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Abstract: Accurate  chemical  kinetics  are  essential  for  reactor  design  and  operation.

However, despite recent advances in “big data” approaches, availability of kinetic data is often

limited  in  industrial  practice.  Herein,  we  present  a  comparative  proof-of-concept  study  for

kinetic  parameter  estimation  from  limited  data.  Cross-validation  (CV)  is  implemented  to

nonlinear least-squares (LS) fitting and evaluated against Markov chain Monte Carlo (MCMC)

and  genetic  algorithm  (GA)  routines  using  synthetic  data  generated  from  a  simple  model

reaction. As expected, conventional LS is fastest but least accurate in predicting true kinetics.

MCMC and GA are effective for larger data sets but tend to overfit to noise for limited data.

Cross-validation  least-square  (LS-CV)  strongly  outperforms  these  methods  at  much  reduced

computational cost, especially for significant noise. Our findings suggest that implementation of

cross-validation with conventional regression provides an efficient approach to kinetic parameter

estimation  with  high  accuracy,  robustness  against  noise,  and  only  minimal  increase  in

complexity.
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1. Introduction

Precise knowledge of kinetic parameters of a chemical reaction system is fundamental

not only for improving our understanding of underlying chemical  processes, but also for the

accurate  design,  optimization,  and robust operation  of  reactors1-3.  Kinetic  models  of reactive

systems  allow  rapid  exploration  of  the  reaction  outcome  over  a  wide  range  of  operating

conditions4, the design of new experiments, and the synthesis of safety training systems5,6. 

In practice, a kinetic model is typically derived from the fundamental  material, energy

and momentum balances, including the equilibrium or reaction rates7-9. Training of the kinetic

model parameters then requires a set of laboratory experiments or availability of data from an

operating plant, where the acquisition of data is often expensive or challenging10-12. While much

focus is currently on high-throughput screening and “big data” approaches, in industrial practice,

availability of data is typically limited and often a relatively small number of data points have to

suffice to identify kinetic parameters of a chemical reaction13,14. Regular nonlinear least-squares

fitting  is  most  commonly  used  in  kinetic  fitting  of  the  experimental  data15-17.  However,  the

method is well-known to be sensitive to noise and, due to the deterministic nature of the method,

least-squares  estimation  can  get  stuck  at  local  minima18,19.  To  circumvent  this  issue,  more

sophisticated  optimization methods such as Markov chain Monte Carlo (MCMC), or genetic

algorithm (GA) are used to explore parameter spaces4,20,21. MCMC performs a random walk in

parameter space and may accept “bad” moves probabilistically (movements in the direction of

increasing objective function) to escape local minima22,23. GA, on the other hand, is a population-

based algorithm that performs parameter estimation based on the “survival of the fittest” in real

life  evolution24,25.  However,  both  of  these  methods  require  expert  knowledge  and  higher
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computation cost, although all implementations of GA and some implementations of MCMC are

parallelizable26.

In recent decades, significant advancements have been made towards building supervised

learning models from big data for fault detection,  process modeling, and control of chemical

reactions27-30. In contrast, in the case of limited data availability, which is still typical in industrial

practice, statistical validation of model-based reaction kinetics is often overlooked. Regardless of

the choice of algorithm, the accuracy of the kinetic prediction is often assessed by the error value

of the regression, which shows how well the model parameters match the experimental data31,32.

This approach, however, may result in an overfit, in which the model “memorizes” the specific

set of data, rather than “learning” the underlying trends29,33,34. This severely limits the capability

of the model to truly predict system behavior. Moreover, complex models are more likely to

overfit when data is limited32. To prevent overfitting, models need to be validated on “fresh” data

they have not seen yet35,36. For this purpose, a portion of the experimental data, the “hold-out”

(ideally 10-30% of the available data), is set aside to be used for validating after the model is

trained37,38. However, it can be challenging to hold out or exclude a fraction of the available data

from model training, particularly if availability of data is already limited. Besides, the selection

of data for hold-out may not be straightforward. For example, if the noise level or the number of

outliers  present in the validation data  is  significantly higher than in the training data,  model

assessment can become highly inaccurate36.

 As a solution to this problem, a cross-validation (CV) methodology can be applied to the

kinetic  parameter  regression39.  This  method  is  commonly  used  in  classification  problems  in

machine learning for accuracy reporting, in which the prediction output belongs to a discrete set

of categories or classes40-42. CV, similar to the “hold-out” method described above, is based on
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the splitting of the experimental data into two sets: a “training set” to build and predict the model

parameters,  and a  “validation  set”  to  assess  the  quality  of  the  model.  For  this  purpose,  the

experimental dataset is partitioned into k nearly equal-sized subsets or “folds”. The model is

trained using (k-1) folds, and the accuracy of the model is then validated on the fold that was left

out (i.e., the kth fold). This step is repeated k times for each possible permutation of folds with a

different subset left out each time as the validation fold. Upon completion, kinetic parameters

from all runs are then averaged based on the error of their respective validation subset39. 

In contrast  to classification problems and machine learning, CV has not been broadly

applied nonlinear regression problems or kinetic parameter estimation to-date30,43-45. Yet, it can be

implemented as a straightforward extension of the conventional nonlinear least-squares fitting

procedure and can be expected to yield significant benefit towards obtaining robust kinetics. This

is particularly true for cases with limited data availability, since CV ensures that the model is

ultimately trained with each data point, and, similarly, each data point has a chance of being

validated  against  the  model  parameters.  In  addition,  due  to  the  statistical  averaging  of  the

successive  runs,  the  possibility  of  an  overfit  is  minimized,  improving  the  algorithm’s  true

predictive ability. 

In the present work, a proof-of-concept study compares different algorithms for robust

kinetic parameter estimation in the presence of limited data. Specifically, a combination cross-

validation   plus  nonlinear  least-squares fitting  routine   is  compared to  stand-alone nonlinear

least-squares46, MCMC23, and GA24 algorithms for kinetic parameter estimation. The analyses are

performed on synthetic data for the purpose of probing dataset properties such as size (number of

experimental  points),  noise  level,  and  number  of  outliers.  The  water-gas  shift  reaction  with

simple,  well-established  lumped  kinetics  is  used  as  the  basis  for  a  simple  one-step  model
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reaction47. Synthetic data is generated by simulating the kinetic model over a series of operating

conditions and adding controlled levels of Gaussian white noise and outliers to the generated

data  points.  Method performance is  critically  assessed in  terms of both accuracy (prediction

accuracy of the true reaction kinetics) and numerical efficiency (number of function evaluations).

The overall aim of the study is to yield guidelines for the practitioner towards improved, robust

kinetic data fitting without requiring advanced training in mathematical methods. 

2. Computational Methods

2.1 Model Construction

A simple isothermal  steady-state  kinetic  plug-flow reactor model  is constructed using

conservation of mass equations and typical Arrhenius-type reaction kinetics: 

∂Cj
∂t

=0=
−1
ACS

·
∂ ṅ j
∂ z

+
mCat

V R

·∑
i

ν ij · r i
(1)

at z = 0: c j=c j , inlet,    at z = L: 
∂c j
∂ z

=0
(2)

Here Cj is the concentration of each component j (mol/m3), ACS is the cross-sectional area

of the tubular reactor (m2), ṅ is the molar flowrate of each component (mol/s), mcat is the catalyst

weight (kg), VR is the volume of the reactor (m3), ri is the rate of each reaction i (mol/kgcat/s) and

ν is the stoichiometric coefficient of each component. Conversion values are calculated with the

following equation:

Conversion , species i X i=
C i ,0−Ci
C i ,0

(3)

In this work,  water-gas shift  is chosen as a simple, industrially relevant model reaction

with well-known kinetics in the literature47:
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WGS:      CO + H2O ⇌ CO2 + H2

rWGS=k0 , f ·exp(
−EA ,f
R·T )· [CO ] [H 2O ]−k0 , b·exp(

−EA ,b
R·T ) · [CO2 ] [H2]                    (4)

Where rWGS denotes the (net) rate of reaction (mol/kgcat/s), k0,f and k0,b denote the pre-

exponential factors, and EA,f and EA,b the activation energy for the forward and back reaction,

respectively,  and  [CO],  [CO2],  [H2]  and  [H2O]  denote  the  concentrations  of  the  respective

reactants and products. 

However, an initial model evaluation revealed that one of the model parameters,  k0,b, is

not identifiable (explained further below in “profile likelihood” subsection). Hence, the value of

k0,b was  increased  by an  order  of  magnitude  in  this  study to  ensure  that  all  parameters  are

identifiable. Therefore, the model reaction is presented as a generic reaction throughout the paper

( A+B⇌C+D ), with parameters given in  Table 1. Synthetic data is generated by using kinetic

parameters  and  reactor  geometry  for  the  model  reaction  and  solving  the  material  balance

equations to determine the concentration of each species at the reactor exit.

Table 1 Kinetic parameters and reactor specifications of the model reaction 

Parameters Specifications

k0,f

3.0x105 molgcat−1

h−1atm−2

tube dia. 0.5 inch

k0,b

2.5x108 molgcat−1

h−1atm−2

tube length 1 ft

Ea,f 5.0x104 J/mol catalyst

wt.

1 kg

6



Varying  sizes  of  experimental  datasets  (inlet  and  outlet  concentration  values)  are

generated over the following parameter ranges: temperature (150℃, 175℃, 200℃, 225℃ and

250℃), molar inlet A to B ratio (0.25, 0.5, 1, 2 and 4), and gas hourly space velocity (GHSV)

(3.0x103h-1, 6.0x103h-1, 1.2x104h-1, 1.8x104 h-1,  2.4x104 h-1). After synthetic data is generated,

varying levels of Gaussian white noise are added to concentration values. If the added noise

generates  a  concentration  that  is  out  of  physical  range  (e.g.,  negative  values),  the  noise  is

recalculated until it satisfies the physical constraints. 

 Local sensitivity

Following model construction and data generation, sensitivity analysis is carried out to

determine  how  strongly  a  given  parameter  and  the  model  outcome  are  correlated48,49.  The

analysis is performed by calculating finite-difference based sensitivity coefficients, the result of

applying a small change to one parameter at a time for a given axial displacement (z):

si , j (z )=
∂ xi
∂θ j

=
xi (θ j+∆θ j , z)−xi (θ j , z )

∆θ j

(5)

Here θ is the fit parameter, and x is the dependent variable (e.g., concentration). These

sensitivity coefficients are then normalized for direct comparison:

sij (z )=si , j ( z )×
θ j
x i

(6)

Finally, relative sensitivity (RS) is calculated for each parameter:

RSi , j=
1
QZ

√∑
k=1

Q z

|si , j ( zk )|
2

(7)

Here zk (k ∈ [1, QZ]) are discrete axial displacements where concentrations are calculated

and QZ is the total number of calculations.

 Profile likelihood
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Finally,  profile likelihood analysis  is performed to determine if  model parameters are

identifiable  with the generated experimental data set.  For this purpose, a log-likelihood (LL)

value is calculated from model fitting, which is proportional to the normalized sum of square

errors50: 

¿≅−
1
2∑i

( y i−g ( z ,θ ) )
2

σ2
(8)

Here yi is the experimental data (e.g., concentration), g is the model-predicted output at

independent  variable  z (axial  displacement)  calculated with fit  parameter  set  θ,  and  σ  is the

standard deviation of the experimental data. Profile likelihood is the maximum log-likelihood,

i.e., the value of LL when the following objective function is minimized: 

PL j (p )= max
θ∈ (θ∨θ j=p)

¿ ( y∨θ ) (9)

Here p is the fixed parameter value, LL is the log-likelihood and θ is the parameter set.

The  profile-likelihood  (PL)  is  calculated  by  optimizing  fit  parameters  while  keeping  one

parameter at a time, θ j, at a pre-set value p. The optimization is repeated for a discrete range of

the  fixed  parameter  (θ j∈[θ j ,min,  θ j ,max])  and  PL values  of  each  estimation  are  plotted. If  the

resulting PL landscape does have a unique minimum, and exceeds the 95% confidence threshold,

the parameter is termed identifiable and estimable from the experimental data50.

2.2 Parameter estimation

In order to assess the predictive ability of each parameter estimation method, 20% of the

synthetic data is held out for external testing, and the remaining 80% of the data is used towards

model training. For the purpose of distributing the synthetic data evenly between training and

test sets, stratified sampling is carried out based on input conditions (e.g., temperature) instead of
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random sampling. After adding the same level of noise to each set, the model is trained with the

generated data (Figure 1). 

Figure 1 The simplified schematic of the computational workflow

Agreement with true kinetics is determined by calculating the mean square error (MSE)

of the “true test  set”,  which is  generated from the actual  kinetic  parameters.  Comparison of

estimated and real  parameters is  also tabulated in Table S1-S3. In addition,  the MSE of the

“noisy  test  set”  is  reported  as  a  representative  metric  of  a  real-life  scenario  where  the  true

kinetics  are  not  known,  and only noisy experimental  data  will  be  available  for  testing.  The

number of function evaluations  is  also used to  directly  compare the computational  cost.  For

statistical comparison of all methods, for each dataset size and noise level combination, 50 repeat

parameter estimations are carried out on the same generated data. T-tests are performed on the

MSE values of the test sets and the number of function evaluations from each method. For more

in-depth comparison of LS and LS-CV methods, where a different dataset is generated for each

repeat run, paired t-tests are performed. Prior to the analyses, the normality assumption of t-test
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was  checked  by  Kolmogorov-Smirnov  test,  demonstrating  that  t-test  was  the  appropriate

statistical analysis51,52.

Nonlinear  least-squares  (LS):  The  LS  regression  is  performed  using  MATLAB’s

lsqnonlin function based on Levenberg-Marquardt (LM) method with default tolerance values46

and the following objective function:

Objective function=∑
i=1

m

∑
j=1

n

(C i , j
exp

−C i , j
Model )

2 (10)

Here  C  refers  to  the  concentrations,  i  refers  to  the  components  and  j  refers  to  the

experimental (or generated) data point for each component.

Cross-validation nonlinear least-squares (LS-CV): For LS-CV, data is divided into folds

via stratified sampling using the  crosvalind function in MATLAB. Stratified sampling assures

that  the  distribution  of  the  input  conditions  (e.g.,  temperature)  on  the  overall  dataset  is

represented similarly on the individual folds53. Within each run, a different fold of the data is left

out for validation while the remaining folds are used for training the model using nonlinear least-

squares fitting54,55. The runs are repeated k times (the number of folds). As a result, an ensemble

of parameters and the associated validation errors are obtained from each run, which are then

weighted based on their respective validation errors to determine overall fit parameters:

Θ=∑
i=1

k

ωi θi,  
ωi=

1/Ei , test
2

∑
i=1

k

1/E i ,test
2

(11)

Here   is  the  fitted  parameters  of  each  run,   is  validation  error  weight,  E  is  the

validation error of each run, and k is the number of folds, which was chosen to be 5 for a dataset

size of 25, and 10 for larger dataset sizes.
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Markov chain Monte Carlo (MCMC): MCMC is performed using the Metropolis Hasting

algorithm56. The random walks are sampled from a log-normal distribution for pre-exponential

factors and from a normal distribution with a standard deviation of 5000 kJ/mol for activation

energies. Each move that reduces the objective function is accepted. Moves that increase the

objective function are accepted if the calculated Metropolis criterion is larger than a uniformly

generated random number. The Metropolis criterion is calculated using the following formula: 

β=e
−(SSEnew−SSEold )

2σ 2T
(12)

Here β is the Metropolis criterion, SSE is the sum of squared error, σ 2 is the variance of

the SSE values and T is the temperature factor, which adjusts the stringency of the algorithm and

is  selected  as  3  for  dataset  size  of  25  and 5  for  larger  dataset  sizes.  Metropolis  Hasting is

implemented with a simulated annealing algorithm, which slowly decreases the probability of

accepting worse solutions as the solution space is explored57,58. Based on 20 initial realizations

performed using three different noise level and data set size combinations with 50000 iterations,

the maximum number of iterations is selected as 20000 since no improvement after the 20000th

step was observed. From the analysis on the same set of realizations, the runs are terminated if

the best objective function does not change for 2000 steps.

Genetic algorithm (GA): The GA generates a group of candidate parameters (population),

which are generated from a given parameter space with Latin hypercube sampling59. The initial

population size is selected as 400, and the elitism parameter is selected as 0.1, which discards the

parameter candidates that rank below the top 10% based on the objective function. The elite

population is used to generate a new population using a “crossover” procedure, in which the

parameters  of  two  randomly  selected  samples  from  the  elite  population  are  averaged  with

random weights  generated  from standard  uniform distribution  to  create  new offspring.  This
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procedure is repeated until population size reaches 400. Lastly, 10% of candidate parameters are

subjected to mutation, which introduces diversity into the population by allowing random walk

(factored  by  a  log-normal  random  variable)  of  the  parameter  space.  The  optimization  is

terminated if the best objective function does not improve for 20 generations. 

3. Result and Discussion

3.1 Model Evaluation

Initially,  synthetic  data  are generated by simulating the constructed reaction model at

steady state conditions with varying operating conditions,  and by adding controlled levels of

noise, as described in Section  2.1. Ranges of these operating conditions are selected to ensure

that the data covers a wide range of conversion values to avoid a highly localized kinetic model.

Representative noise-added generated data, along with the distribution of conversion, are shown

in  Figure 2.  Prior to parameter estimation, local sensitivity and profile likelihood analysis are

performed on the kinetic model to ensure that the model parameters are identifiable and have a

significant  effect  on  the  model  outcome,  i.e.,  that  the  estimation  problem is  well  posed. In

practice, kinetic modeling studies are typically conducted under the assumption that the model

parameters  are  identifiable  based  on  the  available  experimental  data  without  verifying  this

assumption. These pre-analysis tools could be useful for experimentalists and practitioners to

establish  confidence  in  fitted  parameters,  model  reduction,  and  the  design  of  experiments60.

Accordingly, the calculated relative sensitivities, which are expressed as the percent change in

output concentrations of all species due to a slight change (1%) in model parameters, are shown

in  Table 2. Model outputs are sensitive to all kinetic parameters, activation energy having the

highest relative sensitivity due to the exponential relation in the Arrhenius equation.
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Figure 2 A) The distribution of species A conversion under varying operating conditions (inlet temperature,

input ratios and GHSV values), and B) Representative generated concentration data of species A and species

C (dataset size: 100, noise level:0.1)

Table 2 Relative sensitivities of kinetic parameters to output variables

Relative Sensitivity

(%)
CA CB CC CD

k0,fwd 7.47 7.47 7.43 7.43

k0,bwd 6.27 6.27 3.50 3.50

EA,fwd 86.26 86.26 89.07 89.07
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Similarly, likelihood profiles are generated using representative generated data, which are

given in Figure 3. The presence of clearly defined minima in the identifiability plots for the pre-

exponential factors and the activation energy confirms that the model parameters are estimable

within the temperature range tested here (150-250 )℃ . 

5 5.5 6 6.5 7 7.5 8 8.5 9
0

1
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log k0 

-2
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log Ea,fwd 
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L

Figure 3 Profile likelihood plots for the model parameters (For plotting purposes, the minimum of -2PL is

subtracted from all -2PL values.) 

3.2 Accuracy and Efficiency Comparison of All Methods

In the first stage of our comparative study, all four methods (LS, LS-CV, MCMC, and

GA) are comparatively evaluated with regard to their accuracy and computational efficiency.

This comparative parameter estimation study is carried out using three different pairs of dataset

size  (n)  and  noise  levels  (nl)  to  observe  the  effect  of  dataset  properties  on  algorithm

performances. All 3 operating variables can take on 5 discrete values (Figure 2A), resulting in a

maximum dataset size of 125 datapoints. Three subset sizes (n = 25, 50, and 100) were chosen,

each with a different noise level (decreasing from nl=0.5 for the smallest dataset to nl = 0.1 for

the  largest  one),  resulting  in  the  following combinations  for  the  analysis:  data  set  1:  n=25,
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nl=0.5;  dataset  2:  n=50,  nl=0.2;  dataset  3:  n= 100,  nl=0.1.  The accuracy  of  the  methods  is

determined based on their closeness to the true kinetics, as indicated by the MSE against the test

set (Figure 4). In addition, the efficiency or computational cost is determined by the number of

function  evaluations  required  to  derive  the  parameters  (Figure  5).  For  stochastic  methods

(MCMC, GA, LS-CV), 50 repeat runs (using different folding splits) are carried out on the same

generated dataset and training-test split for direct comparison and the statistical significance is

reported by p-values (Table 3 and Table 4). 

Kinetic accuracy comparison of all methods with different dataset size and noise level

combinations are shown in Figure 4. Distribution of test set MSE values for LS-CV, MCMC and

GA methods are shown in boxplots, in which mean and median values are shown by “x” and

“–”, respectively. The interquartile range is shown by box, whereas the outliers are denoted by

the dots. The list of derived kinetic parameters is given in Table S1-S3. As apparent in the MSE

distribution plots, LS-CV and the stochastic methods are able to predict the true kinetics with

comparable accuracy for the cases with a larger number of datapoints (n:50,100) and lower noise

levels  (nl:0.1,  0.2),  and all  three outperform the simple  nonlinear  least-squares  (LS) method

(Figure  4A-B).  LS-CV performs  similarly  to  the  random search  methods  due  to  its  use  of

multiple  local  solutions  (one per  fold)  that  are  statistically  averaged to  provide a  composite

parameter estimate. Slight differences in mean errors are observed for LS-CV, MCMC and GA

methods, but they are not statistically significant for these datasets (Table 3). In contrast, for the

runs  with  a  smaller  number  of  datapoints  and  relatively  higher  noise  (n:25,  nl:0.5),  LS-CV

significantly outperforms both MCMC and GA methods in terms of accuracy of true kinetics

(see Figure 4C). In these runs, both MCMC and GA had the lower training errors amongst all

methods,  i.e.  they  appear  to  fit  to  the data  much better.  However,  since these methods also
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overfitted to experimental noise in the data, they failed to capture underlying kinetics, hence

higher MSE on the true parameter test set. On the other hand, LS-CV implementation efficiently

filters  out  noise  in  the  data  due  to  the  model  validation,  which  is  based  on  all  possible

permutations of the (noisy) data. 

A B C

Figure 4 Kinetic accuracy (test set MSE) comparison of all methods with different dataset size and noise level

combinations (A: n=25, nl=0.5; B: n=50, nl=0.2; C: n= 100, nl=0.1). Mean and median values are denoted by

“x” and “–”, respectively. Note that the magnitudes of y-axes are different.

The number of function evaluations necessary to perform the parameter estimation task is

used to compare the computational efficiency of the four different methods. As expected, LS

requires  the  lowest  number  of  function  evaluations  due  to  the  deterministic  nature  of  the

optimization  algorithm.  The  total  number  of  objective  function  evaluations  is  increased

significantly for more complex algorithms, MCMC and GA, due to their stochastic nature, and

directed random walk strategies.  Due to population size,  GA requires the highest number of
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function evaluations, although estimations with independent candidate parameter sets could be

run in parallel.  LS-CV, although less efficient  than regular  LS, requires  3- to 10-fold fewer

function evaluations compared to MCMC and GA. Similarly, an order of magnitude increase in

run time from LS-CV to the probabilistic methods is also observed (all runs were performed on

Intel(R)  Core(TM)  i7  3.70GHz,  6  Cores.)  This  increased  efficiency  of  LS-CV  is  found

consistently across the datasets, as confirmed by a t-test performed on different data set size and

noise level combinations (Table 4).  This suggests that CV in combination with LS can provide a

straightforward solution to parameter estimation problems by adding minimal complexity while

obtaining comparable or better accuracy than more complex stochastic methods. 

A B C

Figure 5 Computational cost (number of function evaluations) comparison of all methods with different

dataset size and noise level combinations (A: n=25, nl=0.5; B: n=50, nl=0.2; C: n= 100, nl=0.1). Mean and

median values are denoted by “x” and “–”, respectively. 
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Table 3 Statistical analysis of kinetic accuracy (test set MSE) comparison of all methods with different dataset

size and noise level combinations (p-value code: *<<0.00001)

n=100 nl= 0.1 n=50 nl= 0.2 n=25 nl= 0.5

LS-CV MCMC GA LS-CV MCMC GA LS-CV MCMC GA

mean 0.0074 0.0071 0.0077 0.0596 0.0622 0.0690 1.0789 2.3916 2.2023

std dev 1.23x10-3 1.18x10-3 1.30x10-3 1.42x10-2 2.46x10-2 1.94x10-2 2.10x10-1 9.20x10-2 2.58x10-1

p-value >0.05 >0.05 >0.05 >0.05 * *

Table 4 Statistical analysis of computational cost (number of function evaluations) comparison of all methods

with different dataset size and noise level combinations (p-value code: *<<0.00001)

n=100 nl= 0.1 n=50 nl= 0.2 n=25 nl= 0.5

LS-CV MCMC GA LS-CV MCMC GA LS-CV MCMC GA

mean 4381 13657
1708

9
3494 11212 15973 1652 15198 18582

std dev 132 1314 5975 259 3972 5452 285 1648 6960 

p-value * * * * * *

3.3 Effect of Dataset Size, Noise and Outliers

Based on the above comparison between the three advanced methods (LS-CV, MCMC,

and GA), LS-CV is selected for a more detailed investigation of the effect of dataset properties,

namely dataset size, noise, and outliers, in comparison to simple LS. Performance comparisons

are  conducted  on  independently  generated  datasets  for  each  run  to  ensure  that  results  are

reproducible on different datasets. In other words, using the same kinetic model and noise level,

multiple random dataset generations and training-test splits are performed. Hence, paired t-tests

are carried out to evaluate statistical significance after conducting Kolmogorov-Smirnov Test of
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Normality51,52 to  confirm  data  distribution  can  be  assumed  to  be  normal.  The  analyses  are

conducted with all possible combinations of three levels of dataset sizes (25,50,100) and four

levels  of noise (0.1,  0.2,  0.3,  0.5).  The accuracy of the parameter  estimation,  similar  to the

previous study, is determined based on the MSE against the test set. 

Kinetic accuracy (test set MSE) comparison of LS and LS-CV methods with increasing

level  of noise and dataset  size is illustrated in  Figure 6 by a representative run whereas the

statistical analysis of all repeat runs is shown in Table 5. The list of derived kinetic parameters is

given in Table S1-S3Error: Reference source not found. Accordingly, LS-CV outperforms the

regular LS fitting in all cases with varying levels of improvement. Paired t-tests for all runs show

statistical significance of the results (p < 0.01). 

0.1 0.2 0.3 0.5
0.00

0.80

1.60

2.40

n=25

te
st

 s
et

 M
SE

                      *     *     **    **    

0.1 0.2 0.3 0.5
0.00

0.40

0.80

1.20

n=50

noise level (nl)    
         **    *     *     **                                   

0.1 0.2 0.3 0.5
0.00

0.20

0.40

0.60

n=100

          **    *     *     *                                   

Figure 6 Kinetic accuracy (test set MSE) comparison of LS and LS-CV methods with all dataset size and

noise level combinations. Note that different magnitudes for y-axes are used on the figures. (p-value codes:

*<0.0001, **<0.01)
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Table 5 Statistical analysis of kinetic accuracy (test set MSE) comparison of LS and LS-CV methods with all

dataset size and noise level combinations (p-value codes: *<0.0001, **<0.01)

nl LS LS-CV %imp. p-value

n=25

0.

1 0.06 0.04 20.3% *

0.

2 0.28 0.18 36.1% *

0.

3 0.83 0.43 48.3% **

0.

5 2.37 0.94 60.6% **

n=50

0.

1 0.017 0.016 9.32% **

0.

2 0.09 0.06 30.31% *

0.

3 0.35 0.20 41.08% *

0.

5 1.05 0.46 56.43% **

n=100 0.

1 0.009 0.008 7.9% **

0.

2

0.04 0.03 23.3% *
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0.

3 0.12 0.09 30.0% *

0.

5 0.31 0.17 43.9% *

For both methods, the MSE decreases as expected with increasing number of datapoints

since more information is available to train the kinetic model. Although LS-CV is consistently

more accurate than LS in predicting true kinetics, the relative improvement is more pronounced

on limited and more noisy data since LS is prone to overfitting.  In LS-CV, this  tendency is

countered  by  the  fact  that  the  training  folds  with  higher  noise  will  have  a  relatively  larger

validation error and hence will be weighted low in the final kinetic parameter value. LS-CV is

therefore exceptionally robust against experimental noise. Further comparison of the estimated

parameters from these methods shows that LS-CV consistently matches the absolute values of

real parameters better compared to LS.

In practice, of course, the “true kinetics” are not available and the goodness of the fit

hence needs to be tested against the experimental test data, i.e., the hold-out from the original

data set. This data will have the same noise level as the training data (since it is part of the same

experimental data set). To mimic this, MSE values of the same runs are also calculated against

the noisy test set as a real-life representative metric, where synthetic (non-noisy) data do not

exist.  Consistent  with  the  findings  discussed  above,  the  relative  improvement  of  LS-CV

decreases with increasing dataset  size for the same noise level,  and larger datasets  are more

tolerant to noise. However, while LS-CV significantly improves the prediction accuracy of true

kinetics, it predicts noisy test data only marginally better than simple LS (Table 6). Remarkably,
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a  “naïve  observer”  would  hence  rate  both  methods  (almost)  equally  competent  in  deriving

accurate kinetic parameters, while in fact LS-CV was able to unveil the true kinetics underlying

the noisy data with significantly improved accuracy as shown above. 

Table 6 Kinetic accuracy (noisy test MSE) comparison of LS and LS-CV methods with all dataset size and

noise level combinations (p-value codes: *<0.005, **<0.05 )

Noisy test MSE n=25 n=50 n=100

nl LS LS-CV p-val. LS LS-CV p-val. LS LS-CV p-val.

0.1 1.75 1.74 ** 1.73 1.73 * 1.90 1.90 **

0.2 7.16 7.07 ** 7.93 7.87 * 7.88 7.86 *

0.3 15.90 15.49 ** 14.19 13.97 * 13.17 13.11 **

0.5 44.77 41.94 * 38.96 37.48 ** 28.31 27.81 **

Experimental  data,  in  particular  data  from  industrial  operations,  is  often  subject  to

outliers, i.e., “bad” data with errors above the general experimental noise level that can be caused

by  operator  error,  temporary  malfunctioning  of  sensor,  or  similar  unpredictable  effects.  To

evaluate  the ability  of LS-CV and LS to handle such outliers,  their  effect  is  investigated by

progressively increasing the number of outliers in the data. In order to reliably assess method

performance against outliers, they are only added to the training data. Outliers are generated by

either  adding or  subtracting  one standard deviation  of  the  variable  value  to  the noise-added

training data. For all outlier analyses, the same dataset (with same noise points) is used for direct

comparison (n:50, nl:0.2) and only outliers change. The MSE against the “true kinetics” test set

are tabulated in  Table 7. Clearly and unsurprisingly, LS fitting becomes significantly worse at

predicting  true  kinetics  with  increasing  number  of  outliers.  The  accuracy  of  the  LS-CV
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prediction also decreases with more outliers, although the adverse effect is significantly lower

compared to LS. Similar to its handling of noise, LS-CV can effectively filter out outliers via

statistical averaging.

Table 7 Effect of outliers in training data on the kinetic accuracy (test set MSE) comparison of LS and LS-CV

methods (p-value codes: *<0.0001, **<0.01)

n=50 nl= 0.2

no outliers - training

n=50, noise nl = 0.2

2 outliers - training

LS LS-CV %imp. p-val. LS LS-CV %imp. p-val.

true MSE 0.091 0.064 30% * 0.115 0.066 42% *

n=50 noise nl = 0.2

5 outliers - training

n=50, noise nl = 0.2

10 outliers - training

LS LS-CV %imp. p-val. LS LS-CV %imp. p-val.

true MSE 0.290 0.092 67% * 0.953 0.265 72% **

Table 8 Effect of outliers in test data on the comparison of LS and LS-CV methods 

n=50 nl= 0.2

no outlier

n=50, nl= 0.2

5 outliers - training

n=50, nl= 0.2

5 outliers - test

LS LS-CV %imp. LS LS-CV %imp. LS LS-CV %imp.

noisy 

test MSE
7.93 7.87 0.76% 8.79 8.12 8% 26.53 26.53 0.015%

Note that addition of outliers to the test dataset will throw off any fitting method, unless

data is preprocessed with existing outlier filtering tools61,62. A separate run, in which five outliers

are added only to the noisy test dataset, shows no significant improvement between LS and LS-

CV methods, as shown in  Table 8. In this case, the model is trained with comparatively good

data and then its “accuracy” is tested again bad data, which is of course inherently doomed since
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the  measure  of  accuracy  is  fundamentally  flawed.  This  simple  “sanity  test”  highlights  the

importance of sampling when using a real-life experimental test  dataset for model validation

purposes: great care should be taken to assure that any test data is as free of outliers as possible

since the calculated accuracy of the fitting may otherwise result in an incorrect interpretation of

the results. While here the “flawed” test data (i.e. test data with outliers) was kept artificially

constant, CV methods will minimize the danger of this occurring, due to the partition of dataset

into  folds  and repeated  estimations  based on all  permutations  of  these folds.  This  assures  a

sampling of data in a way that is more resistant to the presence of outliers since only a subset of

the runs will contain outliers in the test data (as illustrated further above).

4. Conclusion

Despite recent advancements in high-throughput screening, availability of kinetic data in

industrial practice is often limited and identification of kinetic parameters has to proceed based

on a small number of data points. In this work, we conducted a proof-of-concept evaluation of

different algorithms for kinetic parameter estimation from limited data, where  cross-validation

combined with nonlinear least-squares fitting (LS-CV) is evaluated against conventional least-

squares (LS), Markov chain Monte Carlo (MCMC), and genetic algorithm (GA) routines. 

Our results show that LS is, unsurprisingly, overall the fastest but least accurate method

in predicting kinetics. While GA and MCMC are found to be effective for larger data set sizes

with lower measurement noise, LS-CV strongly outperforms these methods when the training

data is very noisy. In addition, LS-CV requires significantly fewer objective function evaluations

compared to stochastic methods, i.e. it is computationally more efficient. 
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A more  detailed  comparison  between  LS-CV and LS confirms  that,  remarkably,  the

former can effectively unveil the true kinetics underlying noisy data. Similarly, LS-CV is also

successful in filtering out outliers in the experimental data and capturing the true kinetics, due to

the use of repeated estimations on different partitions of the training dataset. This randomized

partitioning (“folding”) inherent to CV also allows the data to be sampled more homogeneously

and  make  use  of  the  entire  available  data  set,  which  is  critical  for  a  more  accurate  model

validation, in particular when few data are available. 

Overall,  our study indicates that the implementation of a cross-validation routine to a

simple nonlinear least-squares fitting algorithm can provide a robust, easy-to-use,  and highly

efficient approach to identifying reliable reaction kinetics in the face of limited and/or noisy data,

and hence constitutes a valuable tool for researchers and practitioners alike.
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