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Abstract: The ocean oxygen (O2) inventory has declined in recent decades but the estimates of 7 

O2 trend is uncertain due to its sparse and irregular sampling. A refined estimate of 8 

deoxygenation rate is developed for the North Atlantic basin using machine learning techniques 9 

and biogeochemical Argo array. The source data includes 159 thousand historical shipboard 10 

(bottle and CTD-O2) profiles from 1965 to 2020 and 17 thousand Argo O2 profiles after 2005. 11 

Neural network and random forest algorithms were trained using 80% of this data using different 12 

hyperparameters and predictor variable sets. From a total of 240 trained algorithms, 12 high 13 

performing algorithms were selected based on their ability to accurately predict the 20% of 14 

oxygen data withheld from training. The final product includes gridded monthly O2 ensembles 15 

with similar skills (mean bias < 1mol/kg and R
2
 > 0.95). The reconstruction of basin-scale 16 

oxygen inventory shows a moderate increase before 1980 and steep decline after 1990 in 17 

agreement with a previous estimate using an optimal interpolation method. However, significant 18 

differences exist between reconstructions trained with only shipboard data and with both 19 

shipboard and Argo data. The gridded oxygen datasets using only shipboard measurements 20 

resulted in a wide spread of deoxygenation trends (0.8-2.7% per decade) during 1990-2010. 21 

When both shipboard and Argo were used, the resulting deoxygenation trends converged within 22 
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a smaller spread (1.4-2.0% per decade). This study demonstrates the importance of new 23 

biogeochemical Argo arrays in combination with applications of machine learning techniques.  24 

 25 

Plain language summary 26 

Oxygen is an essential molecule existing in the seawater. But its concentrations are declining in 27 

many parts of the oceans. Its causes are not fully understood but it is thought to be linked to the 28 

recent warming of the surface ocean and its impact on the physics and chemistry of the oceans. It 29 

is difficult to accurately estimate how much oxygen has been lost from the oceans based on 30 

historical measurements because of sparse sampling density and irregular timing of 31 

measurements. This study improved the estimates of oxygen contained in the North Atlantic 32 

Ocean by applying machine learning techniques, with the specific goals to synthesize historical 33 

ship-based measurements and new autonomous data from robotic floats. By combining these 34 

data, we were able to determine the rate of oxygen loss. Future work remains to apply this 35 

method beyond North Atlantic to the global oceans including the coastal waters.  36 

 37 

Key points 38 

 A new ensemble dataset of oxygen is developed for the North Atlantic basin based on 39 

observations and machine learning algorithms.  40 

 The newly developed dataset is broadly consistent with established climatology and with 41 

deoxygenation rates from other independent studies.  42 

 Synthesis of shipboard and Argo-oxygen data reduced the ensemble spread in the 43 

deoxygenation rate by approximately a factor of 4.   44 

 45 
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1. Introduction 46 

Historical observations from past decades have shown growing influences of 47 

anthropogenic perturbations on marine ecosystem and biogeochemistry (Friedland et al., 2020; 48 

Gruber et al., 2021; Pershing et al., 2015; Seidov et al., 2018). There is a growing consensus in 49 

the scientific community that the global ocean O2 inventory has declined in recent decades. 50 

Estimates of the oceanic oxygen inventory decline are in the range of 0.5-3.3% over the period of 51 

1970-2010, equivalent of −0.48 ± 0.35 % per decade, for the upper 1,000m (Bindoff et al., 2019). 52 

Assessing the global and regional O2 inventories requires filling data gaps because the historical 53 

O2 measurements are irregular in time and sparse in space. The wide range in the estimates of 54 

ocean deoxygenation can be due to the different interpolation methods, different data quality 55 

control standards, and different data sources.  56 

There are three major sources of O2 data including two types of shipboard measurements 57 

and biogeochemical Argo floats. First, bottle O2 profiles are typically measured by modified 58 

Winkler titration method with a precision of about 1μmol/kg. Most modern oxygen chemical 59 

titration measurements are based on Carpenter’s whole bottle titration method and an 60 

amperometric or photometric end-detection with a precision of about 0.5-1μmol/kg (Carpenter, 61 

1965). Older bottle data prior to 1965 may have larger measurement uncertainties.  Secondly, 62 

Conductivity-Temperature-Depth (CTD) instruments have been equipped with O2 sensors since 63 

the late 1980s, and they are periodically calibrated to the bottle data.   64 

Argo is an international program that measures seawater temperature and salinity using a 65 

fleet of robotic instruments that drift with the ocean currents and periodically sample the water 66 

column by moving up to the surface, with a typical depth and cycle time of 2000m and 10 days 67 

(Roemmich et al., 2019).  Biogeochemical-Argo (BGC-Argo) aims to develop the global 68 
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network of biogeochemical sensors mounted on Argo floats including O2, NO3, pH and bio-69 

optical properties (Henry C. Bittig et al., 2019; Kenneth S. Johnson et al., 2013). Chemical 70 

sensors for measuring biogeochemical data require post-deployment quality control and 71 

calibration (Maurer et al., 2021). There are realtime, realtime adjusted and delayed mode data. 72 

In-situ calibration using atmospheric reanalysis/in-air measurement and empirical algorithms can 73 

bring accuracy to within 3 μmol/kg for O2. Figure 1 shows the distribution of shipboard and 74 

Argo-O2 measurements based on World Ocean Database 2018 (WOD18, Boyer et al., 2018) for 75 

the period of 1965 to 2020. WOD18 is an international collaboration among national data centers, 76 

oceanographic research institutions and investigators to provide a comprehensive dataset of 77 

quality-controlled oceanographic variables. Fewer profiles are taken in the open ocean away 78 

from the coasts, especially in the central subtropical regions. The number of profiles taken each 79 

year/month also fluctuates significantly. Prior to 1990, most O2 profiles are taken by ship-based 80 

bottle measurements. After the 1990s, CTD-O2 profiles increased and became the major O2 data 81 

source. Since the mid-2000s, the number of Argo-O2 profiles has steadily increased. Including all 82 

three platforms, the total of 176,049 profiles are taken in the North Atlantic basin from Equator 83 

to 65°N including 61% bottle, 29% CTD-O2 and 10% Argo-O2 measurements from 1965 to 2020. 84 

Focusing on the later period after January 2000, the total of 52,903 O2 profiles are taken 85 

including 12% bottle, 56% CTD-O2, and 32% Argo-O2 measurements.  86 

 87 
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 88 

Figure 1. Sampling density (a-c) Logarithm (base 10) of the cumulative profile count within 89 

each 1°x1° longitude-latitude cell for oxygen (O2) based on the World Ocean Database 2018 90 

(Boyer et al., 2018) downloaded in October 2023. The color saturates at 2 (more than 100 91 

profiles) per cell since 1965. (d) The number of O2 profiles per month in the North Atlantic 92 

basin. (e) The breakdown among the three data types between bottle, CTD-O2 and Argo-O2.  93 

 94 

Calculations of basin-scale O2 inventory requires statistical gap-filling methods to 95 

estimate O2 for the location and time where direct measurements are not available. Such gap-fill 96 

techniques include objective analysis such as the multi-pass Barnes method (Barnes, 1964) and 97 

optimal interpolation or kriging (Wunsch, 1996). Irregular and uneven distribution of 98 

observational data are known to cause increased uncertainties and underestimation of trends in 99 

the data-poor regions (Ito et al., 2023). Recently, machine learning (ML) has become a powerful 100 

tool in climate and ocean sciences (S. L. Chen et al., 2019; Gloege et al., 2021; Reichstein et al., 101 
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2019). In marine biogeochemistry, ML has been used to generate the maps of partial pressure of 102 

carbon dioxide (S. L. Chen et al., 2019; Gloege et al., 2021; Landschützer et al., 2013; Moussa et 103 

al., 2016; Sharp et al., 2022; Zeng et al., 2015), oxygen (Sharp et al., 2023), alkalinity (Broullón 104 

et al., 2019), dissolved iron (Huang et al., 2022), phytoplankton concentrations (B. Z. Chen et al., 105 

2020) and nutrients (Sauzède et al., 2017). Typically, data gaps are filled by some form of 106 

nonlinear regression models trained by available observational data. The underlying assumption 107 

is that there are significant, regional relationships between biogeochemical variables and other 108 

input data such as temperature, salinity, pressure and/or geographic coordinates. With a large 109 

amount of training data, ML algorithms can learn detailed relationships from existing 110 

observations. Once the algorithm is trained and validated, it can be used to reconstruct gridded 111 

biogeochemical fields. Sharp et al., (2023) recently developed gridded maps of global O2 112 

distribution from 2004 to 2022 using two ML approaches including two-layer Neural Network 113 

(NN) and Random Forest (RF) regression models. They found a global deoxygenation trend of 114 

−0.82 ± 0.11 % per decade from 2004 to 2022 based on the machine learning technique and 115 

Argo-O2 and GLODAP observational datasets. This estimate is larger than that assessed by 116 

Bindoff et al. (2019) of −0.48 ± 0.35 % per decade over a different period (1970 to 2010) but 117 

these estimates overlap with one another owing to large uncertainties.  118 

In the North Atlantic basin, approximately one-third of all O2 profiles are measured by 119 

biogeochemical Argo floats after January 2000, and its share is increasing (see Figure 1). The 120 

calibration of Argo-O2 data is still under development, especially for the response time of optode 121 

sensors in the upper ocean oxycline (H. C. Bittig & Körtzinger, 2017). Despite these potential 122 

biases and uncertainties, there can still be significant advantage gained by including the quality-123 

controlled Argo-O2 data to better estimate the O2 inventory by combining it with historical 124 
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shipboard observations. The objective of this study is two-fold. First, we aim to develop four-125 

dimensional (3-dimensional space and time) reconstructions of gridded O2 datasets using 126 

multiple ML approaches. This work is different from Sharp et al. (2023) in that a longer time 127 

period is covered from January 1965 to December 2020 using the combination of Argo-O2 and 128 

historical shipboard observations. This study will form an ensemble of O2 reconstructions 129 

selected from a large number of trained algorithms with different input variable sets and ML 130 

parameters. Secondly, we aim to quantify the potential reduction of uncertainties by the inclusion 131 

of Argo-O2 data. Separate sets of ML-based O2 ensembles are formed based on the algorithms 132 

trained with the shipboard data only and with the shipboard and Argo-O2 data. The comparison 133 

of deoxygenation trends and the ensemble spread quantifies the potential uncertainty reduction in 134 

the deoxygenation trends.  135 

 136 

2. Methods 137 

 This method section first describes the data sources for dissolved oxygen and other input 138 

variables in section 2.1. We then provide the description of the machine learning approaches in 139 

section 2.2 followed by the experimental design and workflow in section 2.3.  140 

 141 

2.1 Data Sources 142 

The shipboard O2 measurements are obtained from WOD18. The preprocessing of the 143 

data includes a check for data quality using the WOD18 quality control (QC) flags. The original 144 

WOD18 standard-depth profiles with 102 depth levels are placed into monthly bins which are 145 

1°x1° longitude-latitude grid cells. We focus on the upper 47 levels for the upper 1,000m of 146 

water column. The North Atlantic grid cells are selected according to the basin mask of the 147 
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World Ocean Atlas 2018 (H.E. Garcia et al., 2018). The target analysis period is after 1965 when 148 

the modern oxygen titration method is established by Carpenter as referenced above. Over the 149 

North Atlantic 108,643 bottle O2 profiles and 50,223 CTD-O2 profiles are obtained from 150 

WOD18 after questionable profiles are removed. Prior to 1987, only the bottle O2 data is selected 151 

for the shipboard profiles due to the concern that very early CTD-O2 data may contain larger 152 

uncertainties. The bottle profiles are averaged within the 1°x1° bins monthly from 1965 to 1986. 153 

After 1987, the bottle and CTD-O2 profiles are averaged within the 1°x1° bins weighted by the 154 

profile counts within the same month.  155 

Argo-O2 data is obtained from the Argo Global Data Assembly Center (GDAC) including 156 

the time, location, quality control flags, and descriptions of calibration methods for each O2 157 

sensor. The entire archive of BGC Argo floats are searched for ones containing delayed-mode O2 158 

data using two standard methods of bias correction including in-air pO2 measurement with 159 

atmospheric reanalysis data (Bushinsky & Emerson, 2015; K. S. Johnson et al., 2015) and 160 

climatological air-sea disequilibrium of surface O2 (Takeshita et al., 2013). There are 276 BGC-161 

Argo floats that satisfy this condition in the Atlantic basin.  The Argo-O2 data points with 162 

acceptable QC flag (indicated as 1, 2 or 8) are then placed into monthly bins which are the 1°x1° 163 

longitude-latitude grid cells.  164 

This study aims to extract regional relationships that allow filling data gaps in O2 using 165 

surrogate (predictor) variables such as temperature (T), salinity (S), and pressure using machine 166 

learning approaches.  As a basis for the surrogate variables, optimally interpolated monthly 167 

gridded T/S fields are obtained from the Hadley Centre EN version 4 dataset (hereafter, EN4, 168 

Good et al., 2013). It is a global gridded dataset from 1900 to present at the horizontal resolution 169 
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of 1°x1° in longitude-latitude grid and with 42 vertical depth levels (20 levels within the 0-170 

1,000m).  171 

  172 

2.2 Machine learning algorithms 173 

In supervised learning, a computer program is designed to learn the relationship between 174 

a large number of paired input-output examples. In this study, the output (predictand) variable is 175 

the O2 concentration, and the input (predictor) variable can include physical variables and 176 

coordinates. The potential predictor variables include absolute salinity, conservative temperature, 177 

pressure, potential density, Brunt-Väisälä frequency, longitude, latitude, time, and month. Some 178 

of these variables are coordinates and others are derived from the EN4 dataset. It is not clear 179 

whether including all above variables will improve the estimation of O2. There is no one-size-180 

fits-all solution in ML. The performance may depend on various factors including the choice of 181 

input variables and specific configuration of algorithms. Gregor et al. (2019) showed biases and 182 

discrepancies between different methods to gap-fill pCO2 data in regions where training data is 183 

sparse. Applications of ML to ocean biogeochemistry often struggles in data-sparse areas, and 184 

care must be taken to choose the algorithms that are best fit to the specific problem (Brunton & 185 

Kutz, 2019). Artificial neural networks and random forest regression are commonly used 186 

algorithms for supervised learning, but they have distinct characteristics and operate in different 187 

ways. Neural Networks (NN) are composed of interconnected nodes (neurons) arranged in layers 188 

(input, hidden, and output layers). NN is capable of representing complex, nonlinear 189 

relationships and capture intricate patterns, but require a large amount of training data. In 190 

contrast, Random Forest (RF) is an ensemble learning method that combines multiple decision 191 

trees to make predictions. RF can capture complex relationships, but it may struggle with very 192 
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subtle patterns. RF can handle missing data effectively by using surrogate splits, which means it 193 

may outperform NN in data-poor regions. In addition, RF can provide feature importance which 194 

can help interpret the results.  195 

In this study, we will employ the Scikit-Learn version 1.3 (Pedregosa et al., 2011) for 196 

their python implementation of NN and RF regression models. For each type of algorithms, there 197 

are several free parameters (hyperparameters) that cannot be learned from the data and must be 198 

selected before training. These parameters govern the learning process and influence how the 199 

model learns the relationship between the predictor and predictand variables. In practice, it's hard 200 

to know in advance which algorithm/hyperparameter set works better for a particular problem, 201 

and it requires testing multiple algorithms to make a good model choice by experimentation. 202 

Examples of hyperparameters include the number of nodes for each hidden layer in neural 203 

networks, the regularization parameter in regression models, or the depth of a decision tree.  204 

Hyperparameter tuning involves selecting the best combinations of these settings to achieve the 205 

best performance.  206 

In oceanographic data, observations always contain some level of noises. Overfitting 207 

occurs when an algorithm fits the noises in the training data rather than capturing the signal, and 208 

as a result, it negatively impacts its ability to generalize to new, unseen data. Overfitting could 209 

occur when a model is too complex relative to the size of the training data and the noise level. To 210 

avoid overfitting, 80% of the observed O2 profiles are used to train the algorithms, and the 211 

remaining 20% are withheld as test data to measure how well the trained algorithms can 212 

reconstruct the profiles that are not used during the training.  213 

K-fold cross validation is used for hyperparameter turning, which is a resampling 214 

procedure that helps in estimating how well an algorithm will perform on unseen data. The 215 
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training data (80% of oxygen profiles) are randomly split into K groups (K=5 in this study), and 216 

each set of hyperparameters is trained K times using different (K-1) groups of training data, and 217 

its performance is validated by measuring how well the trained algorithm reconstructs the one 218 

group that is withheld from the training in terms of R
2
 score. This procedure is repeated for all 219 

possible combinations of the hyperparameter set in consideration, allowing to select the best 220 

configuration while minimizing the possible occurrence of overfitting.  221 

 222 

2.3 Experimental design 223 

 Considering various factors discussed in the Section 2.2, a workflow is developed to 224 

develop a suite of ML algorithms for predicting the O2 distribution. Table 1 organizes different 225 

combinations of input/output variables as experiments (Exp) 1 through 8. All experiments use 226 

shipboard O2 as the predictand variable, and Argo-O2 is also included in Exp 6 through 8. All 227 

experiments also include conservative temperature (T), absolute salinity (S), longitude, latitude, 228 

and time as predictor variables. Time is counted as the number of months since January 1965. 229 

Exp 2 additionally includes pressure (P), and Exp 3 includes P and month of year (mon) with 230 

January being 1 and December being 12. Exp 4 further includes potential density () and Exp 5 231 

additionally include the strength of stratification as the square of Brunt-Väisälä frequency (N
2
). 232 

There are some redundancies in the predictor variables where time can include month, and  233 

and N
2
 can be calculated as non-linear functions of T and S. However, these factors are explicitly 234 

included because the seasonal cycle can be important for O2 especially in the near-surface layer 235 

for biological O2 production, and because isopycnal surfaces and water column stratification can 236 

be important indicators of O2 ventilation. Comparing Exp 2-5 can inform the importance of 237 
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including these additional factors. Exp 6-8 are repetition of Exp 3-5 but with the inclusion of 238 

Argo-O2 data as additional predictand variable.  239 

 240 

  T S long lat time P mon  N2 Argo 

Exp 1                     

Exp 2                     

Exp 3                     

Exp 4                     

Exp 5                     

Exp 6                     

Exp 7                     

Exp 8                     

 241 

Table 1. Different combinations of input/output variables. “T” is conservative temperature (°C). 242 

“S” is absolute salinity (g/kg). “long” is longitude and “lat” is latitude, both in degrees. “P” is 243 

pressure (dbar). ““ is potential density (kg/m
3
), and “N” is Brunt-Väisälä frequency (s

-1
). 244 

“time” is measured as the number of month since January 1965. “mon” is the month of year.   245 

 246 

 Two types of algorithms, NN and RF are trained for each experiment (Exp1-8). For each 247 

algorithm, a suite of hyperparameters sets is considered (12 sets for NN and 18 sets for RF), thus 248 

a total of 240 algorithms are trained for different combinations of algorithm type, 249 

hyperparameter sets, and input/output parameter choices. For NN algorithm, the number of 250 

nodes in hidden layers and the regularization parameter are systematically changed (see Table 2). 251 

Four sets of hidden layers are considered including 5-5-5-5, 10-10-10-10, 20-20-20-20, and 40-252 

40-40-40, and three different regularization parameters are considered including 0.001, 0.01 and 253 

0.1. Increasing the number of nodes allows more complexity whereas increasing the 254 
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regularization parameter prevents the model from becoming too complex. The combination of 255 

hyperparameters results in 12 different configurations of the NN algorithm.  256 

 257 

  regularization hidden layers 

HP set 1 0.001 5-5-5-5 

HP set 2 0.001 10-10-10-10 

HP set 3 0.001 20-20-20-20 

HP set 4 0.001 40-40-40-40 

HP set 5 0.01 5-5-5-5 

HP set 6 0.01 10-10-10-10 

HP set 7 0.01 20-20-20-20 

HP set 8 0.01 40-40-40-40 

HP set 9 0.1 5-5-5-5 

HP set 10 0.1 10-10-10-10 

HP set 11 0.1 20-20-20-20 

HP set 12 0.1 40-40-40-40 

 258 

Table 2. A list of hyperparameters for Neural Network algorithm.  259 

 260 

For RF algorithm, different configurations are explored (see Table 3) for the number of 261 

trees (number of estimators), the minimum number of samples required for a leaf node 262 

(minimum samples leaf), and the maximum number of features for split at each tree node (max 263 

features). Greater number of trees avoids overfitting and stabilizes the algorithm, and it is varied 264 

from 100 to 200 to 500. Increasing minimum samples leaf controls the growth of trees and 265 

prevents overfitting, and it is varied from 1 to 6 to 12. Limiting maximum features decorrelates 266 

trees and helps to prevent overfitting, and it is varied from 1 to 3. The combination of these 267 

hyperparameters results in 18 different configurations of the RF algorithm.  268 

 269 

 270 

 271 
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max 

features 
min sample 

leaf 
n of 

estimators 

HP set 1 1 1 100 

HP set 2 1 1 200 

HP set 3 1 1 500 

HP set 4 1 6 100 

HP set 5 1 6 200 

HP set 6 1 6 500 

HP set 7 1 12 100 

HP set 8 1 12 200 

HP set 9 1 12 500 

HP set 10 3 1 100 

HP set 11 3 1 200 

HP set 12 3 1 500 

HP set 13 3 6 100 

HP set 14 3 6 200 

HP set 15 3 6 500 

HP set 16 3 12 100 

HP set 17 3 12 200 

HP set 18 3 12 500 

 272 

Table 3. A list of hyperparameters for Random Forest algorithm 273 

 274 

 The best performing algorithm is selected after training all possible combination of 275 

hyperparameters for each combination of input/output variables and algorithm type using R
2
 276 

value as the performance metric. Once the best performing hyperparameters are found, the 277 

algorithms are further evaluated with additional performance metrics including mean bias, root-278 

mean-square-error (RMSE), and R
2
 value using the 20% of the data that are held out from the 279 

training. Using all of these factors, the highest performing algorithms are identified, and the 280 

gridded O2 datasets are generated by projection of gridded predictor variables for further 281 

validation and analysis.  282 

   283 
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3. Results: hyperparameter tuning and performance evaluation 284 

A total of 240 ML algorithms is trained including 96 NN and 144 RF regression models 285 

based on different combinations of input/output variables and hyperparameter sets. Each of the 286 

240 algorithms is trained 5 times using K-fold cross validation approach, thus the total of 1,200 287 

trainings were performed. These calculations were computationally demanding but it can be 288 

efficiently carried out in the parallel computing platform with large memory using 289 

Cheyenne/Casper supercomputers at National Center for Atmospheric Research (CISL, 2019).  290 

 291 

3.1 Optimization of hyperparameters  292 

 For each set of input/output variables (Table 1), all possible configurations of 293 

hyperparameters are explored with the K-fold cross validation approach (K=5), and the mean R
2
 294 

scores are recorded. Figure 2 shows that the variation of the mean score for the NN algorithm 295 

with the hyperparameter sets listed in Table 2. Overall, the NN algorithms with adequate input 296 

data (Exp 3-8) were capable of reproducing O2 observations withheld from the training with very 297 

high skills, and the inclusion of Argo-O2 data further increased the skill. Each line comes from 298 

the same set of input/output variables (Exp 1-8 in Table 1) and the variation of the R
2
 scores is 299 

consistent among all experiments with some constant offset.  300 

The sensitivity of algorithm performance to the choice of hyperparameter sets is largely 301 

independent of the specific choice in the input/output variables, but the overall performance itself 302 

significantly depend on the choice of input/output variables. The peak performances consistently 303 

occurred for the 4
th

 hyperparameter set with the smallest regularization and highest complexity 304 

(number of nodes).  305 
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 306 

Figure 2. Mean R
2
 scores from K-fold cross validation (K=5) using Neural Network algorithm. 307 

Each line color represents different combinations of input/output variables from Table 1. Results 308 

from Exp6-8 includes Argo-O2 data are shown in dashed lines. The dots indicate the best 309 

performing hyperparameter for each input/output variable set.  310 

  311 

Exp 1 includes the least number of input variables (T, S, long, lat, and time) and showed 312 

the lowest skill with the highest score of R
2 
~ 0.92. Even though Exp 1 is the weakest case, the 313 

algorithm was still able to reproduce 92% of variance in the data withheld from the training, 314 

which is encouraging. Exp 2 includes additional input data of pressure, and it increased the 315 

performance to R
2 
~ 0.93. Exp 3-5 additionally includes input variable of month (Exp 3), month 316 

and  (Exp 4), and month,  and N
2
 (Exp 5). These cases shared essentially the identical 317 

performance score of R
2 
~ 0.94. The additional inputs of potential density () and stratification 318 

(N
2
) apparently did not increase the R

2 
score. Exp 6-8 additionally included the Argo-O2 data for 319 

the predictand while mirroring the same input parameter sets for Exp 3-5. The R
2 
score of Exp 6-320 
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8 are essentially identical, and showed the highest scores of R
2 
~ 0.95, indicating the benefit of 321 

additional training data from the Argo-O2.  322 

 Figure 3 shows the R
2 
score of RF algorithms with the hyperparameter sets listed in 323 

Table 3. Similar to NN, the RF algorithms with fewer input data (Exp 1-2) performed relatively 324 

poorly. Cases with adequate input data (Exp 3-8) demonstrate improved performance in 325 

reproducing the O2 observations withheld from the training (R
2
 ~ 0.97). Similar to the NN 326 

algorithms, the inclusion of Argo-O2 data improved the skill (dashed lines in Figure 3). Overall, 327 

the R
2
 scores are generally higher than the NN algorithms. Better performances were found with 328 

the minimum samples leaf of 1. In particular, the best score was achieved with  maximum 329 

features of 3, minimum samples leaf of 1, and number of estimators of 500. This parameter 330 

choice involves a trade-off between model complexity and overfitting. The best performing 331 

algorithms in RF algorithm group was Exp6 with relatively fewer input variables (T, S, lon, lat, 332 

time, pressure and month). As with the NN algorithms, additional variables such as potential 333 

density or stratification did not improve the skill.  334 

 335 

Figure 3. Same as Figure 1 but for the Random Forest algorithm. The dots indicate the best 336 

performing hyperparameter.  337 
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 338 

3.2 Validation and quantification of uncertainties using the test data 339 

The test data consists of 20% of all input/output data that are set aside and unused for 340 

training algorithms, including approximately 230,000 data points. These test data are used to 341 

further evaluate the algorithms and to quantify the uncertainties. We selected the best performing 342 

hyperparameter sets for NN and RF algorithms for each of the experiments and examined the 343 

performance using three metrics including mean bias, root-mean-square error (RMSE) and 344 

correlation coefficient (R) and the results are listed in Table 4.  345 

 346 

    
Neural 

network     
Random 
Forest   

  
Bias 

(umol/kg) 
RMSE 

(umol/kg) R 
Bias 

(umol/kg) 
RMSE 

(umol/kg) R 

Exp1 -0.49 16.21 0.96 0.10 9.57 0.99 

Exp2 1.72 14.72 0.97 0.01 9.92 0.98 

Exp3 -0.99 14.08 0.97 0.01 9.05 0.99 

Exp4 -0.11 13.92 0.97 0.04 9.52 0.99 

Exp5 0.40 14.03 0.97 0.02 9.82 0.98 

Exp6 -0.97 13.42 0.97 0.04 8.93 0.99 

Exp7 0.40 13.28 0.97 0.02 9.43 0.99 

Exp8 0.86 13.26 0.97 0.03 9.66 0.99 

 347 

Table 4. Uncertainty estimation of 16 algorithms for each experiment listed in Table 1.  For 348 

each experiment, mean bias, RMSE and R values are reported for NN and RF algorithms with 349 

the best performing hyperparameter sets.  350 

 351 

For each set of input/output variables (experiments), RF algorithms showed lower mean 352 

bias, lower RMSE, and higher R value, indicating somewhat better skill. Comparing the 353 
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algorithms trained with shipboard only (Exp 3-5) and shipboard and Argo-O2 data (Exp 6-8), 354 

there is no clear difference in terms of bias, RMSE or R values. The magnitude of the mean bias 355 

from the NN algorithms is less than 2mol/kg, and that of RF algorithms is less than 0.1mol/kg. 356 

The R values are about 0.96-0.97 for the NN algorithms and that of RF algorithms are about 357 

0.98-0.99. The values of RMSE are useful estimates of the uncertainties due to gap filling using 358 

these algorithms. RMSE of the NN algorithms are in the range of 13 to 16mol/kg, and that of 359 

the RF algorithms is less than 10mol/kg. Similar to results from the previous section, Exp1 and 360 

2 shows slightly weaker performances relative to other experiments.  361 

In comparison to a recently developed global dataset, GOBAI-O2 (Sharp et al., 2023), 362 

they found the global-scale RMSE of 8.8mol/kg which is similar but slightly less than our RF 363 

algorithm. GOBAI-O2 employs similar neural network and random forest algorithms under 364 

different configurations, data sources mainly based on Argo-O2 (with additional GLODAPv2 365 

profiles), more recent period (2004-present), and importantly, their analysis covers the global 366 

domain. Thus, we do not expect the same uncertainties, but our results are indeed on the same 367 

magnitudes.  368 

 369 

3.3 Evaluation of climatological O2 distribution 370 

Using the algorithms developed and tested in Section 2.2, we projected O2 distributions 371 

using the gridded EN4 data for the North Atlantic from 1965 to 2010, and we further analyze the 372 

results in comparison to the well-established climatological distribution using World Ocean 373 

Atlas 2018 (WOA18). Figure 4 shows the summary of comparison for annual mean climatology 374 

at five depth levels including 10m, 100m, 200m, 400m and 700m. This is not a validation since 375 

the shipboard data used to assemble World Ocean Atlas were also used in the training of the 376 
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algorithms, however, it is reassuring to find similar climatological distribution to the widely 377 

adopted WOA18. This comparison show that the Exp 1 has a qualitatively different 378 

representation of climatology than all other cases with the largest discrepancies with WOA18.  379 

 380 

Figure 4. Pattern correlation (R), RMSE and mean bias of the annual mean climatology. Blue 381 

lines are NN algorithms and red lines are RF algorithms. Each line and dots are indicating 382 

experiments with different input/output variable sets. Dash line indicates experiments including 383 

both shipboard and Argo-O2 data.   384 

 385 

Comparing the NN and RF algorithms for Exp 2-8, the RF algorithms (red lines in 386 

Figure 4) performs slightly better than the NN (blue lines in Figure 4), where RF shows higher 387 

pattern correlation (>0.995) and smaller RMSE (<5mol/kg). The results from NN are more 388 

variable and show slightly lower pattern correlation and higher RMSE. The mean bias of 389 

climatological distributions are generally negative with the exception of Exp 1, indicating that 390 

reconstructed O2 climatologies with ML approaches are slightly lower than WOA18. The 391 

inclusion of Argo-O2 data further enhances the negative bias of the climatological O2 profile. 392 
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Factors contributing to the negative mean bias may include differences in time period 393 

represented by the shipboard observations and Argo-O2 datasets. There are greater number of 394 

shipboard O2 profiles during 1980s than later periods, and WOA18 is based on bottle data.  The 395 

period represented by the ML-based climatology may reflect the time windows over which the 396 

training data were collected. The inclusion of Argo-O2 data mostly sampled after 2010 could 397 

result in different climatology than that trained by the bottle observations centered around 1980s. 398 

The representations of the temporal trends are further examined in Section 4.  399 

 Seasonal O2 amplitudes are important indicators of thermally-induced solubility changes 400 

as well as the biological O2 production, and are examined among the 16 O2 data products (NN 401 

and RF for each of Exp 1-8) as the difference between mean JJA and mean DJF climatologies. 402 

Figure 5 and 6 shows the seasonal amplitude of O2 at four different depths from the RF and NN 403 

algorithm respectively.  At the surface (10m), there is a strong negative anomaly in the central 404 

subtropics and at mid-latitudes according to WOA18. There is also a weak positive anomaly in 405 

the subpolar region in WOA18. At 100m depth, the subtropics shows a positive anomaly, and the 406 

subpolar region shows a negative anomaly. These patterns are reasonably well captured in the 407 

Exp3-8. The algorithm may underestimate the amplitude of subsurface (400-700m) seasonality, 408 

while WOA18 also shows significant noises there.  409 

 410 
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 411 

Figure 5. Summer (JJA) minus Winter (DJF) climatological O2 plotted at 10m, 100m, 200m and 412 

400m depth. The top row is WOA18, and the second row and below are from the 8 experiments 413 

with NN algorithm. Positive value means the summertime O2 level is higher than the wintertime 414 

values. Upper left corner shows the mean bias and the lower left is the RMSE, both in mol/kg. 415 

 416 
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 417 

Figure 6. Same as Figure 6 but for RF algorithm.  418 

 419 

Both NN and RF algorithms with Exp 1-2 performed differently from other cases with 420 

significantly weaker seasonal variability in the subsurface water, and greater magnitudes of mean 421 

bias and RMSE.  These two cases lack pressure and month from the predictor variables, which 422 

are likely important factors for the O2 seasonal cycle. While it was difficult to detect this bias 423 

from the validation with the test data, we conclude that Exp 1-2 performed significantly poorer 424 

than Exp 3-8 in terms of representing the mean seasonal cycle correctly, thus the inclusion of 425 
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pressure and month in predictor variables is important. Beyond this, there was no clear 426 

differences in terms of performance with different predictor variable choices. The addition of 427 

potential density and/or stratification did not significantly improve the performance. Based on 428 

the comparison with WOA18, both RF and NN algorithm with Exp 3-8 performed well for 429 

reproducing the annual mean climatology as well as the contrast between the summer and winter 430 

months.  431 

 432 

3.4 Feature importances 433 

 In the RF algorithm, feature importances measure the relative importance between each 434 

of the predictor variables in estimating O2. It is calculated by randomly removing a feature from 435 

the dataset during training and measuring how much each feature decreases the algorithm's 436 

overall accuracy. The larger the decrease in performance, the more important the feature is 437 

deemed to be. Figure 7 shows the feature importances determined from the Exp 1-8 with best 438 

performing hyperparameter sets. Across all the cases, latitude was considered the most 439 

influential variable in making O2 estimation. Following the latitude, temperature and salinity are 440 

also important factors for all cases. When pressure is included, it played significant role 441 

throughout, sharing similar weight as salinity. Other variables, such as potential density, 442 

stratification, time/month all played some roles when they are included as input variables with 443 

relatively small influences.  444 
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 445 

Figure 7. Feature importances of the Random Forest algorithm. The relative importance of each 446 

feature variables are shown for each experiment. 447 

 448 

Feature importances offer insights into which factors contribute most significantly to the 449 

estimation of O2. Climatological O2 significantly varies latitudinally and in depth (pressure), 450 

likely making them two of the most important factors. Temperature and salinity are both 451 

important factors. Comparing Exp 3 and 4 (and Exp 6 and 7), the addition of potential density 452 

did not necessarily reduce the relative importance of T/S. Rather the algorithm mainly reduced 453 

the importance of latitude. Variability of T/S on isopycnal surfaces can indicate water mass shifts 454 

and circulation variability, thus these variables can play some roles in estimating O2 variability.  455 

Similarly, comparing Exp 4 and 5 (and Exp 7 and 8), the further addition of N
2
 does not 456 

significantly reduce the importance of T/S/, indicating some roles played by the stratification 457 

and its variability. It is important to note that feature importances are calculated for the specific 458 
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configuration of RF algorithms used in this study, and they may not indicate causal relationships 459 

and the interpretation requires caution.  460 

 461 

4. Results: deoxygenation trends 462 

Based on the comparison with the annual mean and seasonal climatology, we consider 463 

both NN and RF algorithms with the input datasets from Exp 3-8 to provide reasonable 464 

reconstructions of the O2 distribution, forming 12 ensemble members (NN 3-8 and RF 3-8) 465 

where numbers after NN and RF indicates the experiment number in Table 1. In other words, 466 

results from Exp 1-2 are excluded due to their relatively weak performances in reproducing the 467 

annual mean climatology and the climatological seasonal cycle. Top panel in Figure 8 shows the 468 

deseasoned O2 inventory time series integrated over 0-1,000m as anomalies from the ensemble 469 

mean climatological O2 inventory of 5.93 x 10
15

 mol. Results from all algorithms show a 470 

moderate increase from 1965 to around 1990, followed by a significant decline after 1990.  The 471 

O2 inventories calculated by the NN algorithms show more diverse trajectories relative to that of 472 

RF algorithms after 1990. In general, the O2 inventories from NN algorithms decline more 473 

strongly than the RF algorithms after 1990. The range of O2 inventories estimated from the 474 

shipboard data only are grouped together in green, and that from the shipboard and Argo-O2 data 475 

are in blue. The envelope is the range bounded by the maximum and minimum values of the 6 476 

ensembles for each case (NN 3-5/RF 3-5 in green, and NN 6-8/RF 6-8 in blue). The black and 477 

magenta lines are independent estimates of O2 inventory anomalies based on optimal 478 

interpolation of WOD18 shipboard profiles (bottle and CTD-O2, Ito et al., 2023) and GOBAI-O2 479 

dataset (Sharp et al., 2023).  480 
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 481 

Figure 8. (a) Oxygen inventory anomalies in the units of mol. Two algorithms trained with 482 

(green) shipboard data only and (blue) shipboard and Argo-O2 data. The black, solid line is based 483 

on optimal interpolation of WOD profiles (Ito et al., 2023), and magenta line is based on 484 

GOBAI-O2 (Sharp et al., 2023).  (b) The magnitudes of linear trend from 1990 to 2010 from the 485 

12 ensembles with 95% confidence interval. Blue bars are based on the shipboard data only and 486 

orange bars are based on the shipboard and Argo-O2 data.  487 

 488 
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The solid lines are the respective ensemble means. The ensemble means are generally 489 

similar and in general agreement with the optimal interpolation.  The GOBAI-O2 is primarily 490 

based on Argo data for the period after 2004, thus its climatological mean O2 is different from all 491 

other datasets. Vertical position of the magenta line in Figure 8a is referenced to its own 492 

climatology for 2004-2022, and we focus on its temporal variation not the mean value. An 493 

important difference between the two groups with and without the Argo-O2 is their respective 494 

range. Estimates based on the shipboard and Argo-O2 data (blue envelope) maintains similar 495 

range throughout the period from 1990 to 2020. However, the estimates from the shipboard data 496 

only (green envelope) are diverging after 2000, likely due to the lack of constraints near the end 497 

of the time series.  498 

Figure 8b shows the linear trends of O2 inventories from optimal interpolation, GOBAI-499 

O2, and from the two groups. The period of the trend analysis is from 1990 to 2010 except for 500 

GOBAI-O2 with the period of 2010 to 2022. The optimal interpolation estimated the 501 

deoxygenation of 2.0% per decade, and GOBAI-O2 estimated 1.2% per decade.  Estimates based 502 

on the shipboard data only are in green, and those with shipboard and Argo-O2 data are in blue.  503 

The estimated deoxygenation rates vary from 0.7 to 2.8% per decade based on the shipboard data 504 

only for the same period. However, when the Argo-O2 data is included, the estimated range of 505 

deoxygenation rates are constrained in the range of 1.5 to 2.0% per decade.  Ensemble mean 506 

deoxygenation rates did not show significant difference between the two cases, but the inclusion 507 

of the Argo-O2 data narrowed the range of estimated deoxygenation rate by a factor of 4.2, which 508 

is a remarkable improvement. As shown in Figure 8b, the RF algorithms estimated the weakest 509 

deoxygenation rates and the NN estimated the strongest trends when they are trained with the 510 



Ito and Cervania (in prep) to be submitted to Journal of Geophysical Research-Oceans 

 29 

shipboard data only. When Argo-O2 data are included, the deoxygenation rates from RF became 511 

stronger and that from NN became weaker, converging towards a much narrower range.   512 

Figure 9 shows the zonal mean O2 trends in the upper 1,000m of the North Atlantic basin 513 

from 1990 to 2010. The panel (a,c,e) shows the zonal mean trend of O2, (-1) x AOU, and O2 514 

solubility. O2 solubility is a function of salinity and temperature where the solubility coefficients 515 

are derived from the data of Benson and Krause (1984) as fitted by Garcia and Gordon (1992). 516 

AOU stands for apparent oxygen utilization, and is defined as the difference between O2 517 

solubility and O2. Figure 9b shows the climatological annual mean O2, showing the high O2 518 

water column around 60°N and the ventilated subtropical thermocline in the subtropics, and 519 

oxygen minimum zone (OMZ) in the tropical thermocline. The oxygen loss occurs in several hot 520 

spots. At subpolar latitudes around 60°N, a strong O2 decline occurs in the upper water column 521 

due to the decline of solubility (Figure 9ae).  Figure 9d displays the R
2
 value of the linear trend, 522 

which measures the fraction of O2 variance explained by the linear trend. In this figure, the high 523 

R
2
 value means that the temporal variability is dominated by the trend. At subtropical and low 524 

latitudes, O2 trends are primarily driven by (-1) x AOU, at the base of the ventilated thermocline 525 

and the boundary between subtropics and tropical OMZ where the expansion of the tropical 526 

OMZ has been documented and discussed extensively (Stramma et al., 2008). Examination of 527 

zonal mean trends for individual ensemble members are generally similar, while there are some 528 

disagreements in the detailed spatial structure.  Most importantly, the overall magnitude of the 529 

trends is weaker in the RF algorithm that that of NN.  530 
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 531 

Figure 9. Ensemble mean, zonal mean trend of O2, AOU and O2 solubility. (a,c,e) Zonal mean 532 

trends in the units of mol/kg/year. Dots indicate statistical significant trend at 95% confidence 533 

interval. (b) O2 climatology, (d) R
2
 value of O2 trend, and (f) horizontally averaged trend.   534 

 535 

In the low latitude deoxygenation, there is no strong temperature increase (nor solubility 536 

decline) and these low-latitude trends are predominantly caused by AOU changes though 537 

circulation, water mass shifts, mixing and/or biochemical processes as shown in Figure 9ce. 538 

Finally, Figure 9f shows the horizontally averaged trend. As expected, the surface trend is 539 

primarily driven by the O2 solubility and the AOU trend increases its importance in the 540 

subsurface waters, and it becomes the dominant mode of O2 loss in the main thermocline.  541 
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 542 

5. Results: uncertainty analysis 543 

There are 3 levels of uncertainty including measurement error, sampling error and 544 

mapping (interpolation) error, and for each level, there can be random errors and biases. 545 

Measurement errors depend on specific techniques and instrumentation for making 546 

measurements. For example, bottle O2 can include random errors of 1 mol/kg with Winkler 547 

titration, whereas delayed-mode Argo-O2 has errors of about 3 mol/kg. In the oxycline region, 548 

there can be a larger error O(10 mol/kg) for Argo-O2 data due to uncorrected sensor response 549 

time, potentially including random and systemic bias components.  550 

Sampling errors can be estimated by the standard deviation of monthly binned data. 551 

Figure 10 shows the non-uniform distribution of this uncertainty. The mean value of the 552 

standard deviation of monthly binned data is 4.5 mol/kg for the whole basin but its value can 553 

exceed 20mol/kg in regions such as Scotia and Newfoundland shelves. There is significant 554 

spatial variability for the sampling errors likely due to the regional variability of the background 555 

O2 gradient and wave/eddy activities. 556 

 557 
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 558 

Figure 10. An estimate of the sum of measurement and sampling errors based on the standard 559 

deviation of binned data for 1°x1° monthly grid cells at 10m, 100m, 200m, 400m and 700m. The 560 

units are in mol/kg.  561 

 562 

Mapping uncertainties can be estimated by the comparison with the O2 data withheld 563 

from the training as documented in section 3.2. The O2 values estimated from NN algorithms had 564 

the RMSE of 13.3 to 14.1 mol/kg and that of RF algorithms are in the range of 8.9 to 565 

9.8mol/kg. These are overall estimates of the mapping/interpolation errors in this study. These 566 

error estimates are comparable to “algorithm errors” for the GOBAI-O2 dataset of Sharp et al., 567 

(2023).  568 

Assuming that measurement (O2meas), sampling (O2sampl) and interpolation (O2interp) 569 

errors are independent and uncorrelated, the combined median uncertainty can be calculated as:  570 

 571 
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 572 

 573 

Based on the typical magnitudes of these errors as discussed above, the combined uncertainty is 574 

15 mol/kg for NN and 10 mol/kg for RF algorithm, primarily dominated by the 575 

mapping/interpolation error. In the Scotia and Newfoundland shelves, the combined uncertainty 576 

can be significantly higher.   577 

 578 

4. Discussion and conclusion 579 

Since the mid-2000s, Argo floats equipped with O2 sensors have been deployed in 580 

different parts of the global oceans, and the development of in-situ calibration methods reduced 581 

the measurement uncertainties of the Argo-O2 sensors to approximately 3 mol/kg. 582 

Coincidentally the number of shipboard observations has decreased in the recent decades, and as 583 

a result, it is difficult to estimate the basin-scale deoxygenation trends for recent periods based 584 

on shipboard observation only. Recently, a gridded, time-varying O2 product has been developed 585 

using ML approaches (Sharp et al., 2023), reconstructing the global O2 distribution since 2004. 586 

There are a few notable similarities and differences between GOBAI-O2 and this regional study. 587 

A unique feature in this study was to make a contrast between the O2 datasets based on shipboard 588 

data only versus the synthesis of historical shipboard measurements and the new Argo-O2 data. 589 

Thus, we included historical observation from an earlier period since 1965, allowing to evaluate 590 

deoxygenation trends over a longer period. Results from each of the ensemble members with and 591 

without Argo-O2 data are available in public domain from zenodo (Ito and Cervania, 2023). 592 

These gridded data products will be helpful for validating computational biogeochemistry 593 
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models as only a few temporally and spatially varying O2 datasets are currently available in the 594 

public domain.  595 

This study and GOBAI-O2 are similar in methodology, but there are some differences. 596 

Both this study and GOBAI-O2 used delayed mode Argo data only, but we further limited to the 597 

O2 profiles calibrated with two well-established methods including in-air pO2 measurement 598 

(Johnson et al., 2015; Bushinsky and Emerson 2015) and climatological air-sea disequilibrium 599 

(Takeshita et al., 2013). GOBAI-O2 further applied a bias correction due to the offset of -1.18 600 

mol/kg based on match-up profiles (Sharp et al., 2013, Appendix D). The GOBAI-O2 product is 601 

an average of two ML-based datasets with two-layer NN and RF models. In this study, we 602 

trained a large number of algorithms (240 cases) with varying sets of input data and 603 

hyperparameters and selected 12 algorithms with high skills to form an ensemble of O2 estimates. 604 

Despite these differences, the resulting O2 inventory anomalies shared generally similar trend for 605 

2010s (see Figure 8). This study focused on the North Atlantic basin which was sampled most 606 

densely and frequently in the historical observations, and ML algorithms were trained using 607 

relatively abundant sample numbers. The ML approach remains to be tested in other, less 608 

frequently sampled basins using the combination of historical and Argo-O2 observations. The 609 

success of GOBAI-O2 in generating a global dataset is indeed encouraging that synthesis of 610 

shipboard and Argo-O2 data is indeed possible for other basins as well.  611 

 Our uncertainty analysis considered three sources of errors including measurement, 612 

sampling, and interpolation errors. Of these, Interpolation errors are likely the largest source of 613 

the errors for the most part of the North Atlantic with the overall magnitude of 10-14 mol/kg. 614 

There is an exception with the relatively high sampling error near the western boundary regions 615 
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such as Gulf Stream, Scotia and Newfoundland shelves. These regions exhibit strong natural 616 

variability that can generate similar or even larger uncertainties than the interpolation errors.  617 

Due to the results of anthropogenic carbon dioxide and other greenhouse gas emissions, 618 

the ocean is warming, losing oxygen and being acidified. While these ecosystem stressors are 619 

projected to intensify for coming decades, our understandings of their impacts on marine 620 

ecosystems remains limited, especially in the coastal waters. While this study at 1°x1° resolution 621 

focused on improving the method of filling data gaps for basin-scale O2 distribution, this 622 

resolution is too low for coastal studies. It remains to be tested how well ML approaches can be 623 

used to map biogeochemical properties at higher resolution in the coastal waters at much higher 624 

resolution.  625 
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