References
Acs, Z., Jović, J., Ember, I., Cvrković, T., Nagy, Z., Talaber, C.,
… Koelber, M. (2011). First report of maize redness disease in
Hungary. Bulletin of Insectology , 64. Retrieved from
https://plantarum.izbis.bg.ac.rs/handle/123456789/161
Alizon, S., Hurford, A., Mideo, N., & Van Baalen, M. (2009). Virulence
evolution and the trade-off hypothesis: History, current state of
affairs and the future. Journal of Evolutionary Biology ,22 (2), 245–259. doi: 10.1111/j.1420-9101.2008.01658.x
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J.
(1990). Basic local alignment search tool. Journal of Molecular
Biology , 215 (3), 403–410. doi: 10.1016/S0022-2836(05)80360-2
Angelini, E., Bianchi, G. L., Filippin, L., Morassutti, C., & Borgo, M.
(2007). A new TaqMan method for the identification of phytoplasmas
associated with grapevine yellows by real-time PCR assay. Journal
of Microbiological Methods , 68 (3), 613-622. doi:
10.1016/j.mimet.2006.11.015
Bartomeus, I., Stavert, J. R., Ward, D., & Aguado, O. (2019).
Historical collections as a tool for assessing the global pollination
crisis. Philosophical Transactions of the Royal Society B:
Biological Sciences , 374 (1763), 20170389. doi:
10.1098/rstb.2017.0389
Bonfield, J. K., Smith, K. f, & Staden, R. (1995). A new DNA sequence
assembly program. Nucleic Acids Research , 23 (24),
4992–4999. Retrieved from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC307504/
Brooks, D. R., Hoberg, E. P., & Boeger, W. A. (2019). The Stockholm
paradigm: Climate change and emerging disease. Chicago: The University
of Chicago Press.
Brooks, D. R., Hoberg, E. P., Boeger, W. A., Gardner, S. L., Araujo, S.
B. L., Bajer, K., Botero-Cañola, S., Byrd, B., Földvári, G., Cook, J.
A., Dunnum, J. L., Dursahinhan, A. T., Garamszegi, L. Z., Herczeg, D.,
Jakab, F., Juarrero, A., Kemenesi, G., Kurucz, K., León-Règagnon, V.,
… Trivellone, V. (2020). Before the Pandemic Ends: Making Sure
This Never Happens Again. World Complexity Science Academy ,1 (1), 1–10.
Brooks D. R., Hoberg E. P., Boeger W. A., & Trivellone V. (accepted).
Emerging infectious disease: an underappreciated area of strategic
concern for food security. Transboundary and Emerging Diseases .
Cao, Y., Trivellone, V., & Dietrich, C. H. (2020). A timetree for
phytoplasmas (Mollicutes) with new insights on patterns of evolution and
diversification. Molecular Phylogenetics and Evolution ,149 , 106826. doi: 10.1016/j.ympev.2020.106826
Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004).
Distribution of phytoplasmas in infected plants as revealed by real-time
PCR and bioimaging. Molecular Plant-Microbe Interactions: MPMI ,17 (11), 1175–1184. doi: 10.1094/MPMI.2004.17.11.1175
Daru, B. H., Bowman, E. A., Pfister, D. H., & Arnold, A. E. (2019). A
novel proof of concept for capturing the diversity of endophytic fungi
preserved in herbarium specimens. Philosophical Transactions of
the Royal Society B: Biological Sciences , 374 (1763), 20170395.
doi: 10.1098/rstb.2017.0395
Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from
culturable and nonculturable Mollicutes. Journal of
Microbiological Methods , 14 (1), 53–61. doi:
10.1016/0167-7012(91)90007-D
Dietrich, C. H. (in review). New species of Mayawa Fletcher and
description of a related new Australian leafhopper genus (Hemiptera:
Cicadellidae: Deltocephalinae: Paralimnini). Zootaxa
DiEuliis, D., Johnson, K. R., Morse, S. S., & Schindel, D. E. (2016).
Opinion: Specimen collections should have a much bigger role in
infectious disease research and response. Proceedings of the
National Academy of Sciences , 113 (1), 4–7. doi:
10.1073/pnas.1522680112
Dunnum, J. L., Yanagihara, R., Johnson, K. M., Armien, B., Batsaikhan,
N., Morgan, L., & Cook, J. A. (2017). Biospecimen Repositories and
Integrated Databases as Critical Infrastructure for Pathogen Discovery
and Pathobiology Research. PLOS Neglected Tropical Diseases ,11 (1), e0005133. doi: 10.1371/journal.pntd.0005133
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Research ,32 (5), 1792–1797. doi: 10.1093/nar/gkh340
Emeljanov, A. F. (1967). Suborder Cicadinea (Auchenorrhyncha). In GY.
Bei-Bienko (Ed.), Keys to the insects of the European USSR. I.
Apterygota. Palaeoptera. Hemimetabola. (pp. 421–551). Moscow-Leningrad:
Nauka.
Federhen, S., 2012. The NCBI Taxonomy database. Nucleic Acids Res. 2012;
40 (Database issue): D136–43. http://www.ncbi.nlm.nih.gov/taxonomy
(accessed 28 December 2021).
Fletcher, M. J. (2000). A new genus, Mayawa , for the reception ofLimotettix capitatus Kirkaldy (Hemiptera: Cicadellidae:
Deltocephalinae) and descriptions of five new species of Mayawa .Australian Journal of Entomology , 39 (3), 103–110. doi:
10.1046/j.1440-6055.2000.00158.x
Gundersen, D. E., & Lee, I.-M. (1996). Ultrasensitive detection of
phytoplasmas by nested-PCR assays using two universal primer pairs.Phytopathologia Mediterranea , 35 (3), 144–151. JSTOR.
Retrieved from https://www.jstor.org/stable/42685262
Gupta, R. S., Sawnani, S., Adeolu, M., Alnajar, S., & Oren, A. (2018).
Phylogenetic framework for the phylum Tenericutes based on genome
sequence data: Proposal for the creation of a new order Mycoplasmoidales
ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and
Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and
five novel genera. Antonie van Leeuwenhoek , 111 (9),
1583–1630. doi: 10.1007/s10482-018-1047-3
Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H.
N., & Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants
and insects. Molecular Plant Pathology , 9 (4), 403–423.
https://doi.org/10.1111/j.1364-3703.2008.00472.x
Huang, W., Reyes-Caldas, P., Mann, M., Seifbarghi, S., Kahn, A.,
Almeida, R. P. P., Béven, L., … Coaker, G. (2020). Bacterial
Vector-Borne Plant Diseases: Unanswered Questions and Future Directions.Molecular Plant , 13 (10), 1379–1393. doi:
10.1016/j.molp.2020.08.010
IRPCM Phytoplasma/Spiroplasma Working Team–Phytoplasma Taxonomy Group
(2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical
prokaryotes that colonize plant phloem and insects. International
Journal of Systematic and Evolutionary Microbiology , 54 (4),
1243–1255. doi: 10.1099/ijs.0.02854-0
Jansen, G., Crummenerl, L. L., Gilbert, F., Mohr, T., Pfefferkorn, R.,
Thänert, R., … Schulenburg, H. (2015). Evolutionary Transition
from Pathogenicity to Commensalism: Global Regulator Mutations Mediate
Fitness Gains through Virulence Attenuation. Molecular Biology and
Evolution , 32 (11), 2883–2896. doi: 10.1093/molbev/msv160
King, K. C., & Lively, C. M. (2012). Does genetic diversity limit
disease spread in natural host populations? Heredity ,109 (4), 199–203. doi: 10.1038/hdy.2012.33
Kirdat, K., Tiwarekar, B., Thorat, V., Sathe, S., Shouche, Y., & Yadav,
A. (2020). ’Candidatus Phytoplasma sacchari’, a novel
taxon-associated with Sugarcane Grassy Shoot (SCGS) disease.International Journal of Systematic and Evolutionary
Microbiology . doi: 10.1099/ijsem.0.004591
Kruger, K., Pietersen, G., Smit, N., Carstens, R. 2015. Epidemiology of
aster yellows phytoplasma: alternate host plants and the vectorMgenia fuscovaria (Hemiptera: Cicadellidae) in South Africa. InProceedings of the 18th Meeting of the International Council for
the study of Virus-like diseases of the Grapevine (ICVG) , September
7-11, Ankara, Turkey, pp. 126-127.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular
Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.Molecular Biology and Evolution , 33 (7), 1870–1874. doi:
10.1093/molbev/msw054
Kutz, S. J., Jenkins, E. J., Veitch, A. M., Ducrocq, J., Polley, L.,
Elkin, B., & Lair, S. (2009). The Arctic as a model for anticipating,
preventing, and mitigating climate change impacts on host–parasite
interactions. Veterinary Parasitology , 163 (3), 217–228.
doi: 10.1016/j.vetpar.2009.06.008
Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M.
(1998). Revised classification scheme of phytoplasmas based on RFLP
analyses of 16S rRNA and ribosomal protein gene sequences.International Journal of Systematic and Evolutionary
Microbiology , 48 (4), 1153–1169. doi: 10.1099/00207713-48-4-1153
Lee, I. M., Davis, R. E., & Gundersen-Rindal, D. E. (2000).
Phytoplasma: phytopathogenic mollicutes. Annual Reviews in
Microbiology , 54 (1), 221-255. doi:
10.1146/annurev.micro.54.1.221
Lessio, F., Picciau, L., Gonella, E., Mandrioli, M., Tota, F., & Alma,
A. (2016). The mosaic leafhopper Orientus ishidae: Host plants, spatial
distribution, infectivity, and transmission of 16SrV phytoplasmas to
vines. Bulletin of Insectology , 69 (2), 277–289.
Liu, J., Gopurenko, D., Fletcher, M. J., Johnson, A. C., & Gurr, G. M.
(2017). Phytoplasmas–the “crouching tiger” threat of Australian plant
pathology. Frontiers in Plant Science , 8 , 599. doi:
10.3389/fpls.2017.00599
McCann, H. C. (2020). Skirmish or war: The emergence of agricultural
plant pathogens. Current Opinion in Plant Biology , 56 ,
147–152. doi: 10.1016/j.pbi.2020.06.003
MacLean, A. M., Sugio, A.,
Makarova, O. V., Findlay, K. C., Grieve, V. M., Tóth, R., …
Hogenhout, S. A. (2011). Phytoplasma effector SAP54 induces
indeterminate leaf-like flower development in Arabidopsis plants.Plant Physiology , 157 (2), 831-841.
MacLean,
A. M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A. M., Angenent, G.
C., Immink, R. G., & Hogenhout, S. A., 2014. Phytoplasma effector SAP54
hijacks plant reproduction by degrading MADS-box proteins and promotes
insect colonization in a RAD23-dependent manner. PLoS Biology ,12 (4), e1001835. doi: 10.1371/journal.pbio.1001835
Malembic-Maher, S., Desqué, D., Khalil, D., Salar, P., Bergey, B.,
Danet, J.-L., … Foissac, X. (2020). When a Palearctic bacterium
meets a Nearctic insect vector: Genetic and ecological insights into the
emergence of the grapevine Flavescence dorée epidemics in Europe.PLOS Pathogens , 16 (3), e1007967. doi:
10.1371/journal.ppat.1007967
Meineke, E. K., & Davies, T. J. (2019). Museum specimens provide novel
insights into changing plant–herbivore interactions.Philosophical Transactions of the Royal Society B: Biological
Sciences , 374 (1763), 20170393. doi: 10.1098/rstb.2017.0393
Meineke, E. K., Davies, T. J., Daru, B. H., & Davis, C. C. (2019).
Biological collections for understanding biodiversity in the
Anthropocene. Philosophical Transactions of the Royal Society B:
Biological Sciences , 374 (1763). doi: 10.1098/rstb.2017.0386
Mitrović, M., Jović, J., Cvrković, T., Krstić, O., Trkulja, N., &
Toševski, I. (2012). Characterisation of a 16SrII phytoplasma strain
associated with bushy stunt of hawkweed oxtongue (Picris hieracioides)
in south-eastern Serbia and the role of the leafhopper Neoaliturus
fenestratus (Deltocephalinae) as a natural vector. European
Journal of Plant Pathology , 134 (3), 647–660. doi:
10.1007/s10658-012-0044-z
Naderali, N., Nejat, N., Vadamalai, G., Davis, R.E., Wei, W., Harrison,
… Zhao, Y. (2017). ‘Candidatus Phytoplasma wodyetiae’, a
new taxon associated with yellow decline disease of foxtail palm
(Wodyetia bifurcata) in Malaysia. International Journal of
Systematic and Evolutionary Microbiology , 67 (10), pp.3765-3772.
doi: 10.1099/ijsem.0.002187
Newton,
A. C. (2016). Exploitation of Diversity within Crops—The Key to
Disease Tolerance? Frontiers in Plant Science , 7 . doi:
10.3389/fpls.2016.00665
Novikov, D. V., Novikova, N. V., Anufriev, G. A., & Dietrich, C. H.
(2006). Auchenorrhyncha (Hemiptera) of Kyrgyz grasslands. Russian
Entomological Journal , 15 (3), 303–310.
QGIS Development Team. (2019). QGIS (Version 3.10-Bonn). OpeSource
Geospatial Foundation Project. https://qgis.org/en/site/.
Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008).
Farming the planet: 1. Geographic distribution of global agricultural
lands in the year 2000. Global Biogeochemical Cycles ,22 (1). doi:10.1029/2007GB002952.
Rao, G. P., Bertaccini, A., Fiore, N., & Liefting, L. W. (2018).Phytoplasmas: Plant Pathogenic Bacteria - I: Characterisation and
Epidemiology of Phytoplasma - Associated Diseases . Singapore: Springer.
https://doi.org/10.1007/978-981-13-0119-3
Rodrigues Jardim, B., Kinoti, W. M., Tran-Nguyen, L. T., Gambley, C.,
Rodoni, B., & Constable, F.E. (2020). ‘Candidatus Phytoplasma
stylosanthis’, a novel taxon with a diverse host range in Australia,
characterised using multilocus sequence analysis of 16S rRNA, secA, tuf,
and rp genes. International Journal of Systematic and Evolutionary
Microbiology , doi: 10.1099/ijsem.0.004589
Šafářová, D., Zemánek, T., Válová, P., & Navrátil, M. (2016.)
‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping
thistle [Cirsium arvense (L.) Scop.]. International
journal of systematic and evolutionary microbiology , 66 (4),
pp.1745-1753. doi: 10.1099/ijsem.0.000937
Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., & Göschl, M.
(1998). Current status of molecular classification of the phytoplasmas.Journal of Plant Pathology , 3–26.
Sforza, R., Clair, D., Daire, X., Larrue, J., & Boudon‐Padieu, E.
(1998). The Role of Hyalesthes obsoletus (Hemiptera: Cixiidae) in
the Occurrence of Bois noir of Grapevines in France. Journal of
Phytopathology , 146 (11–12), 549–556. doi:
https://doi.org/10.1111/j.1439-0434.1998.tb04753.x
Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison,
N. A., Ahrens, U., … Kirkpatrick, B. C. (1996).
Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA
spacer region. Applied and Environmental Microbiology ,62 (8), 2988–2993. Retrieved from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168085/
Stiller, M. (2010). Revision of the Southern African leafhopper genusPravistylus (Hemiptera, Cicadellidae, Deltocephalinae).Zootaxa , 2468 , 1–81.
Stiller, M. (2019). A new leafhopper genus Discolopeus and nine
new species (Hemiptera, Cicadellidae, Deltocephalinae) associated with
shrubs, trees and poisonous plants in South Africa. Zootaxa ,4559 (2), 201-244.
Stiller, M. (2020). A new leafhopper genus Geelus and 12 new
species (Hemiptera, Cicadellidae, Deltocephalinae) from Southern Africa.Zootaxa , 4786 (3), 301-344.
Trivellone, V., Pinzauti, F., & Bagnoli, B. (2005). Reptalus
quinquecostatus (Dufour) (Auchenorrhyncha Cixiidae) as a possible vector
of Stolbur-phytoplasma in a vineyard in Tuscany. Redia ,88 , 103–108.
Trivellone, V. (2018). Hemiptera–Phytoplasma–Plant database links.
Retrieved from http://trivellone.speciesfile.org/
Trivellone, V. (2019). An online global database of
Hemiptera-Phytoplasma-Plant biological interactions. Biodiversity data
journal, (7). doi: 10.3897/BDJ.7.e32910.2
Trivellone V., & Dietrich C.H. 2020. Evolutionary Diversification in
Insect Vector–Phytoplasma–Plant Associations. Annals of the
Entomological Society of America , doi: 10.1093/aesa/saaa048
Wei, W., Davis, R. E., Lee, I. M., & Zhao, Y. (2007). Computer
simulated RFLP analysis of 16S rRNA genes: identification of ten new
phytoplasma groups. International Journal of Systematic and
Evolutionary Microbiology , 57 (8), 1855–1867. doi:
10.1099/ijs.0.65000-0
Wei, W., Davis, R. E., Nuss, D. L., & Zhao, Y. (2013). Phytoplasmal
infection derails genetically preprogrammed meristem fate and alters
plant architecture. Proceedings of the National Academy of
Sciences of the United States of America, 110 (47), 19149-54.
Wei, W., Davis, R. E., Bauchan, G.R., & Zhao, Y. (2019) New symptoms
identified in phytoplasma-infected plants reveal extra stages of
pathogen-induced meristem fate-derailment. Molecular Plant-Microbe
Interactions: MPMI , 32 (10), 1314–1323.
https://doi.org/10.1094/MPMI-01-19-0035-R
Wei, W., Trivellone, V., Dietrich, C. H., Zhao, Y., Bottner, K., &
Ivanauskas, A. (in review). Identification of phytoplasmas representing
four distinct taxonomic 16Sr groups from phloem-feeding leafhoppers
highlight the diversity of phytoplasmas and their potential vectors.Pathogens .
Weintraub, P. G., & Beanland, L. (2006). Insect vectors of
phytoplasmas. Annual Review of Entomology , 51, 91–111.
https://doi.org/10.1146/annurev.ento.51.110104.151039
Zahniser, J. N. (2008). Seven new species and new distributions of Old
World Chiasmini (Hemiptera: Cicadellidae: Deltocephalinae), with a
redescription, key to genera, and species checklist for the tribe.Zootaxa , 1808 , 1–32.
Zahniser, J. N., & Dietrich, C. (2013). A review of the tribes of
Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae).European Journal of Taxonomy , (45). doi: 10.5852/ejt.2013.45
Zhao, Y., Wei, W., Lee, I. M., Shao, J., Suo, X., & Davis, R. E.
(2009). Construction of an interactive online phytoplasma classification
tool, iPhyClassifier, and its application in analysis of the peach
X-disease phytoplasma group (16SrIII). International Journal of
Systematic and Evolutionary Microbiology , 59 (10), 2582–2593.
doi: 10.1099/ijs.0.010249-0
Zhao, Y., Davis, R. E., Wei, W., & Lee, I.-M. (2015). Should
“Candidatus Phytoplasma” be retained within the order
Acholeplasmatales? International Journal of Systematic and
Evolutionary Microbiology , 65 (3), 1075–1082. doi:
10.1099/ijs.0.000050
Zhao, Y., Wei, W., Davis, R. E., Lee, I. M., & Bottner-Parker, K. D.
(2021). The agent associated with blue dwarf disease in wheat represents
a new phytoplasma taxon, ‘Candidatus Phytoplasma tritici’.International Journal of Systematic and Evolutionary
Microbiology , p.ijsem004604
Zwolińska, A., Krawczyk, K., Borodynko-Filas, N., & Pospieszny, H.
(2019). Non-crop sources of Rapeseed Phyllody phytoplasma
(‘Candidatus Phytoplasma asteris’: 16SrI-B and 16SrI-(B/L)L), and
closely related strains. Crop Protection , 119 , 59–68.
https://doi.org/10.1016/j.cropro.2018.11.015
Table 1. List of species collected in natural areas that tested positive
for the presence of phytoplasmas. Description of locations of the new
associations between phytoplasmas and insect hosts detected in this
study. The last column reports the 16Sr phytoplasma group detected in
the leafhoppers collected from natural habitats and the GenBank
accession numbers of the deposited sequences.