References
Abram, P. A. 1987. On classifying interactions between populations. - Oecologia 73: 272-281.
Alencar, L. R. V. et al. 2013. The Evolution of Diet and Microhabitat Use in Pseudoboine Snakes. – South Am. J. Herpetol. 8: 60–66.
Alencar, L. R. V. et al. 2017. Arboreality constrains morphological evolution but not species diversification in vipers. - Proc. Royal Soc. B 284: 20171775.
Almeida-Neto, M. et al. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. - Oikos 117: 1227–1239.
Araújo, M. S. et al. 2008. Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. - Ecology 89: 1981–1993.
Arim, M. et al. 2010. Food web structure and body size: trophic position and resource
Acquisition. - Oikos 119: 147-153.
Arnold, S. J. 1993. Foraging theory and prey size—-predator-size relations in snakes. - In Seigel, R. A. and Collins, J. T. (eds.), Snakes: Ecology and Behavior. McGraw-Hill, New York, pp. 87–115.
Barber, M. J. 2007. Modularity and community detection in bipartite networks. – Phys. Rev. E 76: 066102.
Bascompte, J. et al. 2003. The nested assembly of plant-animal mutualistic networks. - PNAS 100: 9383–9387.
Bascompte, J. and Jordano, P. 2013. Mutualistic Networks. - Princeton: Princeton University Press.
Bellay, S. et al. 2011. A host-endoparasite network of Neotropical marine fish: are there organizational patterns? - Parasitology 138: 1945–1952.
Bellini, G. P. et al. 2015. Temperate Snake Community in South America: Is Diet Determined by Phylogeny or Ecology? - Plos One 10: 1-15.
Cohen, J. E. 1977. Food Webs and Niche Space. Princeton University Press, Princeton, New Jersey, USA.
Colston, T. J. et al. 2010. Snake diets and the deep history hypothesis. – Biol. J. Linn. Soc. 101: 476–486.
Covich, A. P. and McDowell, W. H. 1996. The stream community. - In Reagan D. P. and Waide, R. B. (eds), The food web of a tropical rainforest. University of Chicago Press, Chicago, Illinois, pp. 433–459.
Donatti, C. I. et al. 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. – Ecol. Letters 14: 773–781.
Feldman, A. et al. 2016. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. - Global Ecol. Biogeogr. 25: 187–197.
Flores, C. O. et al. 2013. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. - ISME J. 7: 520–532.
Fortuna, M. A. et al. 2010. Nestedness versus modularity in ecological networks: two sides of the same coin? - J. Anim. Ecol. 79: 811–817.
Greene, H. W. 1983. Dietary correlates of the origin and radiation of snakes. - Amer. Zool. 23: 431–441.
Guimarães, P. R. 2020. The structure of ecological networks across levels of organization. - Annual Review of Ecology, Evolution, and Systematics (in press).
Guimerà, R. and Amaral, L. A. 2005. Functional cartography of complex metabolic networks. Nature 433: 895–900.
Henderson, R. W. and Pauers, M. J. 2012. On the diets of neotropical treeboas (Squamata: Boidae: Corallus ). – South Am. J. Herpetol. 7: 172-180.
Ings, T. C. et al. 2009. Ecological networks – beyond food webs. - J. Anim. Ecol. 78: 253- 269.
King, R. B. 2002. Predicted and observed maximum prey size-snake size allometry. - Funct. Ecol. 16: 766-772.
Klaczko, J. et al. 2016. Are Diet Preferences Associated to Skulls Shape Diversification in Xenodontine Snakes? - PLoS One 11: 1-12.
Kortsch, S. et al. 2019. Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. - Ecography 42: 295–308.
Krause, A. E. et al. 2003. Compartments revealed in food-web structure. - Nature 426: 282–285.
Krishna, A. et al. 2008. A neutral-niche theory of nestedness in mutualistic networks. - Oikos 117: 1609–1618.
Lewinsohn, T. M. et al. 2006. Structure in plant-animal interaction assemblages. - Oikos 113: 174–184.
Lillywhite, H. B. and Henderson, R. W. 1993. Behavioral and functional ecology of arboreal snakes. – In: Seigel, R. A. and Collins, J. T. (eds.), Snakes: ecology and behavior. New York: McGraw-Hill, pp. 1-48.
Marquitti, F. M. D. et al. 2014. MODULAR: Software for the autonomous computation of modularity in large network sets. - Ecography 37: 221–224.
Martins, M. and Oliveira, M. E. 1993. The snakes of the genus Atractus Wagler (Reptilia: Squamata: Colubridae) from the Manaus region, central Amazonia, Brazil. – Zool. Meded. 67: 21-40.
Martins, M. and Oliveira, M. E. 1998. Natural history of snakes in forests of the manaus region, Central Amazonia, Brazil. – Herpetol. Nat. History 6: 78-150.
Martins, M. et al. 2001. Diversity and evolution of macrohabitat use, body size and morphology in a monophyletic group of Neotropical pitvipers (Bothrops). – J. Zool. 254: 529-538.
Martins, M. et al. 2002. Ecological and phylogenetic correlates of feeding habits in Neotropical pitvipers (Genus Bothrops ). – In: Schuett, G. W. et al. (eds.), Biology of the vipers. Eagle Mountain Publishing, Eagle Mountain, pp. 307-328.
Mittelbach, G. G. 1981. Foraging efficiency and body size: a study of optimal diet and habitat use by Bluegills. - Ecology 62: 1370–1386.
Oksanen, J. et al. 2018. vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan.
Olesen, J. M. et al. 2007. The modularity of pollination networks. - PNAS. 104: 19891–19896.
Olesen, J. M. et al. 2010. Missing and forbidden links in mutualistic networks. – Proc. Royal Soc. B 278: 725-732.
Pimm, S. L. and Lawton, J. H. 1980. Are food webs compartmented? – J. Anim. Ecol. 49, 879–898.
Pinheiro, R. B. P. et al. 2019. A new model explaining the origin of different topologies in interaction networks. - Ecology 100: e02796.
Pires, M. M. and Guimarães, P. R. 2012. Interaction intimacy organizes networks of antagonistic interactions in different ways. – J. R. Soc. Interface 10: 20120649.
Pizzatto, L. et al. 2009. Food habits of Brazilian boid snakes: overview and new data, with special reference to Corallus hortulanus . - Amphibia-Reptilia 30: 533-544.
Pough, H. and Groves, J. D. 1983. Specializations of the Body Form and Food Habits of Snakes. - Am. Zool. 23: 443-454.
Prado, P. I. and Lewinsohn, T. M. 2004. Compartments in insect-plant associations and their consequences for community structure. - J. Anim. Ecol. 74: 1168-1178.
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rezende, E. L. et al. 2009. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. - Ecol. Lett. 12: 779–788.
Savitzky, A. H. 1983. Coadapted Character Complexes Among Snakes: Fossoriality, Piscivory, and Durophagy. - Am. Zool. 23: 397-409.
Schmitz, O. J. and Beckerman, A. P. 2007. Food Webs. Encyclopedia of Life Sciences, John Wiley & Sons.
Schoener, T. W. 1968. The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. - Ecology 49: 704-726.
Shine, R. and Bonnet, X. 2000. Snakes: a new ‘model organism’ in ecological research? - TREE 15: 221–222.
Sinclair, A. R. E. et al. 2003. Patterns of predation in a diverse predator–prey system. - Nature 425: 288-290.
Smith, N. O. and Mills, M. G. L. 2008. Predator–prey size relationships in an African large-mammal food web. J. Anim. Ecol. 77: 173–183.
Stouffer, D. B. et al. 2011. The role of body mass in diet contiguity and food-web structure. - J. Anim. Ecol. 80: 632–639.
Thébault, E. and Fontaine, C. 2010. Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks. - Science 329: 853-856.
Thompson, J. N. 2005. The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago.
Woodward, G. et al. 2005. Body size in ecological networks. - TREE 20: 402-409.
Woodward, G. et al. 2010. Individual-based foodwebs: Species identity, body size and sampling effects. – Adv. Ecol. Res. 43: 211–266.