References
Acs, Z., Jović, J., Ember, I., Cvrković, T., Nagy, Z., Talaber, C., … Koelber, M. (2011). First report of maize redness disease in Hungary. Bulletin of Insectology , 64. Retrieved from https://plantarum.izbis.bg.ac.rs/handle/123456789/161
Alizon, S., Hurford, A., Mideo, N., & Van Baalen, M. (2009). Virulence evolution and the trade-off hypothesis: History, current state of affairs and the future. Journal of Evolutionary Biology ,22 (2), 245–259. doi: 10.1111/j.1420-9101.2008.01658.x
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology , 215 (3), 403–410. doi: 10.1016/S0022-2836(05)80360-2
Angelini, E., Bianchi, G. L., Filippin, L., Morassutti, C., & Borgo, M. (2007). A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay. Journal of Microbiological Methods , 68 (3), 613-622. doi: 10.1016/j.mimet.2006.11.015
Bartomeus, I., Stavert, J. R., Ward, D., & Aguado, O. (2019). Historical collections as a tool for assessing the global pollination crisis. Philosophical Transactions of the Royal Society B: Biological Sciences , 374 (1763), 20170389. doi: 10.1098/rstb.2017.0389
Bonfield, J. K., Smith, K. f, & Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research , 23 (24), 4992–4999. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC307504/
Brooks, D. R., Hoberg, E. P., & Boeger, W. A. (2019). The Stockholm paradigm: Climate change and emerging disease. Chicago: The University of Chicago Press.
Brooks, D. R., Hoberg, E. P., Boeger, W. A., Gardner, S. L., Araujo, S. B. L., Bajer, K., Botero-Cañola, S., Byrd, B., Földvári, G., Cook, J. A., Dunnum, J. L., Dursahinhan, A. T., Garamszegi, L. Z., Herczeg, D., Jakab, F., Juarrero, A., Kemenesi, G., Kurucz, K., León-Règagnon, V., … Trivellone, V. (2020). Before the Pandemic Ends: Making Sure This Never Happens Again. World Complexity Science Academy ,1 (1), 1–10.
Brooks D. R., Hoberg E. P., Boeger W. A., & Trivellone V. (accepted). Emerging infectious disease: an underappreciated area of strategic concern for food security. Transboundary and Emerging Diseases .
Cao, Y., Trivellone, V., & Dietrich, C. H. (2020). A timetree for phytoplasmas (Mollicutes) with new insights on patterns of evolution and diversification. Molecular Phylogenetics and Evolution ,149 , 106826. doi: 10.1016/j.ympev.2020.106826
Christensen, N. M., Nicolaisen, M., Hansen, M., & Schulz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions: MPMI ,17 (11), 1175–1184. doi: 10.1094/MPMI.2004.17.11.1175
Daru, B. H., Bowman, E. A., Pfister, D. H., & Arnold, A. E. (2019). A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philosophical Transactions of the Royal Society B: Biological Sciences , 374 (1763), 20170395. doi: 10.1098/rstb.2017.0395
Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes. Journal of Microbiological Methods , 14 (1), 53–61. doi: 10.1016/0167-7012(91)90007-D
Dietrich, C. H. (in review). New species of Mayawa Fletcher and description of a related new Australian leafhopper genus (Hemiptera: Cicadellidae: Deltocephalinae: Paralimnini). Zootaxa
DiEuliis, D., Johnson, K. R., Morse, S. S., & Schindel, D. E. (2016). Opinion: Specimen collections should have a much bigger role in infectious disease research and response. Proceedings of the National Academy of Sciences , 113 (1), 4–7. doi: 10.1073/pnas.1522680112
Dunnum, J. L., Yanagihara, R., Johnson, K. M., Armien, B., Batsaikhan, N., Morgan, L., & Cook, J. A. (2017). Biospecimen Repositories and Integrated Databases as Critical Infrastructure for Pathogen Discovery and Pathobiology Research. PLOS Neglected Tropical Diseases ,11 (1), e0005133. doi: 10.1371/journal.pntd.0005133
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research ,32 (5), 1792–1797. doi: 10.1093/nar/gkh340
Emeljanov, A. F. (1967). Suborder Cicadinea (Auchenorrhyncha). In GY. Bei-Bienko (Ed.), Keys to the insects of the European USSR. I. Apterygota. Palaeoptera. Hemimetabola. (pp. 421–551). Moscow-Leningrad: Nauka.
Federhen, S., 2012. The NCBI Taxonomy database. Nucleic Acids Res. 2012; 40 (Database issue): D136–43. http://www.ncbi.nlm.nih.gov/taxonomy (accessed 28 December 2021).
Fletcher, M. J. (2000). A new genus, Mayawa , for the reception ofLimotettix capitatus Kirkaldy (Hemiptera: Cicadellidae: Deltocephalinae) and descriptions of five new species of Mayawa .Australian Journal of Entomology , 39 (3), 103–110. doi: 10.1046/j.1440-6055.2000.00158.x
Gundersen, D. E., & Lee, I.-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs.Phytopathologia Mediterranea , 35 (3), 144–151. JSTOR. Retrieved from https://www.jstor.org/stable/42685262
Gupta, R. S., Sawnani, S., Adeolu, M., Alnajar, S., & Oren, A. (2018). Phylogenetic framework for the phylum Tenericutes based on genome sequence data: Proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie van Leeuwenhoek , 111 (9), 1583–1630. doi: 10.1007/s10482-018-1047-3
Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N., & Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology , 9 (4), 403–423. https://doi.org/10.1111/j.1364-3703.2008.00472.x
Huang, W., Reyes-Caldas, P., Mann, M., Seifbarghi, S., Kahn, A., Almeida, R. P. P., Béven, L., … Coaker, G. (2020). Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions.Molecular Plant , 13 (10), 1379–1393. doi: 10.1016/j.molp.2020.08.010
IRPCM Phytoplasma/Spiroplasma Working Team–Phytoplasma Taxonomy Group (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology , 54 (4), 1243–1255. doi: 10.1099/ijs.0.02854-0
Jansen, G., Crummenerl, L. L., Gilbert, F., Mohr, T., Pfefferkorn, R., Thänert, R., … Schulenburg, H. (2015). Evolutionary Transition from Pathogenicity to Commensalism: Global Regulator Mutations Mediate Fitness Gains through Virulence Attenuation. Molecular Biology and Evolution , 32 (11), 2883–2896. doi: 10.1093/molbev/msv160
King, K. C., & Lively, C. M. (2012). Does genetic diversity limit disease spread in natural host populations? Heredity ,109 (4), 199–203. doi: 10.1038/hdy.2012.33
Kirdat, K., Tiwarekar, B., Thorat, V., Sathe, S., Shouche, Y., & Yadav, A. (2020). ’Candidatus Phytoplasma sacchari’, a novel taxon-associated with Sugarcane Grassy Shoot (SCGS) disease.International Journal of Systematic and Evolutionary Microbiology . doi: 10.1099/ijsem.0.004591
Kruger, K., Pietersen, G., Smit, N., Carstens, R. 2015. Epidemiology of aster yellows phytoplasma: alternate host plants and the vectorMgenia fuscovaria (Hemiptera: Cicadellidae) in South Africa. InProceedings of the 18th Meeting of the International Council for the study of Virus-like diseases of the Grapevine (ICVG) , September 7-11, Ankara, Turkey, pp. 126-127.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.Molecular Biology and Evolution , 33 (7), 1870–1874. doi: 10.1093/molbev/msw054
Kutz, S. J., Jenkins, E. J., Veitch, A. M., Ducrocq, J., Polley, L., Elkin, B., & Lair, S. (2009). The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Veterinary Parasitology , 163 (3), 217–228. doi: 10.1016/j.vetpar.2009.06.008
Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences.International Journal of Systematic and Evolutionary Microbiology , 48 (4), 1153–1169. doi: 10.1099/00207713-48-4-1153
Lee, I. M., Davis, R. E., & Gundersen-Rindal, D. E. (2000). Phytoplasma: phytopathogenic mollicutes. Annual Reviews in Microbiology , 54 (1), 221-255. doi: 10.1146/annurev.micro.54.1.221
Lessio, F., Picciau, L., Gonella, E., Mandrioli, M., Tota, F., & Alma, A. (2016). The mosaic leafhopper Orientus ishidae: Host plants, spatial distribution, infectivity, and transmission of 16SrV phytoplasmas to vines. Bulletin of Insectology , 69 (2), 277–289.
Liu, J., Gopurenko, D., Fletcher, M. J., Johnson, A. C., & Gurr, G. M. (2017). Phytoplasmas–the “crouching tiger” threat of Australian plant pathology. Frontiers in Plant Science , 8 , 599. doi: 10.3389/fpls.2017.00599
McCann, H. C. (2020). Skirmish or war: The emergence of agricultural plant pathogens. Current Opinion in Plant Biology , 56 , 147–152. doi: 10.1016/j.pbi.2020.06.003
MacLean, A. M., Sugio, A., Makarova, O. V., Findlay, K. C., Grieve, V. M., Tóth, R., … Hogenhout, S. A. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.Plant Physiology , 157 (2), 831-841.
MacLean, A. M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A. M., Angenent, G. C., Immink, R. G., & Hogenhout, S. A., 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biology ,12 (4), e1001835. doi: 10.1371/journal.pbio.1001835
Malembic-Maher, S., Desqué, D., Khalil, D., Salar, P., Bergey, B., Danet, J.-L., … Foissac, X. (2020). When a Palearctic bacterium meets a Nearctic insect vector: Genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe.PLOS Pathogens , 16 (3), e1007967. doi: 10.1371/journal.ppat.1007967
Meineke, E. K., & Davies, T. J. (2019). Museum specimens provide novel insights into changing plant–herbivore interactions.Philosophical Transactions of the Royal Society B: Biological Sciences , 374 (1763), 20170393. doi: 10.1098/rstb.2017.0393
Meineke, E. K., Davies, T. J., Daru, B. H., & Davis, C. C. (2019). Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society B: Biological Sciences , 374 (1763). doi: 10.1098/rstb.2017.0386
Mitrović, M., Jović, J., Cvrković, T., Krstić, O., Trkulja, N., & Toševski, I. (2012). Characterisation of a 16SrII phytoplasma strain associated with bushy stunt of hawkweed oxtongue (Picris hieracioides) in south-eastern Serbia and the role of the leafhopper Neoaliturus fenestratus (Deltocephalinae) as a natural vector. European Journal of Plant Pathology , 134 (3), 647–660. doi: 10.1007/s10658-012-0044-z
Naderali, N., Nejat, N., Vadamalai, G., Davis, R.E., Wei, W., Harrison, … Zhao, Y. (2017). ‘Candidatus Phytoplasma wodyetiae’, a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. International Journal of Systematic and Evolutionary Microbiology , 67 (10), pp.3765-3772. doi: 10.1099/ijsem.0.002187
Newton, A. C. (2016). Exploitation of Diversity within Crops—The Key to Disease Tolerance? Frontiers in Plant Science , 7 . doi: 10.3389/fpls.2016.00665
Novikov, D. V., Novikova, N. V., Anufriev, G. A., & Dietrich, C. H. (2006). Auchenorrhyncha (Hemiptera) of Kyrgyz grasslands. Russian Entomological Journal , 15 (3), 303–310.
QGIS Development Team. (2019). QGIS (Version 3.10-Bonn). OpeSource Geospatial Foundation Project. https://qgis.org/en/site/.
Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles ,22 (1). doi:10.1029/2007GB002952.
Rao, G. P., Bertaccini, A., Fiore, N., & Liefting, L. W. (2018).Phytoplasmas: Plant Pathogenic Bacteria - I: Characterisation and Epidemiology of Phytoplasma - Associated Diseases . Singapore: Springer. https://doi.org/10.1007/978-981-13-0119-3
Rodrigues Jardim, B., Kinoti, W. M., Tran-Nguyen, L. T., Gambley, C., Rodoni, B., & Constable, F.E. (2020). ‘Candidatus Phytoplasma stylosanthis’, a novel taxon with a diverse host range in Australia, characterised using multilocus sequence analysis of 16S rRNA, secA, tuf, and rp genes. International Journal of Systematic and Evolutionary Microbiology , doi: 10.1099/ijsem.0.004589
Šafářová, D., Zemánek, T., Válová, P., & Navrátil, M. (2016.) ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop.]. International journal of systematic and evolutionary microbiology , 66 (4), pp.1745-1753. doi: 10.1099/ijsem.0.000937
Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., & Göschl, M. (1998). Current status of molecular classification of the phytoplasmas.Journal of Plant Pathology , 3–26.
Sforza, R., Clair, D., Daire, X., Larrue, J., & Boudon‐Padieu, E. (1998). The Role of Hyalesthes obsoletus (Hemiptera: Cixiidae) in the Occurrence of Bois noir of Grapevines in France. Journal of Phytopathology , 146 (11–12), 549–556. doi: https://doi.org/10.1111/j.1439-0434.1998.tb04753.x
Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., … Kirkpatrick, B. C. (1996). Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Applied and Environmental Microbiology ,62 (8), 2988–2993. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168085/
Stiller, M. (2010). Revision of the Southern African leafhopper genusPravistylus (Hemiptera, Cicadellidae, Deltocephalinae).Zootaxa , 2468 , 1–81.
Stiller, M. (2019). A new leafhopper genus Discolopeus and nine new species (Hemiptera, Cicadellidae, Deltocephalinae) associated with shrubs, trees and poisonous plants in South Africa. Zootaxa ,4559 (2), 201-244.
Stiller, M. (2020). A new leafhopper genus Geelus and 12 new species (Hemiptera, Cicadellidae, Deltocephalinae) from Southern Africa.Zootaxa , 4786 (3), 301-344.
Trivellone, V., Pinzauti, F., & Bagnoli, B. (2005). Reptalus quinquecostatus (Dufour) (Auchenorrhyncha Cixiidae) as a possible vector of Stolbur-phytoplasma in a vineyard in Tuscany. Redia ,88 , 103–108.
Trivellone, V. (2018). Hemiptera–Phytoplasma–Plant database links. Retrieved from http://trivellone.speciesfile.org/
Trivellone, V. (2019). An online global database of Hemiptera-Phytoplasma-Plant biological interactions. Biodiversity data journal, (7). doi: 10.3897/BDJ.7.e32910.2
Trivellone V., & Dietrich C.H. 2020. Evolutionary Diversification in Insect Vector–Phytoplasma–Plant Associations. Annals of the Entomological Society of America , doi: 10.1093/aesa/saaa048
Wei, W., Davis, R. E., Lee, I. M., & Zhao, Y. (2007). Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology , 57 (8), 1855–1867. doi: 10.1099/ijs.0.65000-0
Wei, W., Davis, R. E., Nuss, D. L., & Zhao, Y. (2013). Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proceedings of the National Academy of Sciences of the United States of America, 110 (47), 19149-54.
Wei, W., Davis, R. E., Bauchan, G.R., & Zhao, Y. (2019) New symptoms identified in phytoplasma-infected plants reveal extra stages of pathogen-induced meristem fate-derailment. Molecular Plant-Microbe Interactions: MPMI , 32 (10), 1314–1323. https://doi.org/10.1094/MPMI-01-19-0035-R
Wei, W., Trivellone, V., Dietrich, C. H., Zhao, Y., Bottner, K., & Ivanauskas, A. (in review). Identification of phytoplasmas representing four distinct taxonomic 16Sr groups from phloem-feeding leafhoppers highlight the diversity of phytoplasmas and their potential vectors.Pathogens .
Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology , 51, 91–111. https://doi.org/10.1146/annurev.ento.51.110104.151039
Zahniser, J. N. (2008). Seven new species and new distributions of Old World Chiasmini (Hemiptera: Cicadellidae: Deltocephalinae), with a redescription, key to genera, and species checklist for the tribe.Zootaxa , 1808 , 1–32.
Zahniser, J. N., & Dietrich, C. (2013). A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae).European Journal of Taxonomy , (45). doi: 10.5852/ejt.2013.45
Zhao, Y., Wei, W., Lee, I. M., Shao, J., Suo, X., & Davis, R. E. (2009). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology , 59 (10), 2582–2593. doi: 10.1099/ijs.0.010249-0
Zhao, Y., Davis, R. E., Wei, W., & Lee, I.-M. (2015). Should “Candidatus Phytoplasma” be retained within the order Acholeplasmatales? International Journal of Systematic and Evolutionary Microbiology , 65 (3), 1075–1082. doi: 10.1099/ijs.0.000050
Zhao, Y., Wei, W., Davis, R. E., Lee, I. M., & Bottner-Parker, K. D. (2021). The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ‘Candidatus Phytoplasma tritici’.International Journal of Systematic and Evolutionary Microbiology , p.ijsem004604
Zwolińska, A., Krawczyk, K., Borodynko-Filas, N., & Pospieszny, H. (2019). Non-crop sources of Rapeseed Phyllody phytoplasma (‘Candidatus Phytoplasma asteris’: 16SrI-B and 16SrI-(B/L)L), and closely related strains. Crop Protection , 119 , 59–68. https://doi.org/10.1016/j.cropro.2018.11.015
Table 1. List of species collected in natural areas that tested positive for the presence of phytoplasmas. Description of locations of the new associations between phytoplasmas and insect hosts detected in this study. The last column reports the 16Sr phytoplasma group detected in the leafhoppers collected from natural habitats and the GenBank accession numbers of the deposited sequences.