References:
1. Arrouays, D., Deslais, W., & Badeau, V. (2001). The carbon content
of topsoil and its geographical distribution in france. Soil Use
and Management, 17 (1) , 7-11.
2. Baisden, W.T., Parfitt, R.L. (2007). Bomb C-14 enrichment indicates
decadal C pool in deep soil? Biochemistry , 85 , 59–68.
3. Bałaga, K., Maruszczak, H. (1981). Rozwój współczesnego dna doliny
Bystrzycy w świetle badań torfów w Zemborzycach k. Lublina (In Polish).Biuletyn LTN, Geografia , 23, ½ Warszawa, 61-66.
4. Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the
world. European Journal of Soil Science 47 (2), 151-163.
5. Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., & Kirk,
G.J.D. (2005). Carbon losses from all soils across England and Wales
1978–2003. Nature, 437 , 245–248.
6. Chartin, C., Stevens, A., Goidts, E., Krüger, I., Carnol, M., van
Wesemael, B. (2016). Mapping Soil Organic Carbon stocks and estimating
uncertainties at the regional scale following a legacy sampling strategy
(Southern Belgium, Wallonia). Geoderma Regional,http://dx.doi.org/10.1016/j.geodrs.2016.12.006.
7. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E.,
Gerlitz, L., Wehberg, J., Wichmann, V., Boehner, J., (2015). System for
Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model
Dev., 8, 1991-2007, doi:10.5194/gmd-8-1991-2015.
8. Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., &
Fiener, P. (2016). Erosion, deposition and soil carbon: a review of
process-level controls, experimental tools and models to address C
cycling in dynamic landscapes. Earth Science Review 154 ,
102–122.
9. Faber, A., Łopatka, A., Kaczyński, R., Pudełko, R., Kozyra, J.,
Borzęcka-Walker, M., & Syp, A. (2012). Assessment of existing soil
organic carbon stocks and changes at a national and regional level in
Poland. Journal of Food, Agriculture & Environment 10 (3&4 ),1210-1213.
10. Gawrysiak, L., & Harasimiuk, M. (2012). Spatial diversity of
gullies density on Lublin Upland and Roztocze Hills (SE Poland).Annales UMCS, B, 67 (1), 27-43.
11. Grimm, R., Behrens, T., Marker, M., & Elsenbeer, H. (2008). Soil
organic carbon concentrations and stocks on Barro Colorado island-
digital soil mapping using random forests analysis. Geoderma 146
(1-2), 102-113.
12. Guidelines for soil descriptions (fourth edition), 2006. Food
and Agriculture Organization of the United Nations: Rome, 97pp.
13. Harasimiuk, M. (1980). Structural relief of Lublin Upland and
Roztocze (in Polish). UMCS, Lublin, 136 p.
14. Harasimiuk, M. (1987). Lithologic Properties as Indices of the
Sedimentation Conditions of the Vistulian Loesses in the Eastern Part of
the Nałęczów Plateau (SE Poland). Annales UMCS, sec. B, 41, 11,179-202.
15. Harasimiuk, M., & Henkiel, A. (1978). The influence of the
geological structure and of the substratum relief on the configuration
of loess cover in the area of the western part of the Nałęczów Plateau
(in Polish with English summary). Annales UMCS, B, 30/31 , 55-80.
16. Hobley, E.U., & Wilson, B. (2016). The depth distribution of
organic carbon in the soils of eastern Australia. Ecosphere 7(1) ,
1-21.
17. Jobbágy, E., & Jackson, R. (2000). The vertical distribution of
soilorganic carbon and its relation to climate and vegetation.Ecological Applications 10 , 423–436.
18. Kołodyńska-Gawrysiak, R,. & Poesen, J. (2016). Closed depressions
in the European loess belt – natural or anthropogenic origin?Geomorphology 288, 111-128.
19. Kołodyńska-Gawrysiak, R., Chodorowski, J., Mroczek, P., Plak, A.,
Kiebała, A., Zgłobicki, W., Trzciński, J., & Standzikowski K. (2017).
The impact of natural and anthropogenic processes on the evolution of
closed depressions in loess areas. A multi-proxy case study from
Nałęczów Plateau, Eastern Poland. Catena 149, 1-18, doi:
http://dx.doi.org/10.1016/j.catena.2016.07.029.
20. Kołodyńska-Gawrysiak, R., Poesen, J., & Gawrysiak, L. (2018).
Assessment of long-term Holocene soil erosion rates in Polish loess
areas using sedimentary archives from closed depressions. Earth
Surface Processes and Landforms 43 , 978-1000, doi: 10.1002/esp.4296.
21. Kołodyńska-Gawrysiak, R. (2019). Holocene evolution of closed
depressions and its relation to landscape dynamics in the loess areas of
Poland. The Holocene 29, 4, 543-564, doi:
10.1177/0959683618824792.
22. Kurczyński, Z., Stojek, E., Cisło-Lesicka, U. (2015). GUGiK tasks
carried out under the ISOK project. (In:) Handbook for training
participants using products LiDAR (In Polish). GUGiK, Warszawa,
22-58
23. Lal, R. (2004). Soil carbon sequestration to mitigate climate
change. Geoderma 123 (1-2) , 1-22.
24. Lettens, S., Van Orshoven, J., van Wesemael, B., De Vos, B., &
Muys, B. (2005a). Stocks and fluxes of soil organic carbon for landscape
units in Belgium derived from heterogeneous data sets for 1990 and 2000.Geoderma, 127, 11–23.
25. Lettens, S., Van Orshoven, J., Van Wesemael, B., Muys, B., &
Perrin, D. (2005b). Soil organic carbon changes in landscape units of
Belgium between 1960 and 2000 with reference to 1990. Global
Change Biology 11 (12), 2128–2140.
26. Lo Seen, D., Ramesh, B.R., Nair, K.M., Martin, M., Arrouays, D., &
Bourgeon, G. (2010). Soil carbon stocks, deforestation and land cover
changes in the western ghats biodiversity hotspot (India). Global
Change Biology 16 (6), 1777-1792.
27. Martin, M. P., Orton, T.G., Lacarce E., Meersmans, J., Saby, N.P.A.,
Paroissien, J.B., Jolivet, C., Boulonne, L., & Arrouays, D. (2014).
Evaluation of modelling approaches for predicting the spatial
distribution of soil organic carbon stocks at the national scale.Geoderma, 223-225, 97-107.
28. Martin, M.P., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C.,
Boulonne, L., & Arrouays, D. (2010). Spatial distribution of soil
organic carbon stocks in France. Biogeosciences Discussion 7,8409–8443, doi:10.5194/bgd-7-8409-2010.
29. Maruszczak, H. (1991). Stratigraphical differentation of Polish
Loesses. (In:) Maruszczak, H. (ed.) Main sections of loesses in
Poland . Lublin.
30. Meersmans, J., De Ridder, F., Canters, F., De Baets, S., & Van
Molle, M. (2008). A multiple regression approach to assess the spatial
distribution of soil organic carbon (SOC) at the regional scale
(Flanders, Belgium). Geoderma 143 (1-2), 1-13.
31. Meersmans, J., Van Wesemael, B., De Ridder, F., Fallas Dotti, M., De
Baets, S., & Van Molle, M. (2009). Changes in organic carbon
distribution with depth in agricultural soils in northern Belgium,
1960–2006. Global Change Biology , doi:
10.1111/j.1365-2486.2009.01855.x.
32. Meersmans, J., vanWesemael, B., Goidts, E., vanMolle,M., De Baets,
S., & De Ridder, F. (2011). Spatial analysis of soil organic carbon
evolution in Belgian croplands and grasslands, 1960–2006. Global
Change Biology 17, 466–479.
33. Meersmans, J., Martin, P.M., Lacarce, E., De Baets, S., Jolivet, C.,
Boulonne, L., Lehmann, S., Saby, N.P.A., Bispo, A., & Arrouays, D.
(2012). A high resolution map of French soil organic carbon.Agronomy for Sustainable Development 32, 841–851.
34. Meersmans, J., Arrouays, D., Van Rompaey, A.J.J., Pagé, Ch., De
Baets, S., & Quine, T.A. (2016). Future C loss in mid-latitude mineral
soils: climate change exceeds land use mitigation potential in France.Scientific Reports, 6 : 35798 , doi: 10.1038/srep35798.
35. Munsell Soil Color Charts (1994). Revised edition. Gretag
Macbeth, 617 Little Britain Road, New Windsor, NY 12553.
36. Neufeldt, H. (2005). Carbon stocks and sequestration potentials of
agricultural soils in the federal state of Baden-Württemberg, SW
Germany. Journal of Plant Nutrition and Soil Science 168 (2),202–211.
37. Paluszek, J. (2001). The influence of the position in the relief on
the aggregation and water resistance of aggregates colluvial soils on
loess (in Polish). Acta Agrophysica, 48, 99-105.
38. Paluszek, J., & Żembrowski, W. (2008). Improvement of erodable
soils in loess landscapes (in Polish). Acta Agrophisica 164, 4,160 pp.
39. Pignard, G., Dupouey, J.L., Arrouays, D., & Loustau, D. (2000).
Carbon stocks estimates for French forests. Biotechnology,
Agronomy, Society and Environment, 4, 285–289.
40. Pożaryska, K. (1967). Cretaceous-Tertiary transition beds in Poland
(except for the Carpathians) (in Polish with English summary).Geological Quarterly, 11 (3), 661-672.
41. Pożaryski, W., Maruszczak, H., Lindner, L. (1994).
Chronostratigraphy of Pleistocene deposits and evolution of the Middle
Vistula River Valley with particular attention to the gap through the
South Polish Uplands (in Polish with English summary). Prace
Państwowego Instytutu Geologicznego, 147, 1-58.
42. Rumpel, C., & Kögel-Knabner, I., (2011). Deep soil organic matter-a
key but poorly understood component of terrestrial C cycle. Plant
Soil 338 , 143–158.
43. Seibert, J., Stendahl, J., & Sorensen, R. (2007). Topographical
influences on soil properties in boreal forests. Geoderma 141
(1–2), 139–148.
44. Sorensen, R., Zinko, U., & Seibert, J. (2006). On the calculation
of the topographic wetness index: evaluation of different methods based
on field observations. Hydrology and Earth System Sciences, 10
(1), 101–112.
45. Superson, J., Jezierski, W., & Król, T. (2003). Impact of
deforestation of the Nałęczów Plateau on the development of sediments of
the Bystra valley bottom (In:) Waga, M., Kocel, K. (eds). Man in
the natural environment - record of activity (In Polish). Sosnowiec,
207-212.
46. Superson, J., Rodzik, J., Reder, J., Zgłobicki, W., Klimowicz, Z.,
& Franczak, Ł. (2016). Phases of alluvial fan development in a loess
area, Lublin Upland, E Poland. Quaternary International 399,31-45.
47. Suuster, E., Ritz, C., Roostalu, H., Kolli, R., & Astover, A.
(2012). Modelling soil organic carbon concentration of mineral soils in
arable land using legacy soil data. European Journal of Soil
Science 63 (3) , 351-359.
48. Tan, Z.X., Lal, R., Smeck, N.E., & Calhoun, F.G. (2004).
Relationships between surface soil organic carbon pool and site
variables. Geoderma 121 (3–4), 187–195.
49. Thompson, J.A., Pena-Yewtukhiw, E.M., & Grove, J.H. (2006).
Soil–landscape modeling across a physiographic region:Topographic
patterns and model transportability. Geoderma 133 , 57–70.
50. Treat, C.C., Kleinen, T., Broothaerts, N., Dalton, A.S., Dommain,
R., Douglas, T.A., Drexler, J.Z., Finkelstein, S.A., Grosse, G., Hope,
G., Hutchings, J. Jones, M.C., Kuhry, P., Lacourse, T., Lähteenoja, O.,
Loisel, J., Notebaert, B., Payne, R. J., Peteet, D.M., Britta, A.,
Sannel, K., Stelling, J.M., Strauss, J., Swindles, G.T., Talbot, J.,
Tarnocai, Ch., Verstraeten, G., Williams, Ch.J., Xia, Z., Yu, Z.,
Väliranta, M., Hättestrand, M., Alexanderson, H., & Brovkin, V. (2019).
Widespread global peatland establishment and persistence over the last
130,000 y. www.pnas.org/cgi/doi/10.1073/pnas.1813305116.
51. Urban, D., & Mikosz, A. (1996). Changes of plant cover in the
Ciemięga River valley and its surrounding in the vicinity of Ożarów in
Holocene. (In:) Puszkar, T. & Puszkar, L. (eds) Contemporary
trends in ecology. Behavioral Ecology (In Polish). Lublin, 211-222.
52. Van Wesemael, B., Lettens, S., Roelandt, C., & Van Orshoven, J.
(2005). Modelling the evolution of regional carbon stocks in Belgian
cropland soils. Canadian Journal of Soil Science, 85, 511–521.
53. Vos, C., Don, A., Hobley, E.U., Prietz, R., Heidkamp, A., &
Freibauer, A. (2019). Factors controlling the variation in organic
carbon stocks in agricultural soils of Germany. European Journal
of Soil Science , 70, 550–564
54. Wiesmeier, M., Hübner, R., Barthold, F., Spörlein, P., Geuß, U.,
Hangen, E., Reischl, A., Schilling, B., von Lützow, M., &
Kögel-Knabner, I. (2013). Amount, distribution and driving factors of
soil organic carbon and nitrogen in cropland and grassland soils of
southeast Germany (Bavaria). Agriculture, Ecosystems &
Environment 176, 39–52.
55. Wiesmeier, M., Barthold, F., Spörlein, P., Geuß, U., Hangen, E.,
Angst, G., Reischl, A., Schilling, B., von Lützow, M., & Kögel-Knabner,
I. (2014). Estimation of totalorganic carbon storage and its driving
factors in soils of Bavaria(southeast Germany). Geoderma Regional1 , 67–78.
56. Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H-J., & Kögel-Knabner, I. (2019). Soil
organic carbon storage as a key function of soils - A review of drivers
and indicators at various scales. Geoderma 333, 149–162.
57. Woźniak, P. (2015). High Resolution Elevation Data in Poland (In:)
Jasiewicz, Z., Zwoliński, Z., Mitasova, H. & Hengl, T. (ed.).Geomorphometry for Geoscience . Ministry of Science and High
Education of Poland, Adam Mickiewicz University in Poland, 13-14.
List of tables:
Table 1. Description of soil horizons and colluvial layers (sediments)
deposited in CDs. Soil profile pits were dug in the deepest point of the
CDs
Table 2. Characteristics of fossil soil horizons and colluvial layers
analysed for the calculation of SOC content in closed depressions (CDs).
Standard deviation of mean SOC (t) in CDs is 7.42 t
Table 3. Calculation of SOC stored in all 5367 CDs detected in the study
area (496.08 km2). *for reference see table 2, **
standard deviation is 7.421
Table 4. SOC stored in the topsoils of the CDs in the study area. *for
reference see Table 1, **for reference see Table 2
Table 5. Calculation of SOC stored in topsoil of all 5367 CDs detected
in the study area (496.08 km2). *for reference see
table 4, ** standard deviation is 2.18
Table 6. Properties of Luvisols (mean values from 6 pedons) of the
Nałęczów Plateau
(based on Paluszek 2001, 2008)
Table 7. SOC content in soils on the plateau and slopes of the Nałęczów
Plateau (based on Paluszek 2001, 2008). * mean thickness of A horizon
(see Table 6), ** mean SOC (%) in A horizon (see Table 6 )
List of figures:
Figure 1. Location of the Nałęczów Plateau
Figure 2. Typical CD infilled by a Holocene soil-sediment sequence in
loess landscape of Nałęczów Plateau
Figure 3. Typical CD, studied in Rąblów, a) location of the outcrops
(soil profile pits) and drillings along two transects, b) stratigraphy
and soil horizons in CD, c) cross-sectional structure of the CD
Figure 4. Spatial distribution of CDs per unit area in the studies
region. A unit area (hexagon) covers 10 ha
Figure 5. SOC content in the studied closed depressions (CDs)
Figure 6. Spatial distribution of SOC in the eroded loess landscape of
the Nałęczów Plateau. River valleys and main dry valleys were excluded
in these calculations
Figure 7. SOC from CDs in loess landscape
Figure 8. Relationship between CDs density and SOC enrichment
(Mg·ha-1). Calculation is based on 1791 polygons (10
ha in size), where CDs and loess plateau and slopes cover 100% of
polygon.
Figure 9. Contribution of SOC stored in CDs (SOC enrichment in %) to
overall SOC distribution in loess landscape
Figure 10. Contribution of SOC stored in CDs (SOC enrichment in
Mg·ha-1) to overall SOC distribution in the studied
loess landscape.
Figure 11. Relationship between CDs density and SOC enrichment (%) in
loess landscape (calculation is based on the same polygons as in Figure
7). Total number of datapoints corresponds to 1791 polygons (10 ha in
size).