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Abstract

Aim: Invasive alien species (IAS) threaten ecosystems and humans worldwide, and
future climate change may accelerate the expansion of IAS. Predicting the suitable
distributions of IAS can prevent their further expansion.  Ageratina adenophora is a
invasive weed over 30 countries in tropical and subtropical regions.  However,  the
potential  suitable  distribution  of  A.  adenophora remains  unclear  along  with  its
response to climate change. This study explored and mapped the current and future
potential distributions of Ageratina adenophora.
Location: Global
Taxa: Asteraceae A. adenophora (Spreng.) R.M.King & H.Rob. Commonly known as
Crofton weed.
Methods: Based on A. adenophora occurrence data and climate data, we predicted its
potential distribution of this weed under current and future (four RCPs in 2050 and
2070)  by  MaxEnt  model.  We  used  ArcGIS  10.4  to  explore  the  distribution
characteristics of this weed and the ‘ecospat’ package in R to analyse its altitudinal
distribution changes. 
Results: The area under the curve value (>0.9) indicated excelled model performance.
Among environment factors, Mean Temperature of Coldest Quarter contributed most
to  the  model.  Globally,  the  suitable  habitat  for  A.adenophora invasion  decreased
under climate change scenarios, although regional increase were observed, including
in six  biodiversity hotspot regions. The potential suitable habitat of  A.adenophora
under climate change moved toward regions with higher elevation. 
Main Conclusions: Temperature  was  the  most  important  variable  influencing the
distribution  of  A.  Adenophora. Under  the  background  of  warming  climate,  the
potential  distribution  range  of  A.adenophora will  shrink  globally  but  increase
regionally. The distribution of A.adenophora will shift toward higher elevation under
climate  change.  Mountain  ecosystems  are  of  special  concern  as  they  are  rich  in
biodiversity and sensitive to climate change, and increasing human activities provide
more opportunities for IAS invasion. 

KEY WORDS: Invasive alien species, Ecological niche modelling, Climate change,
Range shift, Ageratina adenophora, MaxEnt 

1 Introduction

Invasive alien species (IAS) are recognized as one of the main drivers of global
environmental change (Simberloff et al., 2013). IAS lead to biodiversity loss (Bellard,



Cassey, & Blackburn, 2016; Clavero & Garciaberthou, 2005), affect the ecosystem
function and services  (Vilà et al., 2010), and cause economic losses  (Diagne et al.,
2020;  Ekesi,  De  Meyer,  Mohamed,  Virgilio,  &  Borgemeister,  2016;  Paini  et  al.,
2016).  Climate  change  and  anthropogenic  activities  such  as  international  trade,
tourism, and road network expansion, play important roles in the expansion of IAS
(Bertelsmeier,  Luque,  Hoffmann,  &  Courchamp,  2015;  Bertelsmeier,  Ollier,
Liebhold, & Keller, 2017; Wan & Wang, 2018) by providing opportunities for IAS to
spread and accelerating IAS expansion  (Wang, Wan, Qu, & Zhang, 2017). IAS are
commonly believed to be closely related to climate change  (Alexander et al., 2016;
Rodríguez-Merino,  García-Murillo,  Cirujano,  &  Fernández-Zamudio,  2018;  Zhao,
Liu,  & Zhou,  2013),  and  (Richardson  & Rejmánek,  2011) predicted  that  climate
change  will  accelerate  IAS invasion.  However,  the  relationship  between  IAS and
climate change remains unclear since their interaction is quite complex (Merow, Bois,
Allen, Xie, & Silander, 2017). Exploring the spatial patterns of potentially suitable
areas for IAS at present and in the future is an effective way to prevent the further
expansion of IAS (Fournier, Penone, Pennino, & Courchamp, 2019; Kaiser & Burnett,
2010; Keller, Lodge, & Finnoff, 2007). A number of recent studies have analysed the
potential  changes  in  IAS distributions  under  multiple  climate  change scenarios  at
regional  and global  scales.  Species  distribution models  (SDMs) have been widely
applied  in  the  early  detection  IAS  (Ahmad  et  al.,  2019;  Padalia,  Srivastava,  &
Kushwaha, 2014; Rodríguez-Merino et al., 2018; Srivastava, Griess, & Padalia, 2018;
Zhang et  al.,  2015; Zhao et  al.,  2013) by mapping potential  IAS distribution and
quantifying  the  relationships  between  IAS  and  environmental  factors  based  on
occurrence-only data and species habitat conditions (eg., climate, soil conditions, and
terrain).

Ageratina  adenophora  (Sprengel) R.  King  and  H.  Robinson  (synonym:
Eupatorium adenophorum Sprengel), also known as Crofton weed, is regarded as one
of the most serious invasive species in Asia, Africa, and Oceania.  A. adenophora is
native to Mexico (Qiang, 1998) and was introduced as an ornamental plant to other
regions, including the United Kingdom (Auld & Martin, 1975), Hawaii (Muniappan,
Raman, & Reddy, 2009), Australia  (Auld, 1969), India  (Bhatt et al., 2012; Poudel,
Jha, Shrestha, & Muniappan, 2019a), South Africa  (Kluge,  1991a), Nepal  (Tiwari,
2005), and Italy  (Del Guacchio,  2013).  A. adenophora is thought to have invaded
southwestern Yunnan province of China from Myanmar in the 1940s  (Chen et al.,
2019;  Fang,  Wang,  &  Zhang,  2019;  Shen,  2019;  Wang  &  Wang,  2006) and  is
classified as one of the worst IAS in China (Yan, Zhenyu, Gregg, & Dianmo, 2001;
Zhang et al., 2008). After  A. adenophora became established in Yunnan province, it
moved eastward and northward into other provinces at a high speed of approximately,
20 km per year (Sang, Zhu, & Axmacher, 2010). 

The ecological attributes of A. adenophora contribute to its invasive ability. First,
it possesses strong sexual and asexual reproductive capacity (Feng, 2008). According
to  (Parsons,  1992),  a  typical  plant  can  produce  up  to  10,000  seeds  per
season,including  7,000  viable  seeds.  The  seeds  are  capable  of  discontinuous
germination, which prolongs their viability (Shen, Zhao, & Liu, 2011). Furthermore,



the size are, facilitating their spread by wind and water; the seeds of A. adenophora
can disperse over both short  and long distances  (Wang et  al.,  2011;  Zhang et  al.,
2008).  A.  adenophora also  possesses  a  strong  allelopathic  effect,  allowing  it  to
compete with native species (Heather et al., 2011; Zhong, Duan, & Jia-Xiang, 2007).
Research  has  shown  that  A.  adenophora can  alter  the  soil  microbial  community,
which may inhibit native species and benefited its own growth (Niu, Liu, Wan, & Liu,
2007; Xu et al., 2012). In combination with the above traits, the high stress tolerance
(Li,  Qiang,  &  Qian,  2008a;  Rivera,  Villaseñor,  &  Terrazas,  2017) and  high
morphological  plasticity  (Shen,  2019;  Zhao,  Liuwenyao,  &  Meng,  2012) of  A.
adenophora make it an ‘ideal’ weed (Baker, Baker, & Stebbins, 1965). The invasion
of  A. adenophora has significantly influencd the native biodiversity and resulted in
enormous economic losses (Hui, Hai-Gen, & Liu, 2007; Xianming, Yujie, Xuejun, &
Shucun, 2013; Xu et al., 2006; Yu et al., 2014).  Various countermeasures against  A.
adenophora invasion  have  been  implemented,  including  chemical  control  and
biological  control  based  on  its  invasion  mechanism;  however,  no  single  control
approach is effective (Yang, Gui, Liu, & Wan, 2017). 

Preventing the invasion of IAS into new potentially suitable regions is thought to
be the most effective way of controlling the damage and costs to both the ecosystem
and economy (Fournier et al., 2019). SDMs play an important role in risk assessment
and conservation  (Jiménez-Valverde et al., 2011) as they can be used to investigate
the relationships between species occurrence data and the background environmental
conditions  (Yue, Zhang, & Shang, 2019a). Predictions can then be made based on
these relationships (Galletti, Ridder, Falconer, & Fall, 2013; Yang, Kushwaha, Saran,
Xu, & Roy, 2013; Zhang, Yao, Meng, & Tao, 2018). The prediction of potentially
suitable areas for species makes it  possible for policymakers to enact measures to
prevent  IAS invasion.  Numerous  modelling  methods  are  available  for  prediction,
including the generalized linear model  (He, Chen, Potter,  & Meentemeyer,  2019),
evolutionary algorithms (Gobeyn et al., 2019), random forest (Fern, Morrison, Wang,
Grant, & Campbell, 2019), bayesian hierarchical logistic mixed model  (Rocchini et
al.,  2019) and the Maximum Entropy (MaxEnt) model  (Phillips, Anderson, Dudík,
Schapire,  & Blair,  2017).  Although it  is  difficult  to  identify the most  appropriate
method (Elith, Kearney, & Phillips, 2010), MaxEnt was applied in this study because
of  demonstrated  ability  to  predict  species  distributions  and  superior  performance
compared  to  other  presence-only  SDMs  (Abolmaali,  Tarkesh,  &  Bashari,  2018;
Galletti et al., 2013; Qin et al., 2017; Tererai & Wood, 2014; Yi, Cheng, Yang, &
Zhang, 2016; Zhang et al., 2018).

This study aimed to addressed the following qustions: i) What are the potential
spatial patterns of A. adenophora under current conditions and under different future
climate change scenarios? (ii) Where are the high-invasion-risk regions at present and
in the future? (iii) What will happen to the invasion range of  A. adenophora  under
climate change on global and regional scales? We hope that the findings of this study
contribute to preventing the further invasion of A. adenophora.



2 Materials and methods

2.1. Environmental variables

For climate data,  19 bioclimatic  variables  were obtained from the WorldClim
dataset  (http://www.worldclim.org/),  with  a  1-km  spatial  resolution  (Hijmans,
Cameron, Parra, Jones, & Jarvis, 2005). The WorldClim dataset has been widely used
in species distribution modelling  (He et al., 2019; Jiao et al., 2019; Tan, Li, Lei, &
Xie, 2019; Yue, Zhang, & Shang, 2019b). Two versions of the WorldClim dataset are
available (version 2.0 and version 1.4). The dataset includes past and future (version
1.4 only) climate conditions at four different resolutions (10 min, 5 min, 2.5 min, and
30 s). Version 1.4 with a resolution of 30 s was selected for use in this study, and the
average  data  for  the  years  1970–2000 were  used  to  represent  the  current  climate
conditions. The climate projections in WorldClim come from the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change and have been downscaled
and calibrated. To indicate future climatic scenarios, we chose the data for 2050 and
2070  under  four  representative  concentration  pathways  (RCPs):  RCP26,  RCP45,
RCP60,  and  RCP85 (Ahmad  et  al.,  2019).  Soil  data  were  downloaded  from
(http://soilgrids.org) at a resolution of 1-km, and 12 soil variables were selected to
indicate the soil conditions  (Staff, 2014). Terrain factors were derived from digital
elevation  model  data,  which  were  downloaded  at  (http://srtm.csi.cgiar.org/) and
included elevation, slope, and aspect. We obtained land cover data at 1-km resolution
from the the EarthEnv dataset (https://www.earthenv.org/landcover), which integrates
multiple global land-cover datasets (Tuanmu & Jetz, 2015). For many applications in
biodiversity  and ecology,  existing  remote  sensing-derived land cover  products  are
limited  by  inconsistency  issues  and  their  typically  non-continuous  nature.  The
consensus  product  with  the  generalized  scheme  better  captures  land-cover
heterogeneity  and  has  improved  utility  for  modelling  species  distributions.  Two
versions of the dataset are available: the full version and reduced version. The former
dataset  integrates  GlobCover  (2005-06;  v2.2),  the  MODIS  land-cover  product
(MCD12Q1; v051), GLC2000 (global product; v1.1), and DISCover (GLCC; v2); the
latter  only includes the first three datasets.  In this study, we used the full  version
which includes 12 land-cover classes. The values of each land-cover class range from
0 to 100, representing the consensus prevalence in percentage. 

To  avoid  model  overfitting  caused  by  multicollinearity  between  the  selected
variables  (Dormann et al., 2013), Pearson’s correlation analysis was performed and
only  those  variables  with  correlation  coefficient  (r2)  <  0.75  were  selected  (see
Supporting  Information).  For  instance,  if  absolute  value  of  the  cross-correlation
coefficient between two variables exceeded 0.75, only the variable that captured more
information was selected (Table 1).

2.2. Species occurrence data 

https://www.earthenv.org/landcover
http://srtm.csi.cgiar.org/
http://soilgrids.org/
http://www.worldclim.org/


Species  occurrence  data  were  downloaded  from  the  Global  Biodiversity
Information  Facility  (https://www.gbif.org/,  accessed  03 September  2018)  and the
Chinese  Virtual  Herbarium  (http://www.cvh.ac.cn/,  accessed  03  September  2018).
Furthermore, we collected some samples during the fieldwork in the Tibetan Plateau
in  2016.  A total  of  5,474  occurrence  points  were  initially  recorded.  Occurrence
records  are  often  biased  toward  geographically  convenient  or  environmentally
friendly  (e.g.,  areas near cities or areas with high population density),  resulting in
sampling bias in geographic space. Thus, spatial thinning was performed  to remove
the spatial autocorrelation and sampling bias. Grid cells with dimensions of 10×10 km
were created, and a single occurrence point was selected randomly from each cell
with more than one occurrence point (Ahmad et al., 2019). A total of 741 unbiased
occurrence data points from regions in Asia (74 points), Africa (68 points), Australia
(344 points),  Oceania  (70 points),  North America (101),  and South  America (two
points) were saved in CSV format (Figure 1). The native and introduced regions were
delineated according to the biogeographical distribution scheme of the United States
Department  of  Agriculture’s Germplasm  Resource  Information  Network
(https://npgsweb.ars-grin.gov, accessed 04 September 2019). 

2.3. Modeling approach and spatial analysis 

We  applied  Maxent,  version  3.3.3k  (available
athttp://biodiversityinformatics.amnh.org/open_source/maxent/) (Phillips,  Anderson,
& Schapire, 2006)) to predict the potential distribution of A. adenophora. As one of
the  most  effective  presence-only algorithms available,  Maxent  has  been shown to
perform better than other models and its quite robust when the occurrence points are
in small size (Elith et al., 2006; Jarnevich, Holcombe, Barnett, Stohlgren, & Kartesz,
2010; Wisz et al., 2008). Seventy percent of the occurrence points were selected for
model  training,  while  the  other  30% were  used  for  model  validation.  The  model
output represented the probability of presence from 0 to 1 (Phillips & Dudík, 2008).
The area under the curve (AUC) of the receiver operating characteristic (ROC) curve
was used to evalute the model performance. The AUC value ranges from 0 to1, an
AUC  value  between  0.5  and  0.7  indicates  that  the  model  performance  is  not
acceptable, AUC in the range of 0.7-0.9 indicates good performance, and AUC >0.9
indicates  the  highest  predictive  ability  (Abdelaal,  Fois,  Fenu,  & Bacchetta,  2019;
Phillips et al., 2006). 

The most commonly used framework combines occurrence records from both the
native and introduced regions by using distribution data from the native range, this
strategry makes use of those occurrence records that are likely to be in equilibrium
with the regional environment while also including records from introduced regions
which may provide additional information about expansion into novel ranges. Four
arbitrary categories of invasion risk for A. adenophora were defined as No Risk (NR,
<0.2), Low Risk (LR, 0.2–0.4), Moderate Risk (MR, 0.4-0.6), and High Risk (HR,
>0.6) based on predicted habitat suitability (Xu, Zhuo, Wang, Ye, & Pu, 2019; Zhang
et al., 2018; Zhang et al., 2019).  In this study, we defined a region as an under-risk
(UR) region when its  risk category was LR, MR, or  HR. Based on the predicted

http://biodiversityinformatics.amnh.org/open_source/maxent/
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results for the current climate conditions and eight RCPs, the risks of invasion by A.
adenophora in different areas were calculated using ArcGIS 10.4.1 based on the four
arbitrary categories defined above. To explore the variation in the distribution of  A.
adenophora with altitude under climate change scenarios, the ‘ecospat’ package in R
was applied (Di Cola et al., 2017).

3 Result

3.1 Model performance and main variables

The AUC value for  A. adenophora obtained using the MaxEnt model was 0.97
(Figure 2), indicating excellent model performance. The jackknife test of the model
indicated that the following major variables contribute significantly to the distribution
of  A.adenophora (Table 2): Mean Temperature of Coldest Quarter (bio11, 47.5%),
Evergreen  Broadleaf  Trees  (consensus_full_class_2,  22.9%),  Urban/Built-up
(consensus_full_class_2,  6.5%),  Barren  (consensus_full_class_2,  5.8%),  Mean
Temperature  of  Warmest  Quarter  (bio10,  2.8%  of  variation),  Cation  exchange
capacity of soil (cecsol_m_sl3_1km_ll, 2.2%), Soil pH (phihox_m_sl3_1km_ll,1.4%),
Coarse  fragments  volumetric  (crfvol_m_sl3_1km_ll,1.3%),  and  Precipitation
Seasonality (bio15,1.1%). Among the variable types, climate factors made the largest
contribution to the distribution of  A. adenophora  in our model  (51.4%), with Mean
Temperature of Coldest Quarter having the largest contribution (47.5%). Land cover
variables were the second most influential, with Evergreen Broadleaf Trees having the
greatest contribution among land cover factors. Soil conditions and terrain factors had
relatively small contributions to the distribution of A. adenophora.

Based on the response curves of the eight environmental variables to distribution
probability (Figure 3), the suitable ranges with respect to the different variables are as
follows. The suitable Mean Temperature of Coldest Quarter ranges from 2°C to 22°C.
A. Adenophora is adapted to Evergreen Broadleaf Trees and Urban/Built-up regions.
The probability of A. Adenophora distribution decreases with decreasing Barren land.
The suitable range of Mean Temperature of Warmest Quarter is −2.5°C to 31°C. The
probability  of  A.  Adenophora  distribution  increases  with  increasing  soil  Cation
Exchange Capacity.  According to  petri  dish experiments  conducted  by (Lu et  al.,
2006),  the optimal soil pH for  A. adenophora ranges from 5.5–6.5, with maximum
germination occurring at pH 5.7. As soil Coarse Fragments Volumetric increases, the
probability of A. adenophora distribution decreases, particularly for values exceeding
20%. Precipitation Seasonality (Coefficient of Variation) have little influence on the
distribution of A.adenophora. According to the model, temperature had a strong effect
on the distribution of A. Adenophora, and this species prefers a warm climate. Among
land cover types, A. Adenophora is mainly distributed in Evergreen Broadleaf Trees,
Urban/Built-up,  and  Barren  lands.  Globally,  evergreen  broadleaf  trees  are  mainly



distributed  in  subtropical  and  warmer  temperate  regions,  it  shows  the  obvious
similarity  between  this  land  cover  and  species  occurrence  points.  Compared  to
temperature and land cover variables, soil conditions and precipitation factors have
little effect on the distribution of A. adenophora.  

3.2 Current invasion pattern of A. adenophora 

Figure 4 shows the percentages of areas in different risk categories under current
climate  conditions.  According  to  the  global  map  of  potential  A.  Adenophora
distribution, the total area of UR regions was 5,364,220.33 km2, of which 306,172.76
km2 was classified as HR. The areas of MR and LR regions were 1,271,142.83 km2

and 3,786,904.74 km2,  respectively.  Most UR regions for  A. adenophora invasion
were located in Mexico, the eastern coastal part of the United States, the southern part
of Chile,  the central  parts  of Peru and Bolivia,  the southern coastal  part  of South
Africa, most parts of Ethiopia and Madagascar, the eastern coastal part of Australia,
most parts of the central Himalaya in India and Nepal, the southwestern region of
China, most of Taiwan, the eastern parts of Myanmar, most parts of Laos and the
Korean  peninsula,  and  large  parts  of  Japan.  Among  these  regions,  the  regions
classified as HR are mainly distributed in Chile, the eastern coastal part of Australia,
and the central Himalaya.

There  are  currently  36  recognized  biodiversity  hotspot  regions  (BHRs)
worldwide.  Figure 5 shows the estimated potential invasion range of A. adenophora
in  these  BHRs.  At  present,  3,813,692.44 km2 of  the  UR area  is  found in  BHRs,
accounting for approximately 71% of the total UR area in the world; the BHR areas
classified as LR, MR, and HR are 2,542,359.97, 996,626.20, and 274,706.27 km2,
respectively. The BHR areas classified as LR, MR, and HR account for approximately
67.14%, 78.40%, and 89.72% of the total worldwide areas classified as LR, MR, and
HR, respectively. The BHR containing the largest UR area (531,980.29 km2) is the
Indo-Burma  BHR  in  Southeast  Asia,  which  comprises  all  non-marine  parts  of
Cambodia,  Laos,  Myanmar,  Thailand,  and  Vietnam  along  with  parts  of  southern
China.  This  area  also  contain  the  largest  LR  area  (372,108.89  km2)  and  MR
(141,323.95 km2) area and is one of the most biologically important regions on the
planet.  Among BHRs,  the  Forests  of  East  Australia  BHR has  the largest  area  are
classified as HR (64,041.83 km2) and also the largest UR proportion (83.72%) of the
total area. This BHR consists of a discontinuous coastal stretch along the Australian
states of Queensland and New South Wales and extends inland and further west to
include  the  New  England  Tablelands  and  the  Great  Dividing  Range.  The  areas
classified  as  HR  and  MR  in  the  Forests  of  East  Australia  BHR  account  for
approximately 26% and 29% of the BHR’s total area, respectively.

3.3  Potential  distribution  of  A.  adenophora under  different  future  climate  change
scenarios 

The potential suitable regions for  A. adenophora invasion were analysed under
the eight different future climatic scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5 in
2050  and  2070).  The  results  indicate  that  the  potential  distribution  range  of  A.



adenophora will  shrink under  all  RCPs (Figure 6,  Table 3).  Compared to  current
conditions, the increase in the area classified as NR ranged from 1.23% under RCP2.6
2070 to 1.71% under RCP8.5 2070. The area classified as LR decreased under all
RCPs  compared  to  current  conditions,  with  the  decrease  ranging  from  30.44%
(RCP2.6  2070)  to  45.64% (RCP8.5  2070)  with  an  average  of  35.6% (the  largest
decline among risk categories). The areas classified as MR and HR also decreased
with respect to current conditions, with average decreases of 23.39% and 23.92%,
respectively.  Analysing  the  spatial  patterns  of  the  potential  distribution  regions
indicated that the decreases in areas classified as LR and MR compared to current
conditions  were  mainly  distributed  in  the  southern  parts  of  Mexico,  Guatemala,
Nicaragua, Costa Rica, the central parts of Peru and Bolivia, the southern parts of
Chile, Nigeria, the southern parts of South Africa, western Madagascar, the central
Himalaya,  western  and eastern  Myanmar,  Northern  Laos,  southwestern China,  the
entire Korean Peninsula, and Japan (Figure 6).  Although the UR areas in different
categories generally showed the same shrinking trend under the future climate change
scenarios, the opposite trend was observed in some regions. For example, some areas
categorized as NR or LR for A. adenophora invasion under current climate conditions
will become MR or even HR areas under future climate change scenarios, including
Northwestern California, southern Chile, southern South Africa, the central Himalaya,
and  Southwestern  China  (western  Tibet).  In  summary,  the  regions  suitable  for  A.
Adenophora invasion (those classified as LR, MR, or HR) decreased under the future
climate change scenarios,  although the opposite trend was observed on a regional
scale.

Similarly, the UR area within BHRs decreased under the future climate change
scenarios compared to under current conditions. According to the predicted results,
the UR area in BHRs will decrease from 3,813,692.44 km2 under current conditions to
an  average  of  2,486,854.44  km2 under  the  eight  RCPs,  with  the  largest  decrease
(decreased  by 1,682,145.406 km2)  occurring  under  RCP8.5  in  2070. The  average
decreases in areas classified as LR, MR, and HR within BHRs were 38.09%, 28.66%,
and  26.54%,  respectively,  with  the  largest  corresponding  decreases  being  49.61%
under RCP8.5 in 2070, 34.49% under RCP8.5 in 2070, and 30.39% under RCP2.6 in
2050, respectively.

In 29 out of 36 BHRs, the UR area decreased under the future climate change
scenarios with respect to under current conditions, and the largest average decrease
occurred  in  the  Mesoamerica  BHR (319,824.90 km2).  Increases  in  UR area  were
observed  in  only  six  BHRs:  California  Floristic  Province,  Cape  Floristic  Region,
Chilean  Winter  Rainfall  and  Valdivian  Forests,  Maputaland-Pondoland-Albany,
Mountains of Southwest China, and New Zealand. As shown in  Figure 7,  obvious
increasing trends  in UR area can be observed in  the Chilean Winter  Rainfall  and
Valdivian Forests, New Zealand, and Mountains of Southwest China BHRs; the UR
areas in the California Floristic Province and Cape Floristic Region BHRs remained
relatively flat. Among the BHRs, the largest increase (increased by 115.21%) in UR
area was found in the Maputaland-Pondoland-Albany BHR under RCP8.5 in 2070.



3.4 A. Adenophora distribution characteristics with elevation under current conditions
and climate change scenarios

Under  current  conditions,  the  UR regions  are  mainly distributed at  elevations
below 2500 m; these regions account for approximately 96.46% of the total UR area,
with areas at  elevations under 500 m accounting for 35.51% (Table 4).  The areas
classified as LR, MR, and HR show similar distributions with elevation; these areas
are primarily distributed in low-elevation regions, and the distribution probability of
A. adenophora decreases with increasing elevation. Regions with elevations below
2500 m are also the main distribution areas of A. Adenophora under the eight RCPs.
UR areas at elevations below 2500 m decreased under all RCPs compared to under
current conditions, except for regions at elevations between 2000 and 2500 m under
RCP 6.0 in 2050. The UR areas at elevations between 500 and 1000 m is currently
around 1,191,096.03 km2; this value decreased by an average of 55.07% under the
eight RCPs, with the largest decrease (65.91%) occurring under RCP8.5 in 2070. The
URs at elevations between 1000 and 1500 m decreased by an average of 42.78%
under the eight RCPs. The URs at elevations between 1500 and 2000 m decreased by
an average of 21.99 % under all RCPs compared to under current conditions. This
decreasing trend is getting small with the elevation rise up. For example, UR areas at
elevations between 2000 and 2500 m decreased by only an average of 1.84 % under
eight RCPs. 

However, increasing trend was observed in UR areas above 2500m. The UR areas
with elevations between 2500 and 3000 m increased by an average of 41.84% under
the eight  RCPs. This value increased to  143.20% when UR areas  with elevations
between 3,000 and 3,500 m. When the UR areas are at an altitude of more than 3500
m, it only take no more than 3% of the total UR areas.  The same phenomenon was
observed  in  the  areas  classified  as  LR,  MR,  and  HR.  Under  current  climate
conditions,  the  areas  classified  as  LR,  MR,  and  HR  are  primarily  distributed  in
regions with elevations below 500 m (36.33%, 29.93%, and 48.61%, respectively).
Under all  RCPs, LR, MR and LR areas with elevations below 2500 m decreased
compared to under current conditions, except for HR areas with elevations between
3500  to  4000m under  RCP 2.6  in  2050  and  2070,  while  the  opposite  trend  was
observed for elevations from 2500 to 4000 m. 

A further analysis about the A. Adenophora distribution along with the elevation
was depicted in  Figure 8,  compared to under current conditions, the percentages of
UR areas  at  elevations  less  than  1500  m  clearly  decreased  under  future  climate
scenarios, while the opposite trend was observed for UR areas at elevations above
1500  m.  For  example,  under  RCP 8.5  in  2070,  the  percentage  of  UR  areas  at
elevations between 3000 and 3500 m (3.58 %) is  nearly fivefold higher than that
under current climate conditions. Thus, A. Adenophora tended to move toward higher
elevations under the climate change scenarios.



4 Discussion

IAS have caused enormous economic losses and threaten biodiversity globally.
The continental accumulation of IAS is predicted to increase by 36% from 2005 to
2050 (Seebens et al., 2020).  The most effective way to prevent damages caused by
IAS is to predict their potential distributions and take measures to limit their spread to
new areas (Fournier et al., 2019). A. adenophora has proven to be a very aggressive
invasive species in some parts of the world, including China, Australia, Mexico, and
South Africa. These regions have enacted costly measures to control the spread of A.
adenophora. Therefore, it is of great significance to predict the potential distribution
patterns of A. adenophora under current climate conditions and future climate change
scenarios.

SDMs have  been widely  applied  to  predict  the  potential  distributions  of  IAS
based on niche conservatism, which assumes that an IAS will retain a similar niche in
the  native  and  introduced  regions (Ahmad  et  al.,  2019;  Graham,  2005).  Recent
research has indicated that niche expansion of IAS is very limited in the native and
introduced ranges, suggesting that niche models can be used to predict IAS responses
to climate change (Datta, Schweiger, & Kühn, 2019; Liu, Wolter, Xian, & Jeschke,
2020).  The MaxEnt model has been shown to outperform the other available SDMs
(Hernandez,  Graham,  Master,  &  Albert,  2006;  Li,  Chang,  Liu,  &  Zhang,  2019;
Merow,  Smith,  &  Silander,  2013).  In  this  study,  we  built  nine  MaxEnt  models
according to the species occurrence data and climate data under current and future
scenarios  (four  RCPs  for  two time periods,  2050 and 2070) together  with  terrain
factors, soil conditions, and land cover data. To avoid overfitting, Spearman’s rank
correlation was used to examine the cross-correlation of all variables and remove the
highly correlated variables (Spearman’s coefficient > 0.75) (Hu & Liu, 2014). We also
applied spatial thinning to remove the spatial autocorrelation and sampling bias of the
occurrence  data  for  A.  Adenophora (Ahmad  et  al.,  2019).  The AUC value  of  the
model was 0.972, indicating excellent model performance (Phillips et al., 2006). The
predicted distribution shows the same spatial pattern as the current global distribution
of  A. adenophora. To the best of our knowledge, this is the first study to model the
potential distribution of A. adenophora at a global scale under both current and future
climate scenarios.

4.1 Effect of temperature change on the distribution of A. adenophora

Previous  studies  have  shown  that  A.  adenophora is  invasive  in  tropical  and
subtropical  regions,  including  Asia  (China,  India,  and  Nepal),  Oceania  (eastern
Australia and New Zealand), Africa, and North America (Cronk & Fuller, 1995; Del
Guacchio,  2013;  Kluge,  1991b;  Tererai  &  Wood,  2014;  Wang  &  Wang,  2006).
According to our results, the potentially suitable habitats for A. adenophora invasion
under  current  climate  conditions  are  mainly  distributed  in  Mexico  and  the



southeastern  United  States  in  North  America;  the  southern  part  of  Chile  and  the
central parts of Peru and Bolivia in South America; the southern coastal part of South
Africa, Ethiopia, and Madagascar in Africa; the eastern coastal part of Australia in
Oceania; the central Himalaya in India and Nepal, the southwestern region of China
and most of Taiwan, eastern Myanmar, most parts of Laos and the Korean peninsula,
and large parts of Japan in Asia. This concurs with previous findings. Furthermore, we
found that  over  70% of  the  UR areas  are  distributed in  the 36 BHRs,  which are
distributed in tropical and subtropical regions. Previous studies have shown that the
expansion of IAS might become apparent later in invasion events and consequently
have extensive negative effects on native species and the overall stability of native
ecosystems (Adams et al., 2015; Mainali et al., 2015; Pyšek et al., 2012; Roger et al.,
2015; Vicente et al., 2013). From this point of view, the invasion of  A. adenophora
may have serious consequences in these regions.

According  to  the  growth  environment  of  this  weed  and previous  studies,  the
temperature is major factor controlling the distribution of A. adenophora. A study by
Wang et al., (2017) found that the temperature during winter is the most influential
factor affecting the distribution of  A. adenophora  in China. The research results of
Thapa et al., (2018) showed that the Minimum Temperature of Coldest Month is the
most  significant  variable  in  the  western  Himalaya.  Among environmental  factors,
temperature,  particularly  the  low  temperature,  is  the  main  factor  governing  the
distribution of  A. adenophora (Li, Qiang, & Qian, 2008b; Wang et al., 2017).  The
abovementioned  studies  support  our  finding  that  Mean  Temperature  of  Coldest
Quarter  (Bio11)  was the most  important  factor  (47.5% contribution to  the model)
governing  the  distribution  of  A.  adenophora.  In  general,  areas  with  warm
temperatures  and  moist  conditions  are  climatically  suitable  for  invasion  by  A.
adenophora, which prefers temperatures in the range of 10°C–25°C (Tererai & Wood,
2014).  Thus, changes in temperature will significantly affect the distribution of  A.
adenophora.  He et al., (2012) demonstrated that experimental warming increase the
biomass  production  and  canopy  of  A.  adenophora and  reduced  mortality  in
comparison with its native neighbours. This means that global warming may create
favourable conditions for the invasions of A. adenophora by promoting its growth and
environmental tolerance (Poudel, Jha, Shrestha, & Muniappan, 2019b). Based on the
four RCPs used in this  study, global warming will  continue for some decades.  In
theory, climatically suitable areas of  A. adenophora in the future would expand to
other  regions  under  the  background  of  climate  warming. Chong  et  al.,  (2017)
predicted that the suitable habitat of A. adenophora would expand in southwest China
under climate warming scenarios. A similar expansion is also expected in the western
Himalaya  under  future  global  warming  (Lamsal,  Kumar,  Aryal,  & Atreya,  2018).
However, we found that the suitable habitat for A. adenophora decreases obviously on
a global  scale under the four RCPs in 2050 and 2070 compared to under current
conditions. A likely explanation is that A. adenophora will shift upslope under future
climate conditions and thus face consistent reductions in the area that this species can
occupy (Liang et al., 2018).



4.2  A. adenophora will  shift  toward higher  elevation under  future climate change
scenarios 

Under global warming, some species will migrate to higher latitudes or higher
elevations to adapt to climate change (Bertrand et al., 2011; Hackett et al., 2008; Root
et al., 2003), especially in mountain ecosystems  (Felde, Kapfer, & Grytnes, 2012).
Under current climate conditions, the distribution of  A. adenophora with respect to
elevation is similar in native and introduced regions. A. adenophora is distributed in
areas with elevations ranging from 520 to 3200 m in its native range (Mexico) (Sang
et al., 2010), while it is found at elevations between 330 and 2500 m in China (Wang
& Wang, 2006) and between 400 and 3280 m in Nepal (Shrestha, Sharma, Devkota,
Siwakoti,  & Shrestha,  2018).  According to  Sunil  et  al.,  (2018),  A.  adenophora is
expected to move to elevations up to 3547 m a.s.l. by 2070. Our results show that the
spatial pattern and altitudinal distribution of this weed change under future climate
change scenarios. In the altitude range of 500–1500 m, UR areas decreased under the
eight RCPs, while the opposite trend was observed for elevations exceeding 1500 m.
To explore the response of A. adenophora to climate change in mountain ecosystems,
we  further  analysed  the  change  in  altitudinal  distribution  in  the  Hengduan
Mountainous  BHR,  which  has  suffered  severe  damage  due  to  the  invasion  of  A.
adenophora.

Interestingly,  we found that  the  distribution  of  A.  adenophora moved  toward
higher elevation in the Hengduan Mountainous BHR under the future climate change
scenarios (Figure  9 andFigure  10),  with  areas  at  elevations  of  2500–3000  m
accounting for the largest proportion of UR areas (average of 26.46%) under all RCPs
except RCP 2.6 2070. It is worth noting that the UR areas at elevations below 2000 m
decreased under all RCPs compared to under current conditions. For example, UR
areas with elevations below 2000 m account for 42.41% of all  UR regions under
current  conditions;  this  percentage  decreased  to  27.65%  under  RCP8.5  2070.
Nevertheless, UR areas with elevations between 2000 and 3500 m increased under all
RCPs. Under  current climate conditions,  the UR areas are  primarily distributed at
elevations of 2000–2500. However, under RCP8.5 2070, the UR areas are primarily
found at  elevations  of  2500–3000 m.  This  phenomenon was also observed in  the
Himalayas (Figure 11).  As shown in  Figure 11,  A. adenophora shows an obvious
trend of expansion into higher altitudes in the Himalayan region. 

Biological invasions are considered to be the second most severe threat affecting
biodiversity (Fournier  et  al.,  2019).  Montane  ecosystems,  which  have  high
biodiversity  and  are  sensitive  to  climate  change,  are  of  particular  concern  under
climate warming  (Dullinger  et  al.,  2012).  Among terrestrial  ecosystems, mountain
ecosystems and particularly high mountains are often considered to be at low risk of
invasion (Pauchard  et  al.,  2009).  However,  the  invasion  process  is  driven  by  a
combination  of  climate  change  and  human  activities (Alexander  et  al.,  2016).
Increasing anthropogenic activities offer more opportunities for the invasion of non-
native  species,  and  road  networks  are  regarded  as  the  major  pathway  for  IAS
invasion.  There will be at least  25 million kilometres of new roads anticipated by



2050, with developing countries accounting for 90% of this increase.(Laurance et al.,
2014). This will provide opportunities for the establishment of non-native species and
conduits for their dispersal (Becker, Dietz, Billeter, Buschmann, & Edwards, 2005);
roads  and  trails  are  recognized  as  major  pathways  for  invasion  into  mountains
(Fuentes, Ugarte, Kühn, & Klotz, 2010; Lembrechts J J, 2014; Pauchard & Alaback,
2004).  Hence,  a  detailed  assessment  of  the  effects  of  road  infrastructure  on
biodiversity is needed given the rapid expansion of road networks.

4.3 Uncertainty

The limitations of this study can be summarized as follows. Since MaxEnt is an
ecological niche model, only the abiotic factors were taken into consideration (Ahmad
et  al.,  2019;  Xu et  al.,  2019).  As indicated by the “BAM” (abiotic factors,  biotic
factors, and movement) diagram (Pauchard & Alaback, 2004),  the distribution of a
species  is  governed  not  only  by  abiotic  factors,  but  also  biotic  factors  including
interactions  between  species  and  dispersal  ability.  In  this  study,  the  land  cover
conditions along with climate variables were used as input to the model; however, we
assumed  that  the  land  cover  conditions  would  remain  unchanged  in  the  future.
Climate factors were considered to be the principal factors in other global- or country-
scale studies of species distribution.  To better  understand the influence of climate
change on species distribution, the intraspecific interactions and changes in land cover
should be taken into consideration. Furthermore, the current climate conditions in this
study are not “current” for the current climate data derived from interpolations of
observed data (representative of 1960–2000). During the past two decades, the world
climate has changed greatly, which may affect the accuracy of the model (Wang et al.,
2018). Finally, although we have determined the regions of native occurrence from all
records, the artificial introduction of A. adenophora was not taken into consideration.
This may explain why the occurrence of A. adenophora is always near Urban/Built-up
regions.

5 Conclusions

Detecting  the  potential  suitable  regions  for  species  invasion  is  of  great
significance for preventing IAS invasion. Based on the MaxEnt model, the potential
invasion ranges of  A. adenophora under current and future climate conditions were
evaluated.  Our results  show that the potential  invasion range of  A. adenophora is
mainly  distributed  in  subtropical  and  warmer  temperate  regions,  including
southwestern America, Chile, the Himalayas, southwestern China, and southeastern
Australia. Among environmental factors, the Mean Temperature of Coldest Quarter
contributes the most to the model, and the optimal temperature range for this species
is  8°C–16°C.  Although the  invasion  range  of  A.  adenophora will  shrink  globally



under  all  RCPs, the invasion risk will  increase in six biodiversity hotspot regions
(BHRs), such as the Hengduan Mountainous region, with a clear trend toward higher
elevations under future climate scenarios. The findings provide reference information
for developing appropriate management strategies to prevent the establishment and
further spread of A. adenophora across the globe, especially in BHRs.

6 Tables

Table 1 Environmental variables used in the MaxEnt model

Code Description

bio-2 Mean Diurnal Range

bio-10 Mean Temperature of Warmest Quarter

bio-11 Mean Temperature of Coldest Quarter

bio-15 Precipitation Seasonality

bio-17 Precipitation of Driest Quarter

bio-18 Precipitation of Warmest Quarter

bio-19 Precipitation of Coldest Quarter

BLDFIE_M_sl3_1km_ll Bulk density (fine earth, oven dry) in kg / cubic-meter

CECSOL_M_sl3_1km_ll Cation exchange capacity of soil in cmolc/kg

CLYPPT_M_sl3_1km_ll Clay content (0-2 micro meter) mass fraction in %

CRFVOL_M_sl3_1km_ll Coarse fragments volumetric in %

OCDENS_M_sl3_1km_ll Soil organic carbon density in kg per cubic-m

ORCDRC_M_sl3_1km_ll Soil organic carbon content (fine earth fraction) in g per kg

PHIHOX_M_sl3_1km_ll Soil pH x 10 in H2O

PHIKCL_M_sl3_1km_ll Soil pH x 10 in KCl

SLTPPT_M_sl3_1km_ll Silt content (2-50 micro meter) mass fraction in %

consensus_full_class_1 Evergreen/Deciduous Needleleaf Trees

consensus_full_class_2 Evergreen Broadleaf Trees

consensus_full_class_3 Deciduous Broadleaf Trees

consensus_full_class_4 Mixed/Other Trees

consensus_full_class_5 Shrubs

consensus_full_class_6 Herbaceous Vegetation

consensus_full_class_7 Cultivated and Managed Vegetation

consensus_full_class_8 Regularly Flooded Vegetation

consensus_full_class_9 Urban/Built-up

consensus_full_class_10 Snow/Ice

consensus_full_class_11 Barren

consensus_full_class_12 Open Water

elevation ——————



slope ——————

aspect ——————

Table 2 Main variables in the MaxEnt model of A. adenophora under current climate conditions

Variable Percent contribution Permutation importance

bio_11 47.5 47.5

consensus_full_class_2 22.9 70.4

consensus_full_class_9 6.5 76.9

consensus_full_class_11 5.8 82.7

bio_10 2.8 85.5

cecsol_m_sl3_1km_ll 2.2 87.7

phihox_m_sl3_1km_ll 1.4 89.1

crfvol_m_sl3_1km_ll 1.3 90.4

bio_15 1.1 91.5

Table 3 Area in square kilometres (km2) and rate of changes in the areas classified as different risk rank

under future climatic scenarios for two time periods (2050 and 2070).

Risk rank Current (km2)
RCP2.6 (%) RCP4.5 (%) RCP6.0 (%) RCP8.5 (%)

2050 2070 2050 2070 2050 2070 2050 2070

NR 125,115,100.00 1.23 1.21 1.32 1.38 1.24 1.39 1.51 1.71 

LR 3,786,904.74 -30.44 -30.11 -33.94 -35.40 -32.72 -37.42 -39.12 -45.64 

MR 1,271,142.83 -23.20 -22.84 -23.37 -23.97 -20.11 -21.43 -25.26 -26.94 

HR 306,172.76 -29.87 -28.98 -23.75 -26.13 -19.86 -14.51 -26.74 -21.49 

UR 5,364,220.33 -28.69 -28.32 -30.85 -32.16 -29.00 -32.33 -35.13 -39.83 

Table 4. Distributions of UR regions in different elevation ranges under current conditions and the eight

RCPs

Elevation

(m)

Current

(km2)

RCP2.6

2050(%)

RCP2.6

2070(%

)

RCP4.5

2050(%

)

RCP4.5

2070(%)

RCP6.0

2050(%)

RCP6.0

2070(%

)

RCP8.5

2050(%)

RCP8.5

2070(%

)

<500
1,908,804.2

1 

-30.35 -29.57 -32.76 -32.89 -31.69 -34.88 -36.63 -39.66 

500−1000
1,191,096.0

3 

-49.13 -48.80 -53.76 -56.00 -51.42 -56.25 -59.32 -65.91 

1000−1500 964,855.44 -35.72 -35.41 -39.77 -43.30 -37.09 -43.39 -47.61 -59.95 

1500−2000 685,939.53 -18.47 -17.83 -20.15 -22.36 -17.94 -21.38 -25.34 -32.49 

2000−2500 434,080.22 -1.21 -1.73 -0.94 -1.70 1.29 -0.33 -2.75 -7.36 

2500−3000 143,383.84 34.01 32.19 41.74 41.94 42.98 47.00 45.51 49.39 



3000−3500 35,553.71 97.03 93.62 133.14 141.62 131.68 161.94 161.03 225.52 

3500−4000 9,017.92 193.78 190.10 297.71 371.85 290.50 424.33 429.01 745.04 

4000−4500 1,858.92 -46.97 -48.34 23.60 113.55 11.23 158.24 177.20 1002.21 

>4500 266.77 -66.05 -62.60 -38.73 -34.75 -43.77 -13.79 -20.95 99.73 

7 Figures:

Figure 1. Spatial distribution of A. adenophora occurrence. Green points denote native regions, while

red points denote introduced or invasive regions. Photos A and B show A. adenophora. The purple-

coloured  regions  show BHRs,  which  are  Earth’s  most  biologically  rich  and  threatened  terrestrial

regions (Myers, Mittermeier, Mittermeier, Da, & Kent, 2000).



Figure 2 ROC curve and AUC value under current climate conditions

Figure  3 Response  curves  for  the  eight  main  environmental  variables  affecting  the  potential

distribution  of  A.  adenophora.  The  thresholds  of  suitability  were  set  as  existence  probability

greater than 0.2.



Figure 4 Potential spatial distribution of A. adenophora under current climate conditions. NR, LR, MR,

and HR denotes No Risk, Low Risk, Moderate Risk, and High Risk, respectively.
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Figure 5 Potential invasion areas within BHRs under current climate conditions. NR, LR, MR, and HR

denotes No Risk, Low Risk, Moderate Risk, and High Risk, respectively.



Figure 6. Potential spatial distributions of A. adenophora under the eight RCPs. Gray denotes no risk,

green denotes regions converted from UR to NR, red denotes regions converted from NR to UR..

Figure 7 Changes in UR area in seven BHRs under the eight RCPs. 1, California Floristic Province

Cape Floristic Region; 2, Chilean Winter Rainfall and Valdivian Forests; 3, Maputaland-Pondoland-

Albany; 4, Mountains of Southwest China; 5, New Zealand; 6, North American Coastal Plain



Figure  8.  Distributions  of  UR  regions  for  A.  adenophora within  different  elevation  ranges.  Red

triangles denote the four RCPs in 2050, while the green dots represent the four RCPs in 2070. To

improve the visibility of differences between the RCPs for 2050 and 2070, the four RCPs for 2070 are

located beneath the four RCPs for 2050.



Figure 9. Potential invasion range of A. adenophora in the Mountains of Southwest China BHR under

current and future climate change scenarios. The trend in A. adenophora invasion range in this BHR is

opposite the global trend.



Figure 10. Distributions of A. adenophora UR regions in different elevation ranges within the

Mountains of Southwest China BHR.

Figure 11. Distributions of A. adenophora UR regions in the Himalayas under current conditions and a

future climate change scenario (RCP8.5 2070)

8 Data availability statement

Data  on  spatial  distribution  of  A.  adenophora occurrence,  potential  distribution  of

A.adenophora under 8 RCPs, Distributions of  A. adenophora UR regions in different elevation

ranges  within  the  Mountains  of  Southwest  China  BHR  are  available  from  datadryad,  and

Distributions of A. adenophora UR regions in the Himalayas under current conditions and a future

climate  change  scenario  (RCP8.5  2070)

(https://datadryad.org/stash/share/gl0QaDZj9T8dRdTuNJvrj2dt0G9ZZvsdhsNueE07Wt8)



9 Reference

Abdelaal,  M., Fois,  M., Fenu, G.,  & Bacchetta,  G. (2019).  Using MaxEnt modeling to predict  the

potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecological Informatics, 50,

68-75. https://doi.org/10.1016/j.ecoinf.2019.01.003

Abolmaali, S. M., Tarkesh, M., & Bashari, H. (2018). MaxEnt modeling for predicting suitable habitats

and identifying the effects of climate change on a threatened species, Daphne mucronata, in central

Iran. Ecological Informatics, 43, 116-123. https://doi.org/10.1016/j.ecoinf.2017.10.002

Ahmad,  R.,  Khuroo,  A.  A.,  Charles,  B.,  Hamid, M.,  Rashid,  I.,  & Aravind,  N.  A. (2019).  Global

distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare

(Ox-eye Daisy) under climate change. Scientific Reports, 9(1). 10.1038/s41598-019-47859-1

Alexander, J. M., Lembrechts, J. J., Cavieres, L. A., Daehler, C., Haider, S., Kueffer, C., ... Seipel, T.

(2016). Plant invasions into mountains and alpine ecosystems: current status and future challenges.

Alpine Botany, 126(2), 89-103. 10.1007/s00035-016-0172-8

Auld, B. A. (1969). The distribution of Eupatorium adenophorum Spreng. on the far north coast of

New Sooth Wales. Journal & Proceedings Royal Society of New South Wales, 159-161

AULD, B. A., & MARTIN, P. M. (1975). The autecology of Eupatorium adenophorum Spreng. in

Australia. Weed Research, 15(1

), 27-31. 10.1111/j.1365-3180.1975.tb01092.x

Baker, H. G., Baker, H. G., & Stebbins, G. L. (1965). Characteristics and modes of origin of weeds.

Genetics of Colonizing Species, 147-168

Becker, T., Dietz, H., Billeter, R., Buschmann, H., & Edwards, P. J. (2005). Altitudinal distribution of

alien plant species in the Swiss Alps.  Perspectives in Plant Ecology, Evolution and Systematics,

7(3), 173-183. 10.1016/j.ppees.2005.09.006

Bellard, C., Cassey, P., & Blackburn, T. M. (2016). Alien species as a driver of recent extinctions.

Biology Letters, 12(2), 20150623. 10.1098/rsbl.2015.0623

Bertelsmeier, C., Luque, G. M., Hoffmann, B. D., & Courchamp, F. (2015). Worldwide ant invasions

under climate change. Biodiversity and Conservation, 24(1), 117-128. 10.1007/s10531-014-0794-3

Bertelsmeier, C., Ollier, S., Liebhold, A., & Keller, L. (2017). Recent human history governs global ant

invasion dynamics. Nature Ecology & Evolution, 1(7). 10.1038/s41559-017-0184

Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffray, P., Vidal, C., ... Gégout, J. (2011).

Changes in plant community composition lag behind climate warming in lowland forests. Nature,

479(7374), 517-520. 10.1038/nature10548

Bhatt, J. R., Singh, J. S., Singh, S. P., Tripathi, R. S., Kohli, R. K., Bhatt, J. R., ... Kohli, R. K. (2012).

Invasive alien plants: an ecological appraisal for the Indian subcontinent. Invasive Alien Plants An

Ecological Appraisal for the Indian Subcontinent

Chen, L., Fang, K., Zhou, J., Yang, Z., Dong, X., Dai, G., & Zhang, H. (2019). Enrichment of soil rare

bacteria in root by an invasive plant Ageratina adenophora. Science of The Total Environment, 683,

202-209. 10.1016/j.scitotenv.2019.05.220

Chong, W., Huilong, L., Qisheng, F., Cangyu, J., Aocheng, C., & Lan, H. (2017). A New Strategy for

the  Prevention  and  Control  of  Eupatorium  adenophorum  under  Climate  Change  in  China.



Sustainability, 9(11), 2037

CLAVERO, M., & GARCIABERTHOU, E. (2005). Invasive species are a leading cause of animal

extinctions. Trends in Ecology & Evolution, 20(3), 110. 10.1016/j.tree.2005.01.003

Cronk, Q. C. B., & Fuller, J. L. (1995). Plant invaders: the threat to natural ecosystems.  Biological

Conservation, 79(2), 313

Datta, A., Schweiger, O., & Kühn, I. (2019). Niche expansion of the invasive plant speciesAgeratina

adenophora              despite evolutionary constraints. Journal of Biogeography. 10.1111/jbi.13579

Del Guacchio, E. (2013). Ageratina adenophora (Asteraceae) new species to the Italian alien flora and

observations on its environmental threats. Hacquetia, 12(2), 17-22

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'Amen, M., Randin, C., ... Guisan, A.

(2017).  ecospat:  an R package to support  spatial  analyses  and modeling of species  niches and

distributions. Ecography, 40(6), 774-787. 10.1111/ecog.02671

Diagne, C., Leroy, B., Gozlan, R. E., Vaissière, A. C., Assailly, C., Nuninger, L., ... Courchamp, F.

(2020).  InvaCost,  a  public  database  of  the  economic  costs  of  biological  invasions  worldwide.

Scientific Data, 7(1). 10.1038/s41597-020-00586-z

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., ... Lautenbach, S. (2013).

Collinearity:  a  review  of  methods  to  deal  with  it  and  a  simulation  study  evaluating  their

performance. Ecography, 36(1), 27-46. 10.1111/j.1600-0587.2012.07348.x

Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., ... Hülber, K.

(2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nature

Climate Change, 2(8), 619-622. 10.1038/nclimate1514

Ekesi,  S.,  De  Meyer,  M.,  Mohamed,  S.  A.,  Virgilio,  M.,  & Borgemeister,  C.  (2016).  Taxonomy,

Ecology, and Management of Native and Exotic Fruit Fly Species in Africa.  Annu Rev Entomol,

61, 219-238. 10.1146/annurev-ento-010715-023603

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., ... E. Zimmermann, N.

(2006).  Novel  methods  improve  prediction  of  species’ distributions  from  occurrence  data.

Ecography, 29(2), 129-151. 10.1111/j.2006.0906-7590.04596.x

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species.  Methods in

Ecology and Evolution, 1(4), 330-342. 10.1111/j.2041-210X.2010.00036.x

Fang, K., Wang, Y. Z., & Zhang, H. B. (2019). Differential effects of plant growth-promoting bacteria

on  invasive  and  native  plants.  South  African  Journal  of  Botany,  124,  94-101.

10.1016/j.sajb.2019.04.007

Felde, V. A., Kapfer,  J.,  & Grytnes,  J. (2012).  Upward shift in elevational  plant species ranges in

Sikkilsdalen, central Norway. Ecography, 35(10), 922-932. 10.1111/j.1600-0587.2011.07057.x

Feng, Y. L. (2008). Photosynthesis, nitrogen allocation and specific leaf area in invasive Eupatorium

adenophorum  and  native  Eupatorium  japonicum  grown  at  different  irradiances.  Physiologia

Plantarum, 133(2

), 318-326. 10.1111/j.1399-3054.2008.01072.x

Fern, R. R., Morrison, M. L., Wang, H., Grant, W. E., & Campbell, T. A. (2019). Incorporating biotic

relationships  improves  species  distribution  models:  Modeling  the  temporal  influence  of

competition  in  conspecific  nesting  birds.  Ecological  Modelling,  408,  108743.

10.1016/j.ecolmodel.2019.108743

Fournier, A., Penone, C., Pennino, M. G., & Courchamp, F. (2019). Predicting future invaders and

future  invasions.  Proceedings  of  the  National  Academy  of  Sciences,  116(16),  7905-7910.



10.1073/pnas.1803456116

Fuentes,  N.,  Ugarte,  E.,  Kühn, I.,  & Klotz,  S.  (2010).  Alien plants in southern South America.  A

framework  for  evaluation  and  management  of  mutual  risk  of  invasion  between  Chile  and

Argentina. Biological Invasions, 12(9), 3227-3236. 10.1007/s10530-010-9716-9

Galletti,  C. S.,  Ridder,  E.,  Falconer,  S.  E.,  & Fall,  P.  L. (2013).  Maxent  modeling of  ancient  and

modern  agricultural  terraces  in  the  Troodos  foothills,  Cyprus.  Applied  Geography,  39,  46-56.

https://doi.org/10.1016/j.apgeog.2012.11.020

Gobeyn,  S.,  Mouton,  A.  M.,  Cord,  A.  F.,  Kaim,  A.,  Volk,  M.,  &  Goethals,  P.  L.  M.  (2019).

Evolutionary algorithms for species distribution modelling: A review in the context of machine

learning. Ecological Modelling, 392, 179-195. 10.1016/j.ecolmodel.2018.11.013

Graham,  W.  C.  H.  (2005).  Niche  Conservatism:  Integrating  Evolution,  Ecology,  and  Conservation

Biology. Annual Review of Ecology Evolution & Systematics, 36, 519-539

Hackett,  S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., ...  Yuri, T.

(2008). A Phylogenomic Study of Birds Reveals Their Evolutionary History. Science,  320(5884),

1763-1768. 10.1126/science.1157704

He, S., Su, Y., Shahtahmassebi, A. R., Huang, L., Zhou, M., Gan, M., ... Wang, K. (2019). Assessing

and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou

metropolitan area, China. Science of The Total Environment, 692, 756-768. https://doi.org/10.1016/

j.scitotenv.2019.07.160

He,  W. M.,  Li,  J.  J.,  & Peng, P.  H.  (2012).  A Congeneric  Comparison Shows That  Experimental

Warming Enhances the Growth of Invasive Eupatorium adenophorum. Plos One, 7(4), e35681

He, Y., Chen, G., Potter, C., & Meentemeyer, R. K. (2019). Integrating multi-sensor remote sensing

and species distribution modeling to map the spread of emerging forest disease and tree mortality.

Remote Sensing of Environment, 231, 111238. 10.1016/j.rse.2019.111238

Heather,  E.,  Christoph,  C.,  Devika,  B.,  Rajwant,  K.,  Yu-Long,  F.,  Carlos,  S.,  ...  Callaway,  R.  M.

(2011). Volatile chemicals from leaf litter are associated with invasiveness of a neotropical weed in

Asia. Ecology, 92(2), 316-324

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and

species  characteristics  on  performance  of  different  species  distribution  modeling  methods.

Ecography, 29(5)

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution

interpolated climate surfaces for global land areas.  International Journal of Climatology,  25(15),

1965-1978. 10.1002/joc.1276

Hu, J., & Liu, Y. (2014). Unveiling the Conservation Biogeography of a Data-Deficient Endangered

Bird Species under Climate Change. PLOS ONE, 9(e845291). 10.1371/journal.pone.0084529

Hui, D., Hai-Gen, X. U., & Liu, Z. L. (2007). Impacts of Invasion of Eupatorium adenophorum on

Vegetation Diversity. Journal of Ecology & Rural Environment

Jarnevich, C. S., Holcombe, T. R., Barnett, D. T., Stohlgren, T. J., & Kartesz, J. T. (2010). Forecasting

Weed Distributions using Climate Data: A GIS Early Warning Tool.  Invasive Plant Science and

Management, 3(4

), 365-375. 10.1614/IPSM-08-073.1

Jiao, Y., Zhao, D., Ding, Y., Liu, Y., Xu, Q., Qiu, Y., ... Li, R. (2019). Performance evaluation for four

GIS-based models purposed to predict and map landslide susceptibility: A case study at a World

Heritage  site  in  Southwest  China.  CATENA,  183,  104221.



https://doi.org/10.1016/j.catena.2019.104221

Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011).

Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785-2797.

10.1007/s10530-011-9963-4

Kaiser, B. A., & Burnett, K. M. (2010). Spatial economic analysis of early detection and rapid response

strategies for an invasive species. Resource and Energy Economics, 32(4), 566-585. https://doi.org/

10.1016/j.reseneeco.2010.04.007

Keller, R. P., Lodge, D. M., & Finnoff, D. C. (2007). Risk assessment for invasive species produces net

bioeconomic  benefits.  Proceedings  of  the  National  Academy  of  Sciences,  104(1),  203-207.

10.1073/pnas.0605787104

Kluge, R. L. (1991a). Biological control of crofton weed, Ageratina adenophora (Asteraceae), in South

Africa. Agriculture Ecosystems & Environment, 37(1–3), 187-191

Kluge, R. L. (1991b). Biological control of crofton weed, Ageratina adenophora (Asteraceae), in South

Africa. Agriculture Ecosystems & Environment, 37(1-3), 187-191

Lamsal, P., Kumar, L., Aryal, A., & Atreya, K. (2018). Invasive alien plant species dynamics in the

Himalayan region under climate change. Ambio, 47(6), 697-710. 10.1007/s13280-018-1017-z

Laurance, W. F., Clements, G. R., Sloan, S., O Connell, C. S., Mueller, N. D., Goosem, M., ... Arrea, I.

B. (2014). A global strategy for road building. Nature, 513(7517), 229-232. 10.1038/nature13717

Lembrechts J J, A. M. I. N. (2014). Alien Roadside Species More Easily Invade Alpine than Lowland

Plant  Communities  in  a  Subarctic  Mountain  Ecosystem.  PLoS  ONE,  9(6),  e102109.

10.1371/journal.pone.0102109

Li, H., Qiang, S., & Qian, Y. (2008a). Physiological Response of Different Croftonweed (Eupatorium

adenophorum) Populations to Low Temperature. Weed Science, 56(2), 196-202

Li, H., Qiang, S., & Qian, Y. (2008b). Physiological Response of Different Croftonweed (Eupatorium

Adenophorum) Populations to Low Temperature. Weed Science, 56(2), 196-202

Li, J., Chang, H., Liu, T., & Zhang, C. (2019). The potential geographical distribution of Haloxylon

across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology,

275, 243-254. https://doi.org/10.1016/j.agrformet.2019.05.027

Liang, Q., Xu, X., Mao, K., Wang, M., Wang, K., Xi, Z., & Liu, J. (2018). Shifts in plant distributions

in response to climate warming in a biodiversity hotspot, the Hengduan Mountains.  Journal of

Biogeography

Liu, C., Wolter, C., Xian, W., & Jeschke, J. M. (2020). Most invasive species largely conserve their

climatic niche. Proceedings of the National Academy of Sciences, 117(38), 23643-23651

Lu, P., Sang, W., & Ma, K. (2006). Effects of environmental factors on germination and emergence of

Crofton weed (Eupatorium adenophorum). Weed Science, 54(3), 452-457

Merow, C., Bois, S. T., Allen, J. M., Xie, Y., & Silander, J. A. (2017). Climate change both facilitates

and  inhibits  invasive  plant  ranges  in  New England.  Proceedings  of  the  National  Academy  of

Sciences, 114(16), E3276-E3284. 10.1073/pnas.1609633114

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species'

distributions: what it does, and why inputs and settings matter. Ecography, 36

Muniappan,  Raman,  A.,  &  Reddy,  G.  V.  P.  (2009).  Ageratina  adenophora  (Sprengel)  King  and

Robinson (Asteraceae).

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da, F. G., & Kent, J. (2000). Biodiversity hotspots

for conservation priorities. Nature, 403(6772), 853-858. 10.1038/35002501



Niu, H., Liu, W., Wan, F., & Liu, B. (2007). An invasive aster (Ageratina adenophora) invades and

dominates forest understories in China: altered soil microbial communities facilitate the invader

and inhibit natives. Plant and Soil, 294(1-2), 73-85. 10.1007/s11104-007-9230-8

Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of alien

invasive  species,  Hyptis  suaveolens  (L.)  Poit.  in  India:  Comparison  of  MaxEnt  and  GARP.

Ecological Informatics, 22, 36-43. 10.1016/j.ecoinf.2014.04.002

Paini, D. R., Sheppard, A. W., Cook, D. C., De Barro, P. J., Worner, S. P., & Thomas, M. B. (2016).

Global  threat  to  agriculture  from  invasive  species.  Proceedings  of  the  National  Academy  of

Sciences, 113(27), 7575-7579. 10.1073/pnas.1602205113

Parsons, W. T. (1992). Noxious weeds of Australia. Noxious Weeds of Australia

Pauchard, A., Kueffer, C., Dietz, H., Daehler, C. C., Alexander, J., Edwards, P. J., ... Seipel, T. (2009).

Ain't no mountain high enough: plant invasions reaching new elevations. Frontiers in Ecology and

the Environment, 7(9), 479-486. 10.1890/080072

Pauchard, A., & Alaback, P. B. (2004). Influence of Elevation, Land Use, and Landscape Context on

Patterns  of  Alien  Plant  Invasions  along Roadsides  in  Protected  Areas  of  South-Central  Chile.

Conservation Biology, 18(1

), 238-248. 10.1111/j.1523-1739.2004.00300.x

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black

box: an open-source release of Maxent. Ecography, 40(7), 887-893. 10.1111/ecog.03049

Phillips,  S.  J.,  Anderson,  R. P.,  & Schapire,  R. E. (2006).  Maximum entropy modeling of  species

geographic  distributions.  Ecological  Modelling,  190(3-4),  231-259.

10.1016/j.ecolmodel.2005.03.026

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and

a comprehensive evaluation. Ecography, 31(2), 161-175. 10.1111/j.0906-7590.2008.5203.x

Poudel, A. S., Jha, P. K., Shrestha, B. B., & Muniappan, R. (2019a). Biology and management of the

invasive weedAgeratina adenophora              (Asteraceae): current state of knowledge and future

research needs. Weed Research, 59(2), 79-92. 10.1111/wre.12351

Poudel, A. S., Jha, P. K., Shrestha, B. B., & Muniappan, R. (2019b). Biology and management of the

invasive weed Ageratina adenophora (Asteraceae): current state of knowledge and future research

needs. Weed Research, 59(2)

Qiang,  S.  (1998).  THE  HISTORY  AND  STATUS  OF  THE  STUDY  ON  CROFTON

WEED(EUPATORIUM  ADENOPHORUM  SPRENG.  )A  WORST  WORLDWIDE  WEED.

Journal of Wuhan Botanical Research(4), 366-372

Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., ... Pei, S. (2017). Maxent modeling for

predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch.,

an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10,

139-146. https://doi.org/10.1016/j.gecco.2017.02.004

Richardson, D. M., & Rejmánek, M. (2011).  Trees and shrubs as invasive alien species - a global

review. Diversity and Distributions, 17(5), 788-809. 10.1111/j.1472-4642.2011.00782.x

Rivera,  P.,  Villaseñor,  J.  L.,  & Terrazas,  T.  (2017).  Meso-  or  xeromorphic?  Foliar  characters  of

Asteraceae in a xeric scrub of Mexico. Botanical Studies, 58(1), 12

Rocchini, D., Marcantonio, M., Arhonditsis, G., Cacciato, A. L., Hauffe, H. C., & He, K. S. (2019).

Cartogramming  uncertainty  in  species  distribution  models:  A  Bayesian  approach.  Ecological

Complexity, 38, 146-155. 10.1016/j.ecocom.2019.04.002



Rodríguez-Merino, A., García-Murillo, P., Cirujano, S., & Fernández-Zamudio, R. (2018). Predicting

the risk of  aquatic  plant  invasions in Europe:  How climatic  factors  and anthropogenic activity

influence  potential  species  distributions.  Journal  for  Nature  Conservation,  45,  58-71.

10.1016/j.jnc.2018.08.007

Root,  T.  L.,  Price,  J.  T.,  Hall,  K.  R.,  Schneider,  S.  H.,  Rosenzweig,  C.,  & Pounds,  J.  A.  (2003).

Fingerprints  of  global  warming  on  wild  animals  and  plants.  Nature,  421(6918),  57-60.

10.1038/nature01333

Sang, W., Zhu, L., & Axmacher, J. C. (2010). Invasion pattern of Eupatorium adenophorum Spreng in

southern China. Biological Invasions, 12(6), 1721-1730. 10.1007/s10530-009-9584-3

Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., ... Essl, F. (2020).

Projecting the continental accumulation of alien species through to 2050. Global Change Biology.

10.1111/gcb.15333

Shen, S. (2019). Ipomoea batatas (sweet potato), a promising replacement control crop for the invasive

alien  plant  Ageratina  adenophora  (Asteraceae)  in  China.  Management  of  Biological  Invasions,

10(3), 559-572. 10.3391/mbi.2019.10.3.10

Shen, Y. X., Zhao, C. Y., & Liu, W. Y. (2011). Seed vigor and plant competitiveness resulting from

seeds of Eupatorium adenophorum in a persistent soil seed bank. Flora, 206(11), 935-942

Shrestha, U. B., Sharma, K. P., Devkota, A., Siwakoti, M., & Shrestha, B. B. (2018). Potential impact

of climate change on the distribution of six invasive alien plants in Nepal.  Ecological Indicators,

95, 99-107. 10.1016/j.ecolind.2018.07.009

Simberloff, D., Martin, J., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., ... Vilà, M. (2013).

Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution,

28(1), 58-66. 10.1016/j.tree.2012.07.013

Srivastava,  V.,  Griess,  V.  C.,  &  Padalia,  H.  (2018).  Mapping  invasion  potential  using  ensemble

modelling. A case study on  Yushania maling  in the Darjeeling Himalayas. Ecological Modelling,

385, 35-44. 10.1016/j.ecolmodel.2018.07.001

Staff,  T.  P.  O.  (2014).  Correction:  SoilGrids1km -  Global  Soil  Information  Based  on  Automated

Mapping. Plos One, 9(8), e105992

Sunil,  T.,  Vishwas,  C.,  Joshi,  R. S.,  Neha,  B.,  Babu,  S.  B.,  & Jian,  L.  (2018).  Understanding the

dynamics in distribution of invasive alien plant species under predicted climate change in Western

Himalaya. Plos One, 13(4), e195752

Tan,  J.,  Li,  A.,  Lei,  G.,  & Xie,  X.  (2019).  A SD-MaxEnt-CA model for simulating the landscape

dynamic  of  natural  ecosystem by  considering  socio-economic  and  natural  impacts.  Ecological

Modelling, 410, 108783. https://doi.org/10.1016/j.ecolmodel.2019.108783

Tererai, F., & Wood, A. R. (2014). On the present and potential distribution of Ageratina adenophora

(Asteraceae)  in  South  Africa.  South  African  Journal  of  Botany,  95,  152-158.

10.1016/j.sajb.2014.09.001

Thapa, S., Chitale, V., Rijal, S. J., Bisht, N., & Shrestha, B. B. (2018). Understanding the dynamics in

distribution of invasive alien plant species under predicted climate change in Western Himalaya.

PLOS ONE, 13(4), e195752. 10.1371/journal.pone.0195752

Tiwari, S. (2005). An inventory and assessment of invasive alien plant species of Nepal: IUCN Nepal.

Tuanmu, M. I., & Jetz, W. (2015). A global 1-km consensus land-cover product for biodiversity and

ecosystem modelling. Global Ecology & Biogeography, 23(9), 1031-1045

Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P., Gollasch, S., ... Hulme, P. E. (2010). How



well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-

taxa assessment. Frontiers in Ecology and the Environment, 8(3), 135-144. 10.1890/080083

Wan, J., & Wang, C. (2018). Expansion risk of invasive plants in regions of high plant diversity: A

global assessment using 36 species. Ecological Informatics, 46, 8-18. 10.1016/j.ecoinf.2018.04.004

Wang, C., Lin, H., Feng, Q., Jin, C., Cao, A., & He, L. (2017). A New Strategy for the Prevention and

Control of Eupatorium adenophorum under Climate Change in China. Sustainability, 9(11), 2037.

10.3390/su9112037

Wang, C., Wan, J., Qu, H., & Zhang, Z. (2017). Modelling plant invasion pathways in protected areas

under climate change: implication for invasion management. Web Ecology, 17(2), 69-77. 10.5194/

we-17-69-2017

Wang, R., Li, Q., He, S., Liu, Y., Wang, M., & Jiang, G. (2018). Modeling and mapping the current

and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China.

PLOS ONE, 13(2), e192153. 10.1371/journal.pone.0192153

Wang, R., Wang, J. F., Qiu, Z. J., Meng, B., Wan, F. H., & Wang, Y. Z. (2011). Multiple mechanisms

underlie rapid expansion of an invasive alien plant. New Phytol, 191(3), 828-839. 10.1111/j.1469-

8137.2011.03720.x

Wang, R., & Wang, Y. (2006).  Invasion dynamics and potential spread of the invasive alien plant

species  Ageratina  adenophora  (Asteraceae)  in  China.  Diversity  <html_ent  glyph="@amp;"

ascii="&amp;"/> Distributions, 12(4), 397-408. 10.1111/j.1366-9516.2006.00250.x

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., & Guisan, A. (2008). Effects of

sample size on the performance of species distribution models. Diversity and Distributions, 14(5),

763-773. 10.1111/j.1472-4642.2008.00482.x

Xianming, G., Yujie,  Z., Xuejun, Y., & Shucun, S. (2013). Linking trait differences to community

dynamics: evidence from Eupatorium adenophorum and co-occurring native species during a three-

year succession. Plos One, 8(1), e50247

Xu, C., Yang, M., Chen, Y.,  Chen, L., Zhang, D.,  Mei, L., ...  Zhang, H. (2012).  Changes in non-

symbiotic  nitrogen-fixing  bacteria  inhabiting  rhizosphere  soils  of  an  invasive  plant  Ageratina

adenophora. Applied Soil Ecology, 54, 32-38. 10.1016/j.apsoil.2011.10.021

Xu,  D.,  Zhuo, Z.,  Wang,  R.,  Ye,  M.,  & Pu, B. (2019).  Modeling the distribution of Zanthoxylum

armatum  in  China  with  MaxEnt  modeling.  Global  Ecology  and  Conservation,  19,  e691.

https://doi.org/10.1016/j.gecco.2019.e00691

Xu, H., Ding, H., Li, M., Qiang, S., Guo, J., Han, Z., ... Wan, F. (2006). The distribution and economic

losses of alien species invasion to China. Biological Invasions,  8(7), 1495-1500. 10.1007/s10530-

005-5841-2

Yan, X., Zhenyu, L., Gregg, W. P., & Dianmo, L. (2001). Invasive species in China — an overview.

Biodiversity and Conservation, 10(8

), 1317-1341. 10.1023/A:1016695609745

Yang, G., Gui, F., Liu, W., & Wan, F. (2017). Crofton Weed Ageratina adenophora (Sprengel)

Yang, X., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S. (2013). Maxent modeling for predicting

the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills.

Ecological Engineering, 51, 83-87. https://doi.org/10.1016/j.ecoleng.2012.12.004

Yi,  Y.,  Cheng,  X.,  Yang,  Z.,  & Zhang,  S.  (2016).  Maxent  modeling  for  predicting  the  potential

distribution  of  endangered  medicinal  plant  (H.  riparia  Lour)  in  Yunnan,  China.  Ecological

Engineering, 92, 260-269. https://doi.org/10.1016/j.ecoleng.2016.04.010



Yu, F., Huang, X., Duan, C., He, S., Zhang, G., Liu, C., ... Shao, H. (2014). Impacts of Ageratina

adenophora  invasion  on  soil  physical–chemical  properties  of  Eucalyptus  plantation  and

implications  for  constructing  agro-forest  ecosystem.  Ecological  Engineering,  64,  130-135.

https://doi.org/10.1016/j.ecoleng.2013.12.050

Yue, Y., Zhang, P., & Shang, Y. (2019a).  The potential global distribution and dynamics of wheat

under  multiple  climate  change  scenarios.  Science  of  The  Total  Environment,  688,  1308-1318.

10.1016/j.scitotenv.2019.06.153

Yue, Y., Zhang, P., & Shang, Y. (2019b). The potential global distribution and dynamics of wheat

under  multiple  climate  change  scenarios.  Science  of  The  Total  Environment,  688,  1308-1318.

https://doi.org/10.1016/j.scitotenv.2019.06.153

Zhang, F., Liu, W. X., Wan, F. H., Ellison, C. A., Julien, M. H., Sforza, R., ... Hinz, H. L. (2008).

Sustainable  management  based  on  biological  control  and  ecological  restoration  of  an  alien

invasive  weed,  Ageratina  adenophora  (Asteraceae)  in  China. Paper  presented  at  the  XII

International Symposium on Biological Control of Weeds.

Zhang,  K.,  Yao,  L.,  Meng,  J.,  &  Tao,  J.  (2018).  Maxent  modeling  for  predicting  the  potential

geographical  distribution  of  two  peony  species  under  climate  change.  Science  of  The  Total

Environment, 634, 1326-1334. https://doi.org/10.1016/j.scitotenv.2018.04.112

Zhang, K., Zhang, Y., Zhou, C., Meng, J., Sun, J., Zhou, T., & Tao, J. (2019). Impact of climate factors

on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecological Informatics,

50, 62-67. https://doi.org/10.1016/j.ecoinf.2019.01.004

Zhang, W., Yin, D., Huang, D., Du, N., Liu, J., Guo, W., & Wang, R. (2015). Altitudinal patterns

illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China.

Forest Ecology and Management, 351, 1-8. 10.1016/j.foreco.2015.05.004

Zhao, X., Liu, W., & Zhou, M. (2013). Lack of local adaptation of invasive crofton weed (Ageratina

adenophora) in different climatic areas of Yunnan Province, China. Journal of Plant Ecology, 6(4),

316-322. 10.1093/jpe/rts036

Zhao,  X.,  LiuWenyao,  &  Meng,  Z.  (2012).  Lack  of  local  adaptation  of  invasive  crofton  weed

(Ageratina adenophora) in different climatic areas of Yunnan Province, China.  Journal of Plant

Ecology, 6(4), 316-322

Zhong,  S.,  Duan,  X.  H.,  &  Jia-Xiang,  K.  (2007).  Allelopathy  of  Eupatorium  adenophorum  on

germination and seedling growth of 16 pastures. Acta Prataculturae Sinica, 16(6), 81-87

10 Biosketch:

Gu  Changjun  is  is  a  PhD  candidate  in  Institute  of  Geographic  Sciences  and  Natural

Resources  Research,  CAS.  He  is  specifically  interested  in  exploring  potential  distribution  of

invasive alien species and their response to climate change at large scale. This research is part of

his PhD project and his work is primarily focused on the application of machine learning methods



in biogeography. 

Author contributions:  C.G.,  Y.T.,  L.L.,  and Y.Z.conceived the ideas;  Y.T.,  X.W. and Y.Z.

conducted the fieldwork; C.G., B.W., and B.H. analysed the data; and C.G. led the writing with

assistance from B.Z. and B.C..

11 Significance Statement

Invasive alien species (IAS) are a troublesome problem worldwide. IAS pose great threats to

local ecosystems along with enormous economic loss. Unfortunately, we do not have effective

ways to control the spread of most IAS. Predicting suitable distributions of IAS is an effective

way to prevent their further expansion. Ageratina adenophora is a typical vicious invasive weed

in more than 30 countries located in tropical and subtropical regions. However, little is known

about its potential distribution globally and its response to future climate change. In this study, we

attempted to address these gaps in knowledge. We hope that this study provides valuable reference

information for preventing invasion by A. adenophora.


	Upward Shifts in Ageratina adenophora Global Distributions in Response to Future Climate Change Scenarios
	Acknowledgement
	Conflict of Interest Statement.
	Abstract
	1 Introduction
	2 Materials and methods
	2.1. Environmental variables
	2.2. Species occurrence data
	2.3. Modeling approach and spatial analysis

	3 Result
	3.1 Model performance and main variables
	3.2 Current invasion pattern of A. adenophora
	3.3 Potential distribution of A. adenophora under different future climate change scenarios
	3.4 A. Adenophora distribution characteristics with elevation under current conditions and climate change scenarios

	4 Discussion
	4.1 Effect of temperature change on the distribution of A. adenophora
	4.2 A. adenophora will shift toward higher elevation under future climate change scenarios
	4.3 Uncertainty

	5 Conclusions
	6 Tables
	7 Figures:
	8 Data availability statement
	9 Reference��
	10 Biosketch:
	11 Significance Statement

