Hali.
Wei, S., Li, L., Lian, J., Nielsen, S. E., Wang, Z., Mao, L., Ouyang,
X., Cao, H., and Ye, W., 2020. Role of the dominant species on the
distributions of neighbor species in a subtropical forest. Forests, 11
(3), 352.
Werner, F. A. and Homeier, J., 2015. Is tropical montane forest
heterogeneity promoted by a resource-driven feedback cycle? Evidence
from nutrient relations, herbivory and litter decomposition along a
topographical gradient. Functional Ecology, 29 (3), 430–440.
Whittaker, R. H., 1965. Dominance and diversity in land plant
communities. Science, 147 (3655), 250–260.
Wigneron, J. P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J.,
Saatchi, S., Baccini, A., and Fensholt, R., 2020. Tropical forests did
not recover from the strong 2015–2016 El Niño event. Science Advances,
6 (6), eaay4603.
Wolfe, B. T., Sperry, J. S., and Kursar, T. A., 2016. Does leaf shedding
protect stems from cavitation during seasonal droughts? a test of the
hydraulic fuse hypothesis. New Phytologist, 212 (4), 1007–1018.
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I.
J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S.,
Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O.,
Ruiz-Jaen, M. C., Salvador, C. M., and Zanne, A. E., 2010. Functional
traits and the growth-mortality trade-off in tropical trees. Ecology, 91
(12), 3664–3674.
Xu, C., McDowell, N. G., Sevanto, S., and Fisher, R. A., 2013. Our
limited ability to predict vegetation dynamics under water stress. New
Phytologist, 200 (2), 298–300.
Zellweger, F., Frenne, P. De, Lenoir, J., Vangansbeke, P., Verheyen, K.,
Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J.,
Calster, H. Van, Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T.,
Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M.,
Malicki, M., Naaf, T., Nagel, T. A., Ortmann-Ajkai, A., Petrík, P.,
Pielech, R., Reczynska, K., Schmidt, W., Standovár, T., Swierkosz, K.,
Teleki, B., Vild, O., Wulf, M., and Coomes, D., 2020. Forest
microclimate dynamics drive plant responses to warming. Science, 368
(6492), 772–775.
Zhang, J., Zhao, N., Liu, C., Yang, H., Li, M., Yu, G., Wilcox, K., Yu,
Q., and He, N., 2017. C:N:P stoichiometry in China’s forests: from
organs to ecosystems. Functional Ecology, 32, 50–60.
Zhang, S. B., Zhang, J. L., Slik, J. W. F., and Cao, K. F., 2012. Leaf
element concentrations of terrestrial plants across China are influenced
by taxonomy and the environment. Global Ecology and Biogeography, 21
(8), 809–818.
Zhu, Y., Hogan, J. A., Cai, H., Xun, Y., Jiang, F., and Jin, G., 2017.
Biotic and abiotic drivers of the tree growth and mortality trade-off in
an old-growth temperate forest. Forest Ecology and Management, 404,
354–360.
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., and Davies,
S. J., 2017. Drought-induced mortality patterns and rapid biomass
recovery in a terra firme forest in the Colombian Amazon. Ecology, 98
(0), 2538–2546.
Table 1 . Studies that identified differences in drought
resistance between valley and ridge of woody plants in tropical forests.
Most of the studies have found that woody plants occurring in valleys
are more resistant than those from the ridges.