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Abstract

Protein structure networks (PSNs) have long been used to provide a coarse yet meaningful

representation of protein structure, dynamics, and internal communication pathways. An im-

portant question is what criteria should be applied to construct the network so that to include

relevant interresidue contacts while avoiding unnecessary connections. To address this issue we

systematically considered varying residue distance cutoff length and the probability threshold

for contact formation to construct PSNs based on atomistic molecular dynamics in order to as-

sess the amount of mutual information within the resulting representations. We found that the

minimum in mutual information is universally achieved at the cutoff length of 5 Å, irrespective

of the applied contact formation probability threshold in all considered, distinct proteins. As-

suming that the optimal PSNs should be characterised by the least amount of redundancy, which

corresponds to the minimum in mutual information, this finding suggests an objective criterion

for cutoff distance and supports the existing preference towards its customary selection around

5 Å length, typically based to date on heuristic criteria.

Keywords: protein structure networks, contact cutoff distance, mutual information, com-

puter simulations

1 Introduction

Understanding protein dynamics is the key to understand their function.1–3 With tremendous

advances in computer power and simulation methodologies,4 we are becoming able to produce

atomistic trajectories of protein motions that cover biologically relevant events such as folding,

ligand binding, or subtle, allostery-driven shifts of functional properties.5–7 Intrinsic complexity

of such events and their occurrence along pathways that are not a priori defined within chaotic,

thermally driven motions make it difficult to extract essential information from huge amount of

generated data. One possible route is to simplify protein representation from atomistic to that of
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a network of individual centres (nodes) connected by effective interactions (edges).8–12 It is driven

by the hope that most functional aspects of biological macromolecules, that are essentially folded

linear polymers formed by a number of well defined units, are encoded within the topology and

dynamics of their inter-residue contacts.

On the one hand, such an idea has long been used to derive simplified potentials to describe

protein structure. Indeed, it turned out that so called elastic network models (ENMs),13 typically

consisting of Cα protein atoms connected with near neighbours by simple quadratic potentials with

equilibrium lengths taken from native structure geometry, are able to provide surprisingly good

reproduction of global macromolecular deformability,14 as well as local structural fluctuations.15

Their apparent success indicates that the dynamic properties of protein structure are to a large

extent encoded in the topology of close contacts and that harmonic representation of effective

potential energy is a reasonable first order approximation of free energy landscape in the vicinity

of stable conformational states.

On the other hand, network-based approaches are also adopted to post-proces atomistic trajecto-

ries generated by molecular dynamics (MD) simulations. Here, the connectivity of protein residues is

determined based on inter-residue distance statistics or average interaction energies,16,17 evaluated

over generated conformational ensembles. The resulting protein structure networks (PSNs),18–20

typically combined with analysis methods originating from graph theory,8 have been used to in-

vestigate various aspects of structure - function relationships, including allosteric communication

pathways, identification of distinct structural motifs or key functional residues, as well as protein

folding21–24

An important issue related to the development of ENM or PSN models is the choice of macro-

molecular representation used to determine inter-residue contacts. In the case of protein connectivity

graphs based on geometric criteria, possibilities extend from explicitly considering all heavy atoms,

defining two or more centres per amino acid, or the selection of a single representative atom (eg.

Cα or Cβ) for each residue. Typically, an edge between two residues is established if the closest

approach between any pair of their elements falls below the assumed distance cutoff, Rc. The cutoff

itself depends on the kind of structure representation. If connectivity is derived based on atomistic

structures, cutoff distances are usually assumed in the range between 4.0 to 5.5 Å.12,24–31 In turn,

for coarse grained representation Rc values between 7 – 8.5 Å are adopted.9–11,14,32,33
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Although relatively few truly systematic studies have been conducted to rationalise cutoff se-

lection,32,34 a number of arguments has been raised to support particular choices. For atomistic

approaches, it has been argued that Rc = 5 Å represents the upper range of meaningful attractive

dispersion forces.26 Others have found that a cutoff of 5 Å allows identification of key, multi-

connected residues in best agreement with experimental data concerning functional importance of

specific amino acids within several protein families.28 A similar cutoff was shown to produce PSNs

that are at the border of percolation transition from multiple, loosely connected residue clusters for

Rc < 5 Å, to a single large cluster comprising most protein residues for Rc > 5 Å, irrespective of

protein force field used for MD simulations.34 In yet another study, a cutoff of 5.5 Å turned out

to produce the optimal (smallest) number of distinct, intercorrelated residue clusters based on the

community analysis of protein dynamics.30

In the current study we consider an approach to cutoff selection based on the observation of

linear mutual information (MI) density in the protein contact networks. Such a measure reveals

the degree of correlation between inter-residue distances within the network and thereby the degree

of unwanted redundancy within the network. We demonstrate that minimum MI is achieved for

several unrelated proteins, for distance cutoffs in a very narrow range around 5 Å. Thus, indicating

possibly non-redundant protein representation, this observation provides yet another rationale for

cutoff length selection.

2 Materials and Methods

2.1 Protein structures

We considered five different, unrelated protein structures, representing: protein kinase A (PKA),

lysine-, arginine-, ornithine-binding protein (LAO), lambda repressor (LR), trypsin and SH3 do-

main. In addition, PKA was present in inactive and active form, the latter of which carried two

phosphate groups and a bound ligand (ATP). In turn, LAO protein was simulated in two, distinct

conformations corresponding to open and closed protein structure. The summary of structural

details is given in the Table 1.
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2.2 Molecular dynamics simulations

All simulations were conducted using Gromacs simulation program.35 Protein crystal structures

were taken from the Protein Databank.36 In each case protonation states of titratable residues

were assigned using the PropKa server37 to reflect pH = 7. The structures were parametrised

using Amber99-ILDNP∗ force field38 and TIP3P water model39 was used for aqueous solvent. The

systems were simulated with periodic boundary conditions, using rhombic dodecahedron simulation

boxes, with 15 Å solvent margin surrounding initial protein structures. The total charge on protein

structures was neutralised with Na or Cl counter ions, and excess salt was added to reach the

concentration 0.15 mol/l. A cutoff of 10 Å was used for Lennard Jones potential, with additional

long range dispersion corrections for energy and pressure. Electrostatic interactions were calculated

using the Particle Mesh Ewald method40 with 1.2 Å grid spacing and 10 Å cutoff in real space.

All bonds to hydrogen atoms were fixed using the Lincs algorithm,41 and the simulation time step

was 2 fs. Following energy minimisation and initial thermalisation, the systems were equilibrated

for 100 ns in NpT conditions. Temperature of 310 K and pressure of 1 bar were maintained by

Nose-Hoover thermostat,42 and Parrinello-Rahman barostat,43 respectively. Production runs were

conducted in analogous conditions. The summary of collected trajectories is given in the Table 1.

2.3 Determination and analysis of contacts

We assume that a contact between two residues is formed, if the distance between any two of their

heavy atoms is shorter than the assumed cutoff length, Rc. Contacts statistics is determined based

on the entire MD run, and contacts formed for a fraction ν ∈ [f, 1 − f ] of the simulation time,

with considered f ∈ [0.1, 0.3], are used to determine the elements of the correlation matrix, r, as

described in the following.

3 Results and Discussion

3.1 Contact network

A set of inter-residue protein contacts can be established for a given simulation based on two

parameters: cutoff length, Rc, and contact probability, ν. The first one determines whether two
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residues form a contact in a given simulation frame, and the second one narrows the set of contacts

to those that are formed for the fraction ν ∈ [f, 1− f ], with f ∈ [0, 1], of the simulation time. This

second criterion allows discarding less informative contacts that are either permanently or only

accidentally formed.

We assume that in order to provide the most effective description of protein dynamics, a desired

set of contacts should carry possibly most information with possibly few contacts, or, in other

words, each contact channel should carry information that is least related to information already

contained in the remaining channels. In order to determine the optimal (Rc, f) pair, we thus utilise

the concepts based on the information theory and seek to minimise mutual information within

contact-based trajectory.

For a set of N = N(Rc, f) contacts between protein residues in a given simulation, we consider

respective inter-residue distances, called contact lengths, in subsequent simulation frames as com-

ponents of N -dimensional time series x(t) = (x0(t), x1(t), ..., xN (t)). Given that we are interested in

conformational ensemble representing protein folded into its native, specific tertiary structure, x(t)

samples finite space and is assumed to fluctuate around certain average value. The differential en-

tropy,44 H(X), of the associated, joint probability distribution p(x), can, in principle, be evaluated

as:

H(X) = −
∫
p(x) ln (p(x))dx. (1)

Its direct estimation would require, however, complete sampling of configuration space, and is thus

prohibitive. An upper limit44 of the entropy expressed with Equation 1, corresponds to the entropy

of a multivariate normal distribution X̃ ∼ N(0,C) with C being a covariance matrix of the original

signal: Cij = cov(xi, xj),

H(X) ≤ H(X̃) =
1

2
ln ((2πe)N |C|). (2)

The model based on normal distribution X̃ accounts for amplitudes of distance fluctuations and

their pairwise linear correlations. The overestimation of entropy with respect to the original dis-

tribution, X, comes from the fact that marginal probability distributions, p(x), do not need to be

Gaussian (i.e. inter-residue distances may fluctuate in anharmonic effective potentials), and that

higher order than pairwise linear correlations are not captured. Nevertheless, in order to assess

interdependence between system components (e.g. for the analysis of allosteric correlations) under
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such harmonic approximation, one may separate the contributions to entropy arising from the am-

plitude of fluctuations from those that quantify the extent of (linear) correlation within the system.

One measure of the latter is mutual information, which under harmonic approximation has a par-

ticularly simple form I(X̃) = −1
2 ln |r|, with r being the correlation matrix of X̃. Indeed, it can be

shown (see Supporting Information) that:

H(X̃) =

N∑
i

1

2
ln (2πeCii)− I(X̃), (3)

where the sum represents entropies of i normal distributions, each with its individual variance Cii,

and the second term on the right hand side accounts for pairwise linear correlations between them.

3.2 Mutual information density and average correlation

From physical perspective, entropy is an extensive property of a system. If the dimensionality of

the signal under study (e.g. the time series of contact lengths) varies depending on different initial

assumptions (e.g. the criteria used to define contacts), one may be interested to assess not the total

MI content, but rather its amount per single channel in order to determine such a representation

that would reveal most internal correlations. Accordingly, an intensive MI (IMI) obtained based on

the contact network established for specific distance cutoff and contact probability, denoted in the

following as ι(Rc, f), can be expressed as:

ι(Rc, f) =
I(X̃(Rc, f))

N(Rc, f)
. (4)

Being not directly dependent on the size of the considered contact network, such measure allows

the comparison of interdependence within networks obtained for different cutoff values, as well as

networks characterising different sized proteins.

An undesirable property of IMI is that with increasing correlation between system components

it rises to +∞. In order to deal with a more tractable descriptor we consider an average correlation

(AC), r̄ ∈ [0, 1], defined as a value of off-diagonal, all-uniform elements of a pseudo-correlation

matrix, r̄, constructed such that r̄ij = r̄ for i 6= j, and 1 otherwise, chosen to produce a determinant

equal to the determinant of the original signal correlation matrix: |̄r| = |r|. Note, that the equality

6



of the two determinants implies that ι(r̄) = ι(r) under the harmonic approximation. Once the

correlation matrix r is determined based on simulation data, r̄ can be unambiguously obtained by

numericaly solving an analytic equation derived and discussed in the Supporting Information.

3.3 Optimal distance cutoff

Plots of AC as a function of Rc and f , obtained based on long MD trajectories of five proteins with

varying sizes and secondary strcucture types (Table 1) are shown in Fig. 1. All curves share a similar

form, revealing generally increasing AC for increasing cutoff distance. This is an expected behaviour

that reflects gradual transition from relatively uncorrelated, disjoined short range contacts to dense

contact networks rich in multiple, redundant long range connections. Strikingly, however, there is

a shallow local minimum at R∗
c ' 5 Å, uniformly present in most AC curves. It indicates, that

new, non-permanent contacts included into the network as Rc approaches R∗
c from below tend to

introduce relatively non-redundant information about the system. Overall, the minimum becomes

more apparent for contacts whose probability of formation, f , remains close to 0.5. Such ”maximum

entropy” contacts, neither preferentially formed nor broken, are indeed expected to be least corre-

lated with the rest of the network, and thus are possibly most interesting. Accordingly, R∗
c ' 5 Å

appears to encode protein structure networks with highest proportion of such contacts providing

for the optimally efficient representation. The above observations made for proteins represented

with the Amber force field, seem to generally hold also for CHARMM force field parametrisation.

An analalysis of CHARMM-based test run for λ-repressor, reveals AC minimum at R∗
c ' 5 Å

for f ∈ [0.1, 0.2], albeit with a slight shift towards R∗
c ' 5.4 Å for f ∈ [0.2, 0.3] (see Supporting

Information).

3.4 Structural interpretation

The fact that the minimum in average correlation between inter-residue distances in PSNs occurs

at R∗
c ' 5 Å for rather diverse proteins seems to indicate that it stems from the local properties of

protein structures rather than their global architecture. An interpretation of structural determinants

underlying the r̄(Rc) behaviour can be attempted based on the analysis of N(Rc, f). Somewhat

counterintuitively, the total number of potentially interesting contacts that are formed only for

a fraction of the simulation time (eg. ν ∈ [0.1, 0.9]) initially drops while Rc increases till . 5
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Å, uniformely in all considered cases (Fig. 3). We attribute this observation to the fact that the

most of short range interactions correspond to permanent contacts formed owing to residue packing

in protein structure: with increasing cutoff length they become excluded from the ν ∈ [0.1, 0.9]

category (and shift to the ν ∈ (0.9, 1.0] category) at a faster rate than new, longer contacts enter

it. This is reflected by the radial distribution of ”permanent” contacts (Fig. 3) which achieves its

maximum around 5 Å, indicating the location of the first neighbour shell around an average amino

acid. The contacts that are formed only transiently for Rc = 5 Å have the ability to reversibly

penetrate and abandon the first neighbour shell of nearby amino acids (Fig. 4), which apparently

corresponds to events that are relatively little correlated with the rest of system dynamics. Such

picture complements well the observation of percolation threshold within PSN Rc = 5 Å, reported

before34 and indicates high allosteric potential of transient contacts defined by this cutoff radius.

4 Conclusions

We considered dynamic protein structure networks in which nodes (amino acids) are connected by

edges whose existence depends on the probability that given inter-residue distance falls below certain

cutoff, so that to exclude permanently formed or broken, potentially less interesting contacts. Being

interested in network representation that conveys possibly most essential information per degree

of freedom we evaluated harmonic approximation of intensive mutual information between contact

distances fluctuating in unconstrained molecular dynamics simulation as a function of cutoff distance

and the probability of formation. To this end we introduced an average correlation parameter that

quantifies the amount of mutual information per contact. We found that the minimum in such

correlation occurs at a cutoff distance of 5 Å in all considered proteins, in spite of differences in

their dominant secondary structure type. We attribute this observation to the structure of local

protein packing. In this light, non-permanent contacts falling within 5 Å cutoff length should have

the ability to transiently penetrate the first neighbour residue shells of the nearby amino acids,

thus providing connection between local residue clusters. This interpretation is in agreement with

previous PSN analyses indicating a percolation threshold at 5 Å, and provides another objective

rationale for this cutoff selection.

8



Acknowledgement This work was supported by EMBO IG 3051/2015 to PS.

References

1 Frauenfelder H, Sligar S., Wolynes Peter G. The energy landscapes and motions of proteins

Science (80-. ).. 1991;254:1598–1603.

2 Vendruscolo Michele, Dobson Christopher M.. Dynamic visions of enzymatic reactions Science

(80-. ).. 2006;313:1586–1587.

3 Henzler-Wildman Katherine, Kern Dorothee. Dynamic personalities of proteins. Nature.

2007;450:964–72.

4 Maximova Tatiana, Moffatt Ryan, Ma Buyong, Nussinov Ruth, Shehu Amarda. Principles and

Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics PLoS

Comput. Biol.. 2016;12:1–70.

5 Lindorff-Larsen Kresten, Piana Stefano, Dror Ron O., Shaw David E.. How fast-folding proteins

fold. Science (80-. ).. 2011;334:517–520.

6 Dickson Alex, Tiwary Pratyush, Vashisth Harish. Kinetics of Ligand Binding Through Advanced

Computational Approaches: A Review Curr. Top. Med. Chem.. 2017;17:2626–2641.

7 Wodak Shoshana J., Paci Emanuele, Dokholyan Nikolay V., et al. Allostery in Its Many Disguises:

From Theory to Applications Structure. 2019;27:566–578.

8 Kannan N., Vishveshwara S.. Identification of side-chain clusters in protein structures by a graph

spectral method J. Mol. Biol.. 1999;292:441–464.

9 Vendruscolo Michele, Dokholyan Nikolay V., Paci E., Karplus Martin. Small-world view of the

amino acids that play a key role in protein folding Phys. Rev. E. 2002;65:061910.

10 Dokholyan Nikolay V., Li L., Ding F., Shakhnovich E. I.. Topological determinants of protein

folding Proc. Natl. Acad. Sci.. 2002;99:8637–8641.

11 Atilgan Ali Rana, Akan Pelin, Baysal Canan. Small-World Communication of Residues and Sig-

nificance for Protein Dynamics Biophys. J.. 2004;86:85–91.

9



12 Brinda K V, Vishveshwara Saraswathi. A Network Representation of Protein Structures : Impli-

cations for Protein Stability Biophys. J.. 2005;89:4159–4170.

13 Bahar Ivet, Lezon Timothy R, Yang Lee-wei, Eyal Eran. Global Dynamics of Proteins : Bridging

Between Structure and Function Annu. Rev. Biophys.. 2010;39:23–42.

14 Hinsen Konrad. Analysis of domain motions by approximate normal mode calculations. Proteins.

1998;33:417–29.

15 Bahar Ivet, Atilgan Ali Rana, Erman Burak. Direct evaluation of thermal fluctuations in proteins

using a single-parameter harmonic potential Fold. Des.. 1997;2:173–181.

16 Vijayabaskar M. S., Vishveshwara Saraswathi. Interaction energy based protein structure net-

works Biophys. J.. 2010;99:3704–3715.

17 Ribeiro Andre A.S.T., Ortiz Vanessa. Determination of signaling pathways in proteins through

network theory: Importance of the topology J. Chem. Theory Comput.. 2014;10:1762–1769.

18 Paola L Di, Ruvo M De, Paci P, Santoni D, Giuliani A. Protein Contact Networks : An Emerging

Paradigm in Chemistry Chem. Rev.. 2013;113:1598–1613.

19 Grewal Rajdeep, Roy Soumen. Modeling proteins as residue interaction networks Protein Pept.

Lett.. 2015;22:923–933.

20 Bhattacharyya M, Ghosh S, Vishveshwara Saraswathi. Protein Structure and Function: Looking

through the Network of Side-Chain Interactions Curr Protein Pept Sci. 2016;17:4–25.

21 Amitai Gil, Shemesh Arye, Sitbon Einat, et al. Network Analysis of Protein Structures Identifies

Functional Residues J. Mol. Biol.. 2004;344:1135–1146.

22 Bagler Ganesh, Sinha Somdatta. Assortative mixing in Protein Contact Networks and protein

folding kinetics Bioinformatics. 2007;23:1760–1767.

23 Ghosh Amit, Vishveshwara Saraswathi. A study of communication pathways in methionyl- tRNA

synthetase by molecular dynamics simulations and structure network analysis Proc. Natl. Acad.

Sci.. 2007;104:15711–15716.

10



24 Doshi Urmi, Holliday Michael J, Eisenmesser Elan Z, Hamelberg Donald. Dynamical network of

residue - residue contacts reveals coupled allosteric effects in recognition , catalysis , and mutation

PNAS. 2016;113:4735–4740.

25 Xu Ying, Xu Dong, Gabow Harold N.. Protein domain decomposition using a graph–theoretic

approach Bioinformatics. 2000;16:1091–1104.

26 Greene Lesley H., Higman Victoria A.. Uncovering Network Systems Within Protein Structures

J. Mol. Biol.. 2003;334:781–791.

27 Kamagata Kiyoto, Kuwajima Kunihiro. Surprisingly high correlation between early and late

stages in non-two-state protein folding J. Mol. Biol.. 2006;357:1647–1654.

28 Del Sol Antonio, Fujihashi Hirotomo, Amoros Dolors, Nussinov Ruth. Residues crucial for main-

taining short paths in network communication mediate signaling in proteins Mol. Syst. Biol..

2006;2:1–12.

29 Vanwart Adam T., Eargle John, Luthey-Schulten Zaida, Amaro Rommie E.. Exploring residue

component contributions to dynamical network models of allostery J. Chem. Theory Comput..

2012;8:2949–2961.

30 Bowerman S., Wereszczynski Jeff. Detecting Allosteric Networks Using Molecular Dynamics Sim-

ulation Methods Enzymol.. 2016;578:429–447.

31 Yao X.-Q., Momin M.F., Hamelberg Donald. Elucidating Allosteric Communications in Proteins

with Difference Contact Network Analysis J. Chem. Inf. Model.. 2018;58:1325–1330.

32 Silveira Carlos H., Pires Douglas E V, Minardi Raquel C, et al. Protein cutoff scanning: A

comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in

proteins Proteins Struct. Funct. Bioinforma.. 2009;74:727–743.

33 Wriggers Willy, Stafford Kate a., Shan Yibing, et al. Automated Event Detection and Activity

Monitoring in Long Molecular Dynamics Simulations J. Chem. Theory Comput.. 2009;5:2595–

2605.

11



34 Viloria Juan Salamanca, Allega Maria Francesca, Lambrughi Matteo, Papaleo Elena. An optimal

distance cutoff for contact-based Protein Structure Networks using side-chain centers of mass Sci.

Rep.. 2017;7:1–11.

35 Abraham Mark James, Murtola Teemu, Schulz Roland, et al. Gromacs: High performance

molecular simulations through multi-level parallelism from laptops to supercomputers SoftwareX.

2015;1-2:19–25.

36 Berman H. M., Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res..

2000;28:235–242.

37 Olsson Mats H M, SØndergaard Chresten R., Rostkowski Michal, Jensen Jan H.. PROPKA3:

Consistent treatment of internal and surface residues in empirical p K a predictions J. Chem.

Theory Comput.. 2011;7:525–537.

38 Lindorff-Larsen Kresten, Piana Stefano, Palmo Kim, et al. Improved side-chain torsion potentials

for the Amber ff99SB protein force field Proteins Struct. Funct. Bioinforma.. 2010;78:1950–1958.

39 Jorgensen William L., Chandrasekhar Jayaraman, Madura Jeffry D., Impey Roger W., Klein

Michael L.. Comparison of simple potential functions for simulating liquid water J. Chem. Phys..

1983;79:926 – 935.

40 Essmann Ulrich, Perera Lalith, Berkowitz Max L, Darden Tom, Lee Hsing, Pedersen Lee G. A

smooth particle mesh Ewald method J. Chem. Phys.. 1995;103:8577 – 8593.

41 Hess Berk, Bekker Henk, Berendsen Herman J. C., Fraaije Johannes G. E. M.. LINCS: A linear

constraint solver for molecular simulations J. Comput. Chem.. 1997;18:1463–1472.
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Figure legends

Fig. 1 Upper row: sample r̄(Rc, f) curves for three proteins with different dominant secondary

structure types. Lower row: points representing the occurrence of local minima in r̄(Rc, f) curves,

and histograms gathering the numbers of minima at each Rc.

Fig. 2 Points representing the occurrence of local minimum in r̄(Rc, f) curves for different values

of f , for all 5 considered proteins. Colour denotes the number of independent counts.

Fig. 3 Left: normalised (for comparison) absolute number of transient contacts as a function of

Rc. Right: radial distribution functions of permanent contacts.

Fig. 4 Schematic representation of interconnecting residues that form transient contacts at Rc =

5 Å (green circle), as opposed to residues engaged in permanent neighbour shells (red circles).
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Table 1: The summary of considered protein structures and conducted simulations. Nres - the
number of amino acids, α / β / o – relative fractions of secondary structure elements (classified as:
α helices, β sheets, and other).

protein PDB id runs [µs] Nres α / β / o [%] R∗
c [Å]

PKA (active) 3fjq 2.7, 2.5, 2.8, 2.7, 1.2 343 34/14/52 0.50
PKA (inactive) 4dfy 1.1, 1,1, 1.3, 0.5, 1.4 337 34/12/54 0.50
LAO (open) 2lao 1.0 238 37/23/40 0.50
LAO (closed) 1lst 1.0 238 37/21/42 0.50
λ-repressor 1lmb 1.0, 1.0, 1.0 92 67/0/33 0.51
trypsin 4i8h 1.0, 1.0 223 10/34/56 0.50
SH3 domain 1shg 1.0, 1.0 60 4/46/50 0.50
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Figure 1: Upper row: sample r̄(Rc, f) curves for three proteins with different dominant secondary
structure types. Lower row: points representing the occurrence of local minima in r̄(Rc, f) curves,
and histograms gathering the numbers of minima at each Rc.

Figure 2: Points representing the occurrence of local minimum in r̄(Rc, f) curves for different values
of f , for all 5 considered proteins. Colour denotes the number of independent counts.
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Figure 3: Left: normalised (for comparison) absolute number of transient contacts as a function of
Rc. Right: radial distribution functions of permanent contacts.

Figure 4: Schematic representation of interconnecting residues that form transient contacts at
Rc = 5 Å (green circle), as opposed to residues engaged in permanent neighbour shells (red circles).
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