References
1. Jiang GXX, Yang ZL, Sun C, Sun BT, Yang Y. Dynamic analysis of
anisotropic half space containing an elliptical inclusion under SH
waves. Math Methods Appl Sci. 2020;43(11):6888-6902.https://doi.org/10.1002/mma.6431.
2. Qi H, Chu FQ, Guo J, Sun RC. Dynamic analysis for a vertical
interface crack and the nearby circular cavity located at the
piezoelectric bi-material half-space under SH-waves. Acta Mech.2021;232(3):1113-1129.https://doi.org/10.1007/s00707-020-02812-6.
3. Tao M, Ma A, Zhao R, Hashemi SS. Spallation damage mechanism of
prefabricated elliptical holes by different transient incident waves in
sandstones. Int J Impact Eng. 2020;146.https://doi.org/10.1016/j.ijimpeng.2020.103716.
4. Zhao R, Tao M, Zhao HT, Cao WZ, Li XB, Wang SF. Dynamics fracture
characteristics of cylindrically-bored granodiorite rocks under
different hole size and initial stress state. Theor Appl Fract
Mech. 2020;109.https://doi.org/10.1016/j.tafmec.2020.102702.
5. Tao M, Zhao HT, Li ZW, Zhu JB. Analytical and numerical study of a
circular cavity subjected to plane and cylindrical P-wave scattering.Tunn Undergr Space Technol. 2020;95.https://doi.org/10.1016/j.tust.2019.103143.
6. Liu QJ, Zhao MJ, Liu ZX. Wave function expansion method for the
scattering of SH waves by two symmetrical circular cavities in two
bonded exponentially graded half spaces. Eng Anal Bound Elem.2019;106:389-396.https://doi.org/10.1016/j.enganabound.2019.05.015.
7. Gu HL, Tao M, Li XB, Li QY, Cao WZ, Wang F. Dynamic response and
failure mechanism of fractured coal under different soaking times.Theor Appl Fract Mech. 2018;98:112-122.https://doi.org/10.1016/j.tafmec.2018.09.001.
8. Tao M, Zhao HT, Li XB, Li X, Du K. Failure characteristics and stress
distribution of pre-stressed rock specimen with circular cavity
subjected to dynamic loading. Tunn Undergr Space Technol.2018;81:1-15.https://doi.org/10.1016/j.tust.2018.06.028.
9. Aklouche O, Pelat A, Maugeais S, Gautier F. Scattering of flexural
waves by a pit of quadratic profile inserted in an infinite thin plate.J Sound Vib. 2016;375:38-52.https://doi.org/10.1016/j.jsv.2016.04.034.
10. Pao YH, Mow CC. Diffraction of elastic waves and dynamic
stress concentrations. New York: Crane and Russak; 1973.
11. Liu DK, Gai BZ, Tao GY. On Dynamic stress concentration in the
neighborhood of a cavity. Earthq Eng Eng Vib. 1980(00):97-110.https://doi.org/10.13197/j.eeev.1980.00.009.
12. Tao M, Li ZW, Cao WZ, Li XB, Wu CQ. Stress redistribution of dynamic
loading incident with arbitrary waveform through a circular cavity.Int J Numer Anal Methods Geomech. 2019;43(6):1279-1299.https://doi.org/10.1002/nag.2897.
13. Li ZW, Tao M, Du K, Cao WZ, Wu CQ. Dynamic stress state around
shallow-buried cavity under transient P wave loads in different
conditions. Tunn Undergr Space Technol. 2020;97.https://doi.org/10.1016/j.tust.2019.103228.
14. Tao M, Zhao R, Du K, Cao WZ, Li ZW. Dynamic stress concentration and
failure characteristics around elliptical cavity subjected to impact
loading. Int J Solids Struct. 2020;191:401-417.https://doi.org/10.1016/j.ijsolstr.2020.01.009.
15. Ghafarollahi A, Shodja HM. Scattering of SH-waves by an elliptic
cavity/crack beneath the interface between functionally graded and
homogeneous half-spaces via multipole expansion method. J Sound
Vib. 2018;435:372-389.https://doi.org/10.1016/j.jsv.2018.08.022.
16. Manoogian ME, Lee VW. Diffraction of SH-Waves by Subsurface
Inclusions of Arbitrary Shape. J Eng Mech. 1996;122(2):123-129.https://doi.org/10.1061/(asce)0733-9399(1996)122:2(123).
17. Yang ZL, Liu DK, Shi WP. Scattering far field solution of SH-wave by
movable rigid cylindrical interface inclusion. Acta Mech Solida
Sin. 2002;15(3):214-226.
18. Lee VW, Amornwongpaibun A. Scattering of anti-plane (SH) waves by a
semi-elliptical hill: I-Shallow hill. Soil Dyn Earthq Eng.2013;52:116-125.https://doi.org/10.1016/j.soildyn.2012.08.005.
19. Hei BP, Yang ZL, Sun BT, Wang Y. Modelling and analysis of the
dynamic behavior of inhomogeneous continuum containing a circular
inclusion. Appl Math Model. 2015;39(23-24):7364-7374.https://doi.org/10.1016/j.apm.2015.03.015.
20. Sheikhhassani R, Dravinski M. Dynamic stress concentration for
multiple multilayered inclusions embedded in an elastic half-space
subjected to SH-waves. Wave Motion. 2016;62:20-40.https://doi.org/10.1016/j.wavemoti.2015.11.002.
21. Qi H, Chen HY, Zhang XM, Zhao YB, Xiang M. Scattering of SH-wave by
elliptical inclusion with partial debond curve and circular cavity in
half space. Explos Shock Waves. 2018;38(06):1344-1352.https://doi.org/10.11883/bzycj-2017-0142.
22. Abramowitz M, Stegun IA, Miller D. Handbook of Mathematical
Functions With Formulas, Graphs and Mathematical Tables (National Bureau
of Standards Applied Mathematics Series No. 55). J Appl Mech.1965;1(1):239-239.https://doi.org/10.1115/1.3625776.
23. Mclachlan NW. Theory and Application of Mathieu Functions.Math Gaz. 1968;52(379):94-95.https://doi.org/10.2307/3614519.
24. Wong HL, Trifunac MD. Scattering of plane SH waves by a
semi‐elliptical canyon. Earthq Eng Struct Dyn. 1974;3(2):157-169.https://doi.org/10.1002/eqe.4290030205.
25. Liang JW, Jia F. Surface motion of a semi-elliptical hill for
incident plane SH waves. Earthq Sci. 2011;24(5):447-462.https://doi.org/10.1007/s11589-011-0807-1.
26. Jiang GXX. Dynamic stress concentration around the inclusion
in different inhomogeneous media under SH wave. School of Aerospace and
Civil Engineering, Harbin Engineering University; 2020.
27. Keiiti A, Anders C, Eystein S. H. Determination of the
three‐dimensional seismic structure of the lithosphere. J Geophys
Res. 1977;82(2):277-296.https://doi.org/10.1029/jb082i002p00277.
28. Berenger JP. A perfectly matched layer for the absorption of
electromagnetic waves. J Comput Phys. 1994;114(2):185-200.https://doi.org/10.1006/jcph.1994.1159.
29. Robert C, Bkorn E. Absorbing boundary conditions for acoustic and
elastic wave equations. Bull Seismol Soc Am.1977;67(6):1529-1540.https://doi.org/10.1785/BSSA0670061529.
30. Zhang YY, Wang YZ, Shi Y, Ke X. Frequencies of the Ricker wavelet.Prog Geophys. 2017;32(005):2162-2167.https://doi.org/10.6038/pg20170542.
31. Ricker N. The form and nature of seismic waves and the structure of
seismograms. Geophysics. 1940;5(4):348-366.https://doi.org/10.1190/1.1441816.
32. Liu DK, Gai BZ, Tao GY. Applications of the method of complex
functions to dynamic stress concentrations. Wave Motion.1982;4(3):293–304.https://doi.org/10.1016/0165-2125(82)90025-7.