REFERENCES
Bezemer, T.M., Harvey, J.A., & Cronin, J.T. (2014). Response of native
insect communities to invasive plants. Annual Review of
Entomology , 59 , 119-141.
Brown, J.H., Whitham, T.G., Ernest, S.K.M., & Gehring, C.A. (2001).
Complex species interactions and the dynamics of ecological systems:
long-term experiments. Science , 293 , 643-650.
Calvão, T., Duarte, C.M., & Pimentel, C.S. (2019). Climate and
landscape patterns of pine forest decline after invasion by the pinewood
nematode. Forest Ecology and Management , 433 , 43-51.
Castello, J.D., Leopold, D.J., & Smallidge, P.J. (1995). Pathogens,
patterns, and processes in forest ecosystems.Bioscience ,45 , 16–24.
Cédric, F.D., Bill, S., & Yves, H. (2013). Linking plant and insect
traits to understand multitrophic community structure in arid steppes.Functional Ecology , 27 , 3.
Ding, J., Mack, R.N., Lu P., Ren, M.X., & Huang, H.W. (2008). China’s
booming economy is sparking and accelerating biological invasions.Bioscience , 58 , 317-324.
Firmino, P.N., Calvão, T., Ayres, M.P., & Pimentel, C.S. (2017).Monochamus galloprovincialis and Bursaphelenchus
xylophilus life history in an area severely affected by pine wilt
disease: implications for forest management. Forest Ecology and
Management , 389 , 105-115.
Gao R.H., Wang, Z., Wang, H.X., Hao, Y.P., & Shi, J. (2019).
Relationship between pine wilt disease outbreaks and climatic variables
in the Three Gorges Reservoir Region. Forests , 10 , 9.
Gao, R.H., Luo, Y.Q., Wang, Z., Yu, H.J., & Shi, J. (2018). Patterns of
biomass, carbon, and nitrogen storage distribution dynamics after the
invasion of pine forests by Bursaphelenchus xylophilus (Nematoda:
Aphelenchoididae) in the three Gorges Reservoir Region. Journal of
Forestry Research , 29 , 459-470.
Gao, R.H., Shi, J., Huang, R.F., Wang, Z., & Luo, Y.Q. (2015). Effects
of pine wilt disease invasion on soil properties and Masson pine forest
communities in the Three Gorges reservoir region, China. Ecology
and Evolution , 5 , 1702-1716.
Gao, R.H., Wang, Z., Shi, J., & Luo, Y.Q. (2013). Characteristics of
insect community and the spread of parasitic insects under environmental
gradients in cut slash affected by pine wilt disease. Journal of
Beijing Forestry University , 35 , 84-90.
Haddad, N.M., Tilman, D., Haarstad, J., Ritchie, M., & Knops, J.M.H.
(2001). Contrasting effects of plant richness and composition on insect
communities: a field experiment. American Naturalist , 158 ,
17-35.
Hambäck P.A., Ågren, J., & Ericson, L. (2000). Associational
resistance: insect damage to purple loosestrife reduced in thickets of
sweet gale. Ecology , 81 , 1784-1794.
Humphrey, J., Hawes, C., Peace, A., Ferris-Kaan, R., & Jukes, M.
(1999). Relationships between insect diversity and habitat
characteristics in plantation forests. Forest Ecology and
Management , 113 , 11-21.
Jobidon, R., Cyr, G., & Thiffault, N. (2004). Plant species diversity
and composition along an experimental gradient of northern hardwood
abundance in Picea mariana plantations. Forest Ecology and
Management , 198 , 209-221.
June, M.J., Robert, J.M., & Rebecca, E.F. (2006). Forest age influences
oak insect herbivore community structure, richness, and density.Ecological Applications , 16 , 901-912.
Karban, R.
(2011).
The ecology and evolution of induced resistance against herbivores:
induced resistance against herbivores. Functional Ecology ,25 , 339-347.
Knops, J.M.H., Tilman, D., Haddad, N.M., Naeem, S., Mitchell, C.E.,
Haarstad, J., Ritchie, M.E., Howe, K.M., Reich, P.B., Siemann, E., &
Groth, J. (1999). Effects of plant species richness on invasion
dynamics, disease outbreaks, and insect abundances and diversity.Ecology Letters , 2 , 286-293.
Li, J., Shi, J., Luo, Y.Q., & Heliovaara, K. (2012). Plant and insect
diversity along an experimental gradient of larch-birch mixtures in
Chinese boreal forest.Turkish
Journal of Agriculture and Forestry , 36 , 247-255.
Li, Y., Stam, J.M., Poelman, E.H., Dicke, M., & Gols, R. (2016).
Community structure and abundance of insects in response to early-season
aphid infestation in wild cabbage populations: community responses to
aphid infestation. Ecological Entomology , 41 , 378-388.
Lovett, G.M., Canham, C.D., Arthur, M.A., Weathers, K.C., & Fitzhugh,
R.D. (2006). Forest ecosystem responses to exotic pests and pathogens in
eastern North America. BioScience , 56 , 395-405.
Root, R.B. (1973). Organization of a plant-arthropod association in
simple and diverse habitats: the fauna of collards (Brassica oleraceae).Ecological Monographs , 43 , 95-124.
Roques, A., Zhao, L.L., Sun, J.H., & Robinet, C. (2015). Pine wood
nematode, pine wilt disease, vector beetle and pine tree: how a
multiplayer system could reply to climate change. In Climate
Change and Insect Pests ; Björkman, C., Niemelä, P., Eds.; CABI
publishing: Oxfordshire, UK, pp. 220-234. ISBN 9781780643786.
Shi, J., Chen, F., Luo, Y.Q., Wang, Z., & Xie, B.Y. (2013). First
isolation of pine wood nematode from Pinus tabuliformis forests
in China. Forest Pathology ,43 , 59-66.
Shi, J., Luo, Y.Q., Song, J.Y., Wu, H.W., Wang, L., & Wang, G.Z.
(2007). Traits of Masson pine affecting attack of pine wood nematode.Journal of Integrative Plant Biology , 49 , 1763-1771.
Siemann, E. (1998). Experimental tests of effects of plant productivity
and diversity on grassland arthropod diversity. Ecology ,79 , 2057-2070.
Spiegel, K.S., & Leege, L.M. (2013). Impacts of laurel wilt disease on
redbay (Persea borbonia (L.) Spreng.) population structure and
forest communities in the coastal plain of Georgia, USA.Biological Invasions , 15 , 2467-2487.
Taki, H., Inoue, T., Tanka, H., Makihara, H., Sueyoshi, M., Isono, M.,
& Okabe, K. (2010). Responses of community structure, diversity, and
abundance of understory plants and insect assemblages to thinning in
plantations. Forest Ecology and Management , 259, 607-613.
Tchakonté, S., Ajeagah, G.A., Camara, A.I., Diomandé, D., Tchatcho,
N.L.N., & Ngassam, P. (2015). Impact of urbanization on aquatic insect
assemblages in the coastal zone of Cameroon: the use of bio-traits and
indicator taxa to assess environmental pollution. Hydrobiologia ,755 , 123-144.
The 2020 No.4 bulletin of National Forestry and Grassland
Administration-The epidemic area of Pine Wilt Disease. (2020). Available
online: http://www.gov.cn/zhengce/zhengceku/2020-03/16/content
The 2020 No.18 bulletin of National Forestry and Grassland
Administration-The epidemic area of Pine Wilt Disease. (2020). Available
online:
http://www.forestry.gov.cn/main/586/20201014/14424644
4501073.
Trotter, R., Talbot, C., Neil, S., & Whitham, T.G. (2008). Arthropod
community diversity and trophic structure: a comparison between extremes
of plant stress. Ecological Entomology , 33 , 1-11.
Vandewalle, M., Bello, F., Berg, M.P., Bolger, T., Doledec, S., Dubs,
F., Feld, C.K., Harrington, R., Harrison, S.A., Lavorel, S., Martins,
P., Moretti, M., Niemela, J., Santos, P., Sattler, T., Sykes, M.T.,
Vanbergen, A.J., & Woodcock, B.A. (2010). Functional traits as
indicators of biodiversity response to land use changes across
ecosystems and organisms. Biodiversity and Conservation ,19 , 2921-2947.
Visakorpi, K., Riutta, T., Martínez, A.E., Salminen, J.P., &
Gripenberg, S. (2019). Insect community structure covaries with host
plant chemistry but is not affected by prior herbivory. Ecology ,100 , 8, e02739.
Wan, F., Zheng, X., & Guo, J. (2005). Biology and management of
invasive alien species in agriculture and forestry. Science Publication,
Beijing, pp14-19.
Wang, J.F., & Wang, X.P. (2010). Analysis and evaluation of insect
community diversity in Shuidonggou wetland of Ningxia. China
Bulletin Entomology , 47 , 962-967.
Wang, Z., Luo, Y.Q., Shi, J., Gao, R.H., & Wang, G.M. (2014).
Quantitative classification and environmental interpretation of
secondary forests 18 years after the invasion of pine forests byBursaphelenchus xylophilus (Nematoda: Aphelenchoididae) in China.Journal of Insect Science , 14 , 10. 1093.
Westphal, M.I., Browne, M., MacKinnon, K., & Noble, I. (2008). The link
between international trade and the global distribution of invasive
alien species. Biological Invasions , 10 , 391-398.
Wu, R., Chen, Y.W., Chen, Z.M., Lin, X.J., & Liang, D.D. (2005).
Effects of pine wood nematode invasion on succession of different pine
forest communities. Journal of Southwest Forestry College ,2 , 39-43.
Zhao, B.G. (2008). Pine wilt disease in China. In pine wilt disease;
Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y., Eds.; Springer:
Tokyo, Japan, pp. 18-25. ISBN 978-4-431-75655-2.
Figure legends :
Figure 1. The actual epidemic distribution areas of pine wilt
disease in China in August 2020. (Data obtained from the No.4 and No.18
bulletin of National Forestry and Grassland Administration in 2020).
Figure 2. Principal component analysis ordination diagram of
plant community structure in different Masson pine forest stands.1. Pinus massoniana ; 2. Cinnamomum
camphora ; 3. Quercus aliena ; 4. Quercus
variabilis ; 5. Loropetalum chinensis ; 6.Rhus chinensis ; 7. Celtis bungeana ; 8.Trachycarpus fortunei ; 9. Cotinus coggygria ;10. Litsea cubeba ; 11. Symplocos
paniculata ; 12. Rhus typhina ; 13.Dalbergia hupeana ; 14. Ilex cornuta ; 15.Albizia kalkora ; 16. Symplocos caudata ;17. Aralia chinensis ; 18. Rhamnus
parvifolius ; 19. Castanea mollissima ; 20.Pistacia chinensis ; 21. Deutzia grandiflora ;22. Camellia oleifera ; 23. Melia
azedarach ; 24. Sapium sebiferum ; 25.Sabina chinensis ; 26. Remaining species.
Figure 3. The difference of insect functional groups at the
level of species and individuals in different Masson pine forest stands.
(a ) the difference of insect functional groups for herbivorous
insects; (b ) the difference of insect functional groups for
parasitic insects; (c ) the difference of insect functional
groups for predatory insects; (d ) the difference of insect
functional groups for omnivorous insects; (e ) the difference of
insect functional groups for detritivorous insects. Mean values of the
number of species among different stand types followed by different
uppercase letters are significantly different at P = 0.05 level,
mean values of the number of individuals among different stand types
followed by different lowercase letters are significantly different atP = 0.05 level.
Figure 4. Principal component analysis ordination diagram of
insect functional groups in different Masson pine forest stands.He-S : Number of species of herbivorous insects; He-I :
Number of individuals of herbivorous insects; Pa-S : Number of
species of parasitic insects; Pa-I : Number of individuals of
parasitic insects; Pr-S : Number of species of predatory
insects; Pr-I : Number of individuals of predatory insects;Om-S : Number of species of omnivorous insects; Om-I: Number of
individuals of omnivorous insects; De-S : Number of species of
detritivorous insects; De-I : Number of individuals of
detritivorous insects.
Figure 5. Results of the RDA ordination biplot presenting woody
plant species and insect functional groups in different Masson pine
forest stands. For woody plant species variables: 1.Pinus massoniana ; 2. Cinnamomum camphora ;3. Quercus aliena ; 4. Quercus
variabilis ; 5. Loropetalum chinensis ; 6.Rhus chinensis ; 7. Celtis bungeana ; 8.Trachycarpus fortunei ; 9. Cotinus coggygria ;10. Litsea cubeba ; 11. Symplocos
paniculata ; 12. Rhus typhina ; 13.Dalbergia hupeana ; 14. Ilex cornuta ; 15.Albizia kalkora ; 16. Symplocos caudata . For
insect functional group variables: He-S : Species of herbivorous
insects; He-I : Individuals of herbivorous insects;Pa-S : Species of parasitic insects; Pa-I : Individuals
of parasitic insects; Pr-S: Species of predatory insects; Pr-I :
Individuals of predatory insects; Om-S : Species of omnivorous
insects; Om-I : Individuals of omnivorous insects;De-S : Species of detritivorous insects; De-I :
Individuals of detritivorous insects.