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Phase coexistence in fluidization

Feng Lu1, Chenxi Zhang1,2*, Yao Wang1, Weizhong Qian1, Fei Wei1*

First author: 

Dr. Feng Lu  

E-mail: thu_feng@mail.tsinghua.edu.cn

Corresponding author: 

Dr. Chenxi Zhang 

E-mail: cxzhang@mail.tsinghua.edu.cn

Professor Fei Wei 

E-mail: wf-dce@mail.tsinghua.edu.cn

1. Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of

Chemical Engineering, Tsinghua University, Beijing 100084, China

2. Joint Research Center of Fluid Syngas to Aromatics, Department of Chemical Engineering,

Tsinghua University, Beijing 100084, China

mailto:thu_feng@mail.tsinghua.edu.cn
mailto:wf-dce@mail.tsinghua.edu.cn
mailto:cxzhang@mail.tsinghua.edu.cn


ABSTACT

The  coexistence  of  granular  liquid-like  phase  (cluster)  and  gas-like  phase  (void)  in

fluidization,  a  spontaneous  symmetry-breaking  dissipative  state,  contributes  to  excellent

mixing behavior in multi-phase reactors. In present study, a universal granular state equation

to describe phase coexistence far from critical point is developed, where both the inelastic

solid-collision and asymmetrical instability is taken into consideration. Catastrophe theory is

applied  to  find  the  stable  boundary  of  phase  coexistence,  and  verified  by  cold-flow

experiment with different solid pressure. A phase diagram, based on both theoretical analysis

and experimental study, is given as a useful guideline of design and operation of efficient

multi-phase reactors. 

SIGNIFICANCE

A simple but universal granular state equation, verified by a cold-flow experiment, is

developed to describe phase coexistence of granular liquid-like phase (cluster) and gas-like

phase  (void)  in  fluidization.  Based  on  nonlinear  stability  analysis,  a  phase  diagram  is

provided to find the boundary between homogeneous state and phase coexistence, as a useful

guideline of design and operation of efficient multi-phase reactors.

[Graphic Abstract is here]



INTRODUCTION

Granular system, a fundamental idealization of far-from-equilibrium dissipative state,

can display three phase similar with molecular media, i.e., solid-like, liquid-like and gas-like

phase, classified by different granular volume fraction[1,2]. In gas-solid fluidization, inelastic

dissipation  from the  interparticle  collision  should  be  compensated  by  extra  energy  input

continuously,  approaching  to  static  equilibrium[3].  Generally,  homogenous  state  becomes

unstable  with  respect  to  small  density  perturbations,  that  is  a  granular  liquid-like  phase

(called “cluster”) coexistence with granular gas-like phase (called “void”)[4,5]. The effective

void-cluster interaction plays a key role in the performance of multi-phase reactors, such as

excellent fluidity and mixing capability[6-8]. Therefore, the mechanism and stability analysis of

phase coexistence in fluidization is required to be carefully investigated. 

In statistical physics, gas-liquid coexistence phenomenon can be well described by the

classical van der Waals equation when molecular volume and correction of van der Waals

attraction is taken into consideration[1]. Similarly, granular matters also exhibit a plethora of

spontaneous  symmetry-breaking  instabilities[9,10].  Both  granular  hydrodynamics  and  direct

molecular-dynamics simulations[11-13] show that the granular phase coexistence close to the

critical  point  is  strikingly  similar  to  the  spinodal  decomposition  of  molecular  gas-liquid

transition. However, both theorical analysis and experiment for phase coexistence in dense

fluidization, as an intrinsically system far from critical point, are few. In mathematics, phase

coexistence is a typical multiple-roots problem, where the freedom of variables is more than

constraints[14-16]. In this case, the homogenous solution is non-unique and cluster and void is

represented  by  another  attractive  fixed  point,  respectively.  The  discussion  of  phase



coexistence in fluidization can be reduced into the stability analysis of multiple roots[17]. As is

well known, the catastrophe theory, first proposed by Thom[18], is one of the most appreciated

stability  analysis  of  nonlinear  processes.  Hence,  it  is  a  suitable  option  to  capture

characteristics of the nonlinear instability, and its simplicity allows for a detailed analytic

study of granular phase coexistence. 

In  present  study,  the  coexistence  of  cluster  and  void  in  gas  solids  fluidization  is

investigated by both modeling and experimental study. After introduce solid pressure (ps),

number density (ns) and temperature (Θs), a universal granular state equation is developed

where  both  inelastic  particle-particle  collision  and  asymmetric  instability  are  taken  into

consideration,  and  catastrophe  theory  is  applied  to  find  the  boundary  of  stable  phase

coexistence. A cold-flow experiment using Geldart’s A particles with 1 to 10 bar pressure is

given to verify the granular state equation, where the solid-volume fraction (εs) and solid

pressure (ps) is obtained by a dual optical probe and special pressure transducer, respectively.

A phase diagram of coexistence between voids and cluster, verified by experimental study, is

provided as a useful guideline of operation and design of multi-phase reactors.

MODELING & STABILITY ANALYSIS

Modeling

In gas-solid fluidization, energy input via gas stream from the distributor balances the

dissipation from interparticle collisions, so the system reaches a steady state[3,11-13].  Assume

the kinetic energy dissipation caused by inelastic collisions will convert to internal energy

I(rjk),  which are related to the position of particles ri.  Therefore,  the partition function of

solids, Zs, is given by



(1)

The first integral term on the right of Eq.(1) is kinetic energy which has a similar format of

molecular  system and the second term is  dissipation from particle-particle  interaction.  In

order to obtain integral calculation, the Mayer function gjk is defined as

(2)

In the dense fluidization, it is reasonable to neglect quadratic terms in Mayer function where

interaction between only two adjacent particles is taken into account.  Consider a granular

medium that  begins in  homogenous state  with Maxwellian distribution of velocities.  The

dissipation from inelastic particle collisions results in deviation from initial state, including

(i) a reduction in the relative velocity of particles, accounted by a coefficient of restitution (e),

and (ii) deviation from Maxwellian distribution of velocities, described by radial distribution

function G[19,20]:

(3)

where  εsmax is  maximum  solid-volume  fraction  which  corresponds  to  “packed-state”  of

particles (εsmax = 0.636)[20].

Here, we define solid temperature Θs, like in molecular fluids, to be proportional to the

kinetic energy per particle. The partition function Zs can be expressed as a convenient form of

free energy Fs based on thermodynamics law[1]: 



(4)

where

(5)

Obviously,  the  constant  of  a and  b represent  to  the  inelastic  dissipation  and the  particle

volume, respectively. After the introduction of  solid number density  ns, the  Eq. (4) can be

rewritten as a granular state equation,  i.e., the relationship among  solid number density  ns,

solid pressure ps and temperature Θs:

(6)

When there is no inelastic collision (e = 1) and particle volume can be neglected (r0 =0), the

granular state equation will be reduced to the form of ideal-like state equation, where no

phase coexistence will occur. 

Stability analysis

The hydrostatic problem of phase coexistence in fluidization can be fully described by

two parameters: a and b, and the nonlinear characteristics of granular state equation in three-

dimensional space belongs to cusp-type catastrophe. Therefore, the critical point from phase

coexistence to homogeneous state is determined by the following two conditions: 

(7)



In this case, those two governing parameters (a and b) can be well expressed with respect of

variables in the critical state:  

(8)

where Θsc, and psc is the solid temperature and pressure at the critical point. Therefore, the Eq.

(6) can be re-written as the following dimensionless universal granular state equation

(9)

where

, , (10)

[Figure 1 is here]

For a certain gas solids fluidization, the coefficients will depend on the boundary and

granular characteristics. Nevertheless, a precise knowledge of those values is not necessary to

deduce the cusp-type normal form. Here, we construct the nonlinear surface of solid pressure

as  illustrated in  Figure 1(a),  where the x- and y-axe is  p*
s and  Θ*

s,  respectively.  On this

topological surface, with the decrease of solid pressure, the granular system may change from

homogeneous state to phase coexistence, passing by folding section. As shown in the Figure



1(b),  when  ps >  psc,  fluidization prevails at  homogeneous state (only one root)  where the

contribution from inelastic collision is suppressed due to limited space. The granular system

evolves thereafter with the decrease in granular pressure until phase coexistence, where ps <

psc. Importantly, there are three roots of nonlinear granular state equation, which is called as

multiple steady state, implying non-uniqueness of the steady-state solutions of Eq. (9), and it

paves the way to symmetry-breaking state. 

A simple but universal state equation, after scaling the variables, yields the cusp-type

normal form, and the catastrophe theory allows us to understand the physical mechanism of

phase coexistence. 

EXPERIMENTAL & MEASUREMENT

Experiment unit

In  order  to  verify  our  theoretical  analysis  of  granular  state  equation,  a  cold-flow

experiment is carried out in a fluidized bed as shown in Figure 2(a), which consists of a

stainless-steel column (800 mm in height and 100 mm in diameter) and an internal filter on

the  top  to  continuously  return  entrained  particles  to  the  solids  bed.  A plate  distributor

(fractional free area is 0.2%) is used to ensure gas solids uniformity at the wide range of gas

velocity from 0.051 to 0.136 m/s. The fluidized bed is operated at ambient temperature and

the operating pressure ranged from 1 to 10 bar. Four axial positions: 0, 150, 300, and 450mm

above the distributor are located to measure both local solid pressure (ps) and solid-volume

fraction (εs). The solids is industrial FCC catalyst with a particle density of 1400 kg/m3 and a

Sauter mean diameter of 75 μm.  

[Figure 2 is here]



Measurement of solid pressure

The solid pressure (ps) is  measured using a differential  pressure transducer made by

FLOTU, which is capable of resolving the solid pressure independently of gas pressure. As

shown in the Figure 2(b), the front of diaphragm experiences both gas and solid pressure.

Since a small passage with mesh admits gas but no solids, the back of diaphragm experiences

only gas pressure. Thus, the net deflection of the diaphragm reflects the solid pressure[20].

Figure 2(b) indicates that the solid pressure (ps) non-linearly increases with total operating

pressure (po) in the range of measurement.

Measurement of solid-volume fraction

A dual-optical density probe made by FLOTU is used to obtain the transient signals of

solid-volume fraction (εs) in the fluidized bed. The front tip of probe is 2×2 mm2 ensuring that

the measurements reasonably represent the passing solids without causing much disturbance.

Because  of  the  nonlinear  relationship  between  the  output  signal  and  the  solid-volume

fraction,  a  reliable  calibration is  required as  shown in the Figure 2(c).  The measurement

frequency is 200 Hz with 120 s sampling time after the fluidized bed reaches steady-state

condition. The details of calibration can be referred in our recent work[8].

RESULTS & DISCUSSION

The effect of solid pressure on phase co-existence 

Figure  3(a)  illustrates  the  transient  signals  of  solid-volume  fraction  under  different

operating  pressure.  In  the  1 bar  operating  pressure,  the  transient  signals  of  solid-volume

fraction contain evidence of phase coexistence: the signals mainly reside at a high value,

indicating the cluster phase dominates the flow, but a small  amount of steep decrease of



signals can be observed as well implying voids are passing by the front of optical probe. In

comparison,  there  is  nearly  no  signal  fluctuations  in  the  homogeneous  state  when  the

operating pressure is to 10 bar. It reflects that fluidization prevails at homogeneous state,

where only one ordered granular liquid-like structure occurs.

[Figure 3 is here]

The normalized probability distribution function (PDF) curve of solid-volume fraction

signals is shown as the Figure 3(b) under operating pressure of 1 and 10 bar, respectively. The

bimodal distribution for normalized PDF at 1 bar operating pressure is consistent with the

previous  findings[4,7].  The  first  peak  locates  low  solid-volume  fraction  with  a  long  tail,

indicating that voids are characterized by dispersed gaseous phase with low solids fraction.

And the second peak is characterized with much higher solid-volume fraction and a roughly

self-symmetrical shape, indicating that clusters are characterized by a continuous dense solid

density. In the homogeneous state (10 bar operating pressure), however, the statistical law of

the transient signal is totally different from that of the phase coexistence state. There is just

one peak in the normalized PDF curve and its peak broadening is significantly suppressed,

illustrating  that  no  phase  coexistence  occurs  and  fluidization  under  such  high  operating

pressure gain a special ordered uniformity.

Negative compressibility in granular media

As shown in the Figure 4(a), as operating pressure increases from 1 to 10 bar, both

cluster (continuous phase with high solid-volume fraction) and void (dispersed phase with

small solid-volume fraction) approaches towards to the same point. According to the stability

analysis,  this  point  (7  bar)  is  the  boundary  between  homogeneous  state  and  phase



coexistence, and the critical solid pressure (psc) can be obtained here. In the case of high

operating pressure (> 7 bar), there is just one self-symmetrical peak in the normalized PDF

curve, a homogenous state characterized by a uniform distribution of solid-volume fractions.

The phase coexistence, which normalized probability density function has two peaks located

at  positions  of  dense and dilute  section respectively,  is  observed in  the condition of low

operating pressure (< 7 bar). Here,  it  is  noted that  negative compressibility  phenomenon

occurs  in  granular  media:  the  peak  of  cluster  phase  decreases  from 0.54  to  0.42  as  the

operating pressure (po) increases from 5 to 7 bar. Since cluster phase dominates gas-solid

multiphase flow, negative compressibility phenomenon,  i.e., the solid density (ρs) decreases

with the increasing of solid pressure (ps),  is detected. Generally,  it  is difficult  to measure

negative compressibility phenomenon in molecular system due to its instability. While, the

obvious and stable state with negative compressibility in the granular media provides a useful

idealization of metastable state, contributing to a deep understanding of phase transition in

dissipative system. 

[Figure 4 is here]

Phase diagram

Here,  1×109 numbers of particles with diameter of 75 μm are chosen to calculate the

granular free energy Fs. Here, the coefficient of restitution (e) is 0.995[20] and the critical solid

pressure  (pc)  is  250  Pa  measured  by  the  experiments.  In  this  case,  the  critical  solid

temperature can be calculated as kBΘsc/ms=1.04 (m/s)2. Figure 4(b) illustrates a phase diagram

in granular system based on Eq.(6). Graphically, the red solid curve in the Figure 4(b) passing

through the co-existence points of the isotherms constructs the binodal curve (also called



coexistence  curve).  The  binodal  curve  can  be  obtained  using  method  of  Maxwell’s

construction,  where  the  chemical  potential  of  voids  and  clusters  should  be  equal.  In

mathematics,  the  binodal  line  originates  from  the  section  which  is  nonlinearly  unstable

although linearly stable.  The bule dot  curve in  Figure 4(b) passing through the inflexion

points  of  the isotherms constructs  the spinodal  curve.  A negative compressibility  implies

mathematically that, within the spinodal region, the state is unstable with respect to small

amplitude  long-wavelength  perturbations[11-13].  Those  two  branches  (binodal  and  spinodal

curve) in the (ps, εs) plane merge into one point, which is the critical point (psc, εsc) between

homogenous  state  and  phase  coexistence.  Close  to  the  critical  point,  the  Maxwell’s

construction is well proved in previous studies[12,13]. With significant inelastic energy loss, i.e.

far  from  critical  point,  stability  analysis  based  on  catastrophe  theory  can  predict

unsymmetrical ratio of the spinodal and binodal lines, in disagreement with what the normal

van der Waals equation predicts. Hence, qualitative and quantitative agreement is observed

between the granular state equation and experimental study, even in the state far from critical

point. It provides a novel version to understand abundant characteristics in granular media

such as gas-solid bifurcation[9] and hysteresis[10]. 

CONCLUSION

In present study, phase coexistence of void and cluster in fluidization is investigated

through both theoretical analysis and experimental study. The conclusion is as follows:



1. A granular state equation is developed to describe phase coexistence in the state of

far-from critical point where both inelastic collision and asymmetric instability are taken into

consideration.

2. The phase coexistence is reduced to stability analysis  of multiple roots where the

catastrophe is applied to calculate the critical point.

3.  A cold-flow experiment  is  carried  out  to  verify  theoretical  analysis  and  negative

compressibility in granular media is detected.

4. By identifying the mechanism responsible for phase coexistence, a phase diagram of

dense fluidization is obtained. 
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NOTATION

Roman letters

a = constant of granular state equation (-)

b = constant of granular state equation (-)

e = coefficient of restitution (-)

Fs = free energy of solids (J)

g(rjk) = Mayer function (-)

G = radial distribution function (-)

I (rjk)= internal energy (J)

kB = Boltzmann constant (J/K)

ms = mass of solids (kg)

ns = solid number density (-)

nsc = critical solid number density (-)

Ns = the number of particles (-)

ps,i =the momentum of the i particle (kg m/s)‧

ps = solid pressure (Pa)

psc = critical solid pressure (Pa)



po = operating pressure (bar)

r = position of particle (-)

r0 = radius of particle (m)

V = volume (m3)

Zs = partition function of solids (-)

Greek letters

ρs = density of solids (kg/m3)

εs = solid-volume fraction (-)

εsmax = maximum solid-volume fraction (-)

Θs = solid temperature (K)

Θsc = critical solid temperature (K)

Superscripts

* = dimensionless value

Abbreviations

FLOTU = Fluidization Laboratory of Tsinghua University
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