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1 | INTRODUCTION

In most problems appearing in Applied Mathematics, nonlinear equations of the form f (x ) = 0must be solved, where
f : D ⊆ Ò → Ò. Sometimes it is not possible or is very complicated to solve these equations exactly. This is the
reason why methods that obtain an approximation to the zero α of function f have arisen. Iterative schemes aim us
to obtain a sequence of iterations, which under certain conditions, converges to this solution.

These methods are categorised in different ways, depending on whether they use derivatives to obtain the ap-
proximations, if they are methods with memory, that is, whether they use only one previous iteration or if they use
more than one previous iteration to obtain the next one, whether they have an auxiliary function or weight function
in the iterative expression, etc.

In this work, we present an extension of the derivative-free two-step parametric family with a weight function,
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obtained in [9], which has the following expression:

yk = xk − f (xk )

f [wk , xk ]
, where wk = xk + βf (xk ) [β ∈ Ò\{0},

xk+1 = yk − H (µk )
f (yk )

f [yk , xk ]
, where µk =

f (yk )
f (wk )

, k = 0, 1, . . .

(1)

By adding one more step with a similar feature, we define the following parametric family of iterative methods:


yk = xk − f (xk )
f [wk , xk ]

, where wk = xk + βf (xk )

zk = yk − H (µk )
f (yk )

f [yk , xk ]
, where µk =

f (yk )
f (wk )

,

xk+1 = zk −G (νk )
f (zk )

f [zk , yk ]
, where νk =

f (zk )
f (yk )

,

(2)

being f [a, b ] = f (a )−f (b )
a−b with a , b , a , b ∈ Ò, being H (t ) and G (t ) real functions. We denote this parametric family

by M6,β , as it is further proven that it has order of convergence 6 for any real value of β , 0.
Usually, methods with higher order of convergence tend to converge in fewer iterations. For this reason we want

to increase the order, but without adding functional evaluations, as that would increase the computational cost. For
this reason, we introduce memory to class M6,β by replacing the parameter with an expression that depends on the
previous iterations and their functional evaluations.

The development of iterative schemes with memory is quite recent, far from classical Secant method
xk+1 = xk − f (xk )

f [xk−1, xk ]
, given x0, x1, k ≥ 1.

whose order of convergence is p = 1+
√
5

2 ≈ 1.618. In 1964, Traub in [26] developed the scheme

xk+1 = xk − f (xk )
Γk
,

Γk = f [xk + γk f (xk ), xk ],

γk = − 1

Γk−1
, given x0, γ0 .

that is a version of known Steffensen’s method including memory, by using an accelerating parameter by first time.
The order of convergence of this procedure was p = 1 +

√
2 ≈ 2.414. In 2011, Grau-Sánchez et al. in [11]designed a

generalized Secant method, with order of convergence p = 1+
√
1+4n
2 consisting in n steps, defined by

x
(n )
k

= x
(n−1)
k

− [xk−1, xk ; F ]−1F (x (n−1)
k

), k > 1,

where x
(0)
k

= xk and, in the last step, the last computed term is xk+1 = x
(n )
k

. Also more general high-order methods
have been generated in the last decades, as those proposed by Neta in [17], by using inverse interpolation, with order
p ≈ 10.815 by means of several accelerating parameters. Also, in [21, 22], by using Newton’s interpolation approach
in the replacement of the accelerating parameters, Petkovic et al. constructed, among others, a general scheme
with one accelerating parameter, with high order of convergence. However, these high increasing of the order of
convergence usually involves a greater computational cost. This is the reason why a balanced relation between order
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of convergence and computational efficiency is needed.
To prove the order of the introduced memory methods we use the Ortega-Rheinboldt theorem, which can be

found in [19]:
Theorem 1 Let φ be an iterative method with memory that generates a sequence {xk } of approximations to the root α ,
and let this sequence converges to α . If there exist a nonzero constant η and positive numbers t i , i = 0, . . . ,m such that the
inequality

|ek+1 | ≤ η
m∏
i=0

|ek−i |t i ,

holds, then the R-order of convergence of the iterative method φ is at least p , where p is the unique positive root of the
equation

pm+1 −
m∑
i=0

t i p
m−i = 0.

Along this manuscript, the convergence analysis of class M6,β is made in Section 1, meanwhile the memorizing
process and the demonstration of its order of convergence is made in Section 2. Finally, in Section 3 we conclude
with some numerical experiments where the solutions obtained by the different methods with and without memory
are compared. Also, the approximations obtained and the number of iterations necessary to obtain them are analyzed
for the sake of comparison, as well as the wideness of the set of converging initial guesses and the total efficiency
index of the methods applied to specific problems.

2 | CONVERGENCE ANALYSIS

Let f : D ⊂ Ò → Ò be a sufficiently differentiable function in an open set D that contains a root α of f (x ) = 0. Let us
consider the expression

f [x + h, x ] =
∫ 1

0
f ′ (x + t h)d t , (3)

obtained by Genochi-Hermite in [19]. Using the Taylor’s expansion f ′ (x + t h) around x and integrating, we obtain the
following development

f [x + h, x ] = f ′ (x ) + 1

2
f ′′ (x )h + 1

6
f ′′′ (x )h2 +O (h3), (4)

which we use to prove that the order of convergence of methods M6,β , defined in (2), is 6 for any β ∈ Ò\{0}.

Theorem 2 Let f : D ⊂ Ò −→ Ò be a sufficiently differentiable function in a neighbourhood D of α , such that f (α) = 0.
We assume that f ′ (α) , 0. Let H (t ) be a real function that satisfy that H (0) = 1, H ′ (0) = 1 and |H ′′ (0) | < ∞, and let
G (t ) be a real function that satisfy that G (0) = 1 and |G ′ (0) | < ∞. Then, taking an initial approximation x0 close enough
to α , the sequence of iterated {xk } generated by the proposed method (2) converge to α with order 6, and its error equation
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is:

ek+1 =
−C2

4

(
1 + βf ′ (α)

) (
−2C3 (1 + βf ′ (α)) + C 2

2 (6 + 4βf ′ (α) − H2)
) (5)

·
(
−2C3 (1 + βf ′ (α))G1 + C 2

2 (−2 + 6G1 + 2βf ′ (α) (−1 + 2G1) −G1H2)
)
e6k +O (e7k ) . (6)

where Cj =
1
j
f (j ) (α )
f ′ (α ) for j = 2, 3, . . ., ek = xk − α , H2 = H ′′ (0) and G1 = G ′′ (0) .

Proof As we proved for the parametric family of the two first steps of (1), (see [9]), error equation ez is:
ez =

1

2
C2 (1 + βf ′ (α)) (−2C3 (1 + βf ′ (α)) + C 2

2 (6 + 4βf ′ (α) − H2))e4k +O (e5k ), (7)
being ez = zk − α . Let us therefore calculate ek+1.
Let us now consider the Taylor expansion of f (yk ) around α :

f (yk ) = f ′ (α)
(
ey + C2e

2
y + C3e

3
y + C4e

4
y + C5e

5
y +O (e6y )

)
, (8)

being ey = yk − α .
Let us consider the Taylor expansion of f (zk ) around α , in the same way that is done for f (yk ) , being ez = zk − α .
Now we calculate f [zk , yk ] and νk =

f (zk )
f (yk )

using the above equations:

f [zk , yk ] =
f (zk ) − f (yk )

zk − yk

=f ′ (α) (1 + C 2
2 (1 + βf ′ (α))e2k

+ C2f
′ (α)

(
(−C 2

2 + C3) (2 + 2βf ′ (α) + β 2f ′ (α)2) + C3βf
′ (α)

)
e3k +O (e4k ) .

On the other hand,
f (zk )
f (yk )

= − C3 (1 + βf ′ (α)) + C 2
2 (3 + 2βf ′ (α) − H2

2
))e2k +O (e3k ) .

It follows that
G (νk ) = 1 +G1νk +O (ν2k )

= 1 +G1 (−C3 (1 + βf ′ (α)) + C 2
2 (3 + 2βf ′ (α) − H2

2
))e2k +O (e3k ) .

Using the above expressions, we calculate ek+1 = ez −G (νk )
f (zk )

f [zk , yk ]
. It follows that

ek+1 =
−C2

4

(
1 + βf ′ (α)

) (
−2C3 (1 + βf ′ (α)) + C 2

2 (6 + 4βf ′ (α) − H2)
) (9)

·
(
−2C3 (1 + βf ′ (α))G1 + C 2

2 (−2 + 6G1 + 2βf ′ (α) (−1 + 2G1) −G1H2)
)
e6k +O (e7k ) . (10)

Thus it is proved that method (2) has order 6 under these conditions.
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In particular, if H2 = H ′′ (0) = 2, then
ek+1 = C2 (2C 2

2 − C3) (C 2
2 (1 − 2G1) + C3G1) (1 + βf ′ (α))3e6k +O (e7k ) . (11)

□

3 | INTRODUCING MEMORY

From the error equation, we note that if β = − 1
f ′ (α ) , then the order increase at least one unit. Since the value of α is

unknown, we approximate the value of f ′ (α) in order to increase the order of the iterative scheme. In this way, we
obtain a method with memory. We then approximate the parameter to obtain a newmethod with memory. If we take

βk = − xk − xk−1
f (xk ) − f (xk−1)

,

and replace it in (2), we obtain a method with memory, denoted by M6N1.

Theorem 3 Let f : D ⊂ Ò −→ Ò be a sufficiently differentiable function in a neighbourhood D of α such that f (α) = 0.
We assume that f ′ (α) , 0. Let H (t ) be a real function that satisfy H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞ and
let G (t ) be a real function satisfying G (0) = 1 and |G ′ (0) | < ∞. Then, taking a initial approximation x0 close enough to α ,
the sequence of iterates {xk } generated by the methodM6N1 converges to α with order p = 3 + 2

√
3 ≈ 6.4641.

Proof From the error equation (11)
ek+1 ∼ (1 + βk f

′ (α))3e6k .

Using Taylor’s series developments of f (xk ) and f (xk−1) and by the Genochi-Hermite formula it follows that
1 + βk f

′ (α) ∼ C2ek−1 .

The error equation (11) and the above relations give:
ek+1 ∼ (C2ek−1)3e6k ∼ e3k−1e

6
k . (12)

Suppose that the R -order of the methods is at least p . Therefore,

ek+1 ∼ Dk ,pe
p
k
,

where Dk ,p tends to the asymptotic error constant, Dp , when k → ∞.
Assuming that the R-order of the method is at least p yields the following relation

ek+1 ∼ Dk ,pe
p
k
∼ Dk ,p (Dk−1,pe

p
k−1)

p ∼ e
p2

k−1 . (13)
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In the same way as the relation (12) is obtained, it follows that
ek+1 ∼ e3k−1 (Dk−1,pe

p
k−1)

6 = D 6
k−1,pe

6p+3
k−1 . (14)

Then by equating the exponents of ek−1 of (13) and (14), it follows that
p2 = 6p + 3,

whose only positive solution is the order of convergence of the M6N1 method (see Theorem 1), being p ≈ 6.4641. □
Instead of using the divided differences above, we can use either ones f [xk , yk−1 ] or f [xk , zk−1 ].
By replacing the parameter for the approximations in (2), we obtain two methods with memory, which we denote

by M6N1Y and M6N1Z , respectively.
In the sameway that it has been proved thatM6N1 has order 3+2√3, we can prove that, under the same conditions

as the previous result, M6N1Y has order 7 and that M6N1Z has order 8, that is, we can prove the following Theorem
4 in a similar way as Theorem 3.

Theorem 4 Let f : D ⊂ Ò −→ Ò be a sufficiently differentiable function in a neighbourhood of α , such that f (α) = 0.
Suppose that f ′ (α) , 0. Let H (t ) be a real function that satisfies H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞,
and let G (t ) be a real function satisfying G (0) = 1 and |G ′ (0) | < ∞. Then, taking an initial point x0, close enough to α ,
the sequence of iterates generated byM6N1Y converge to α with order 7 and the sequence of iterates generated byM6N1Z

converge to α with order 8.

Another way to approximate the derivative of a function is to use the Kurchatov divided difference instead of the
usual divided difference. For this reason, we approximate the parameter using a Kurchatov’s divided difference. We
replace the parameter in (2) by

βk = − 1

f [2xk − xk−1, xk−1 ]
,

and we obtain a memory method, denoted by M6K1.

Theorem 5 Let f : D ⊂ Ò −→ Ò be a sufficiently differentiable function in a neighbourhood of α , such that f (α) = 0.
Suppose that f ′ (α) , 0. Let H (t ) be a real function that satisfies H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞,
and let G (t ) be a real function satisfying G (0) = 1 and |G ′ (0) | < ∞. Then, taking an initial point x0, close enough to α ,
sequence of iterates, {xk }, generated byM6K1 converge to α with order p = 3 +

√
15 ≈ 6.873.

Proof From error equation (11)
ek+1 ∼ (1 + βk f

′ (α))3e6k .

Using Taylor’s expansion of f (xk ) and f (xk−1) and by the Genochi-Hermite formula, we obtain
1 + βk f

′ (α) ∼ e2k−1 .



7

From the error equation (11) and the last relation, it follows that
ek+1 ∼ (e2k−1)

3e6k ∼ e6k−1e
6
k . (15)

By assuming that the R-order of the method is at least p , we obtain relation (13). In the same way that the relationship
(15) is obtained, we obtain that

ek+1 ∼ (e2k−1)
3 (Dk−1,pe

p
k−1)

6 = D 6
k−1,pe

6p+6
k−1 . (16)

Then, by equating exponents of ek−1 in (13) and in (16), it follows that
p2 = 6p + 6,

whose only positive solution is the order of convergence of the M6K1 method, where p = 3 +
√
15 ≈ 6.873. □

We can also apply Kurchatov’s divided differences using yk−1 and zk−1 instead of xk−1. By replacing the parameter
by these approximations in (2), we obtain two methods with memory, which we denote by M6KY and by M6KZ ,
respectively.

In the sameway that it has been proved thatM6K has order 3+√15, we can prove that, under the same conditions
as the previous theorem, M6KY has order 8 and that M6KZ has order 9, that is, we can prove Theorem 6 in a similar
way to that of the Theorem 5.
Theorem 6 Let f : Ò −→ Ò be a sufficiently differentiable function in a neighbourhood of α , denoted by D ⊂ Ò, such
that f (α) = 0. Suppose that f ′ (α) , 0. Let H (t ) be a real function that satisfies H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and
|H ′′′ (0) | < ∞, and letG (t ) be a real function that satisfiesG (0) = 1 and |G ′ (0) | < ∞. Then, taking an initial point x0, close
enough to α , the sequence of iterates byM6KY converge to α with order 8, and the sequence of iterates byM6KZ converge
to α with order 9.

In the methods with memory discussed above, we have used divided difference operators to approximate the
value of f ′ (α) , but there are more ways to approximate this value. One of them is to use interpolating polynomials.
In this case we use a Newton interpolating polynomial of degree two at the nodes xk , xk−1 and yk−1, which is defined
as follows:

N2 (t ) = f (xk ) + f [xk , xk−1 ] (t − xk ) + f [xk , xk−1, yk−1 ] (t − xk ) (t − xk−1) .

Then, N ′
2 (xk ) is an approximation of f ′ (α) , so that, taking

βk = − 1

N ′
2 (xk )

,

and replace this in (2), we obtain a method with memory, denoted by M6N2.
Theorem 7 Let f : Ò −→ Ò be a sufficiently differentiable function in an neighbourhood of α which we denote by D ⊂ Ò

such that f (α) = 0. We assume that f ′ (α) , 0. Let H (t ) be a real function that satisfy that H (0) = 1, H ′ (0) = 1,
H ′′ (0) = 2 and |H ′′′ (0) | < ∞ and let G (t ) be a real function that satisfy that G (0) = 1 and |G ′ (0) | < ∞. Then, taking
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a initial approximation x0 close enough to α , he sequence of iterates {xk } generated by the method M6N2 converges to α

with order p = 1
2 (7 +

√
61) ≈ 7.4051.

Proof From the error equation (11)
ek+1 ∼ (1 + βk f

′ (α))3e6k .

Using Taylor’s series developments of f (xk ) , f (xk−1) and f (yk−1) , it follows that
N ′
2 (xk ) =f

′ (α) + 2C2f
′ (α)ek + C3f

′ (α)ek ey ,k−1 + C3f
′ (α) (ek − ey ,k−1)ek−1

+O (e2k−1) +O (e2k ) +O (e2y ,k−1) +O3 (ey ,k−1, ek , ek−1) .

This means that 1 + βk f
′ (α) behaves as ek , as ek ey ,k−1, as ek−1ek or as ek−1ey ,k−1.

It is obvious that ek ey ,k−1 tends faster to zero than ek when k → ∞, and that ek−1ek tends to zero faster than
ek−1ey ,k−1 .For this reason you have to look at if ek converges faster to zero or does it ek−1ey ,k−1.
Suppose the R-order of the method is at least p . Consider the sequence {yk } generated by the first step of the
method, and suppose that it converges to R-order at least p1. Therefore, it is satisfied

ek+1 ∼ Dk ,pe
p
k

and ey ,k ∼ Dk ,p1e
p1
k
,

where Dk ,p tends to the asymptotic error constant, Dp , and where Dk ,p1 tends to the asymptotic error constant, Dp1 ,when k −→ ∞.
Therefore

ek
ek−1ey ,k−1

∼
Dk−1,pe

p
k−1

Dk−1,p1ek−1e
p1
k−1
.

Then, if p > p1 + 1 it follows that
1 + βk f

′ (α) ∼ ek−1ey ,k−1 .

The error equation(11) and the above relation gives:
ek+1 ∼ (ek−1ey ,k−1)3e6k ∼ e3k−1e

3
y ,k−1e

6
k . (17)

Assuming that the R-order of the method is at least p we obtain the relation (13), and assuming that the sequence
{yk } converges with R -order of at least p1, we obtain the relation

ey ,k+1 ∼ Dk ,p1e
p1
k

∼ Dk ,p1 (Dk−1,pe
p
k−1)

p1 ∼ e
pp1
k−1 . (18)

In the same way that the relation (17) is obtained, we obtain that
ek+1 ∼ e3k−1 (Dk−1,p1e

p1
k−1)

3 (Dk−1,pe
p
k−1)

6 = D 3
k−1,p1D

6
k−1,pe

3p1
k−1e

6p+3
k−1 . (19)
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Moreover, we know that
ek ,y ∼ (1 + βk f

′ (α))e2k ∼ ek−1ey ,k−1e
2
k ∼ ek−1 (Dk−1,p1e

p1
k−1) (Dk−1,pe

p
k−1)

2 ∼ e
2p+1+p1
k−1 . (20)

Then equating the exponents of ek−1 of (13) and (19), and equating those of (18) and (20), we get that
p2 = 6p + 3 + 3p1,

pp1 = 2p + 1 + p1,

whose only positive solution is the order of convergence of the method M6N2 see Theorem 1, being p ≈ 7.4051 and
p1 ≈ 2.4684.

□

Other Newton polynomials interpolation can be used of degree 2 or 3:
• N2Z (t ) = f (xk ) + f [xk , xk−1 ] (t − xk ) + f [xk , xk−1, zk−1 ] (t − xk ) (t − xk−1) .
• N3 (t ) = N2 (t ) + f [xk , xk−1, yk−1,wk−1 ] (t − xk ) (t − xk−1) (t − yk−1) .
• N3Z (t ) = N2Z (t ) + f [xk , xk−1, zk−1,wk−1 ] (t − xk ) (t − xk−1) (t − zk−1) .

Then, by choosing βk as − 1
N ′
2Z

(xk )
and substituting this into (2) we get a new method with memory, which we

denote by M6N2Z . In the same way, with polynomials N3 and N3Z , we obtain methods with memory, denoted by
M6N3 and M6N3Z , respectively.

In the sameway that the order of convergence ofM6N2 is demonstrated, we can prove the following result where
the orders of convergence obtained for the other methods with memory obtained by using interpolating polynomials
are given.

Theorem 8 Let f : D ⊂ Ò −→ Ò be a sufficiently differentiable function in a neighbourhood of α such that f (α) = 0. We
assume that f ′ (α) , 0. Let H (t ) be a real function that satisfy that H (0) = 1, H ′ (0) = 1, H ′′ (0) = 2 and |H ′′′ (0) | < ∞ and
let G (t ) be a real function satisfying G (0) = 1 and |G ′ (0) | < ∞. Then, taking a initial approximation x0 close enough to α ,

• the sequence of iterates generated byM6N2Z converges to α with order 4 +
√
19 ≈ 8.3589.

• the sequence of iterates generated byM6N3 converges to α with order 8.
• the sequence of iterates generated byM6N3Z converge to α with 9.

4 | NUMERICAL EXPERIMENTS

In this section, we solve some nonlinear equations to compare the parametric family with the methods with memory
designed previously, and with new schemes obtained in [6] and in [12], with orders 4 and 6, and denoted by CC and
GS , respectively.

For the computational calculations, we use Matlab R2020b with variable precision arithmetic of 1000 digits, and
initial estimation x0 and as stoping criterion the distance between consecutive iterations less than or equal to 10−100.
The numerical results we are going to compare the methods in the different examples are:
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• the approximation obtained,
• the norm of the equation evaluated in that approximation,
• the norm of the distance between the last two approximations,
• the number of iterations necessary to satisfy the required tolerance,
• the computational time and the approximate computational convergence order (ACOC), defined by Cordero and

Torregrosa in [10], which has the following expression
p ≈ ACOC =

ln( |xk+1 − xk |/ |xk − xk−1 |)ln( |xk − xk−1 |/ |xk−1 − xk−2 |)
.

The test functions used are:
• Equation (x − 1)3 − 1 = 0, which has a real root at 2, and we take as initial estimates for all methods x1 = 1.5,

x0 = 0, w0 = 0.5, y0 = 1.1 and z0 = 1.3.
• Equation arctan(x ) = 0, which has a real root at 0, and we take as initial estimates for all methods x1 = 0.75,

x0 = 1.5, w0 = 1.25, y0 = 1 and z0 = 0.8.
• Equation cos(x ) − x = 0, which has a real root at 0.73908513, and we take as initial estimates for all methods

x1 = 2, x0 = 2.4, w0 = 2.3, y0 = 2.2 and z0 = 2.1.
Let us look at the results obtained for the equation (x − 1)3 − 1 = 0 in Table 1. As can be seen in the ACOC column,
the theoretical order of convergence coincides with the ACOC in all the methods except in M6N3 in which the order
increases by one unit.

For the computational time, the M6 and M6N1 methods stand out at least, although they are not the methods
that obtain the best approximation, as can be seen in the second and third columns. The conclusion of this numerical
experiment is that the most recommended methods are M6N3 and M6N3Z , as they have the highest ACOC, obtain
the best approximation and are among the methods that perform the fewest iterations.

In Figure 1 we draw the dynamical planes obtained for the nonlinear equation (x − 1)3 − 1 = 0 by all the methods
we have discussed above.

To generate the dynamical planes, we choose a initial point and what we do is apply our methods taking these
point as the initial estimation. To choose the point we have generate a mesh of 400×400 points of the set [−0.5, 2.5] ×
[−1.5, 1.5], and then each point of the mesh corresponds to a complex point, z =Re(z ) + éIm(z ) , which we will take
as a starting point.

We have also defined that the maximum number of iterations that each initial estimate must do is 80, and that
we determine that the initial point converges to one of the solutions if the distance to that solution is less than 10−3.
We paint in green the initial points that converge to the root 1−

√
3i

2 , in orange the initial points that converge to the
root 2, in purple the initial points that converge to the root 1+

√
3i

2 , and in black the initial points that do not converge
to any root in less than 80 iterations.

In these dynamical planes, Figure 1, we can observe a priori what will happen to the initial points. In this case,
we can see that although M6 and GS have the same order, the convergence zones of the M6 method are simpler and
larger than those of the GS method, which has a larger black zone.

On the other hand, in the dynamical planes it can be seen that the methods with memory in which the iteration
zk−1 intervenes, have a smaller black area than the rest of the methods with memory.
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TABLE 1 Results for the equation (x − 1)3 − 1 = 0.
Method |x (k+1) − x (k ) | |f (x (k ) ) | Iteration ACOC Time
M6,β=−0.1 1.28999×10−225 1.2288×10−1348 5 6 0.3016
M6N1 1.07719×10−218 4.0404×10−1409 5 6.47927 0.3063
M6K1 3.78521×10−242 1.62794×10−1660 5 6.85364 0.5469
M6N1y 8.79934×10−361 1.22538×10−2520 6 7.0162 0.6266
M6K2 1.38495×10−584 1.35351×10−4672 5 7.98531 0.5766
M6N1z 7.76951×10−186 1.65981×10−1480 5 7.98009 0.5500
M6K3 8.21326×10−537 2.26765×10−4824 5 8.99996 0.5609
M6N2 2.44389×10−303 2.62354×10−2242 6 7.36596 0.4422
M6N2Z 2.2108×10−192 1.54585×10−1602 5 8.53031 0.3656
M6N3 9.73317×10−479 1.04526×10−4301 5 9.0 0.4281
M6N3Z 9.73317×10−479 1.04526×10−4301 5 9.0 0.3984
CC 1.8372×10−266 1.7135×10−1062 21 3.999 0.4501
GS 1.5075×10−455 1.0952×10−2728 5 6.0 0.3204



12

(a) M6,β=0.1 (b) M6N1 (c) M6N1Y

(d) M6N1Z (e) M6K (f) M6Ky

(g) M6Kz (h) M6N2 (i) M6N2Z

(j) M6N3 and M6N3Z (k) CC (l) GS

F IGURE 1 Dynamical planes generated by all the methods on equation (x − 1)3 − 1 = 0



13

Let us now see the results obtained for the equation arctan(x ) = 0 in the Table 2. In this case all methods converge
to the solution although there are differences between them. We can see that the method without memory increases
its order by one unit according to the ACOC for this numerical example, and that the methods with memory increase
it by more than one unit, but not more than two, obtaining that the method with the highest ACOC is the M6N3Z

method. If we look at the computational time, we can see that there is practically no difference between the methods.
In this case all the methods perform the same number of iterations, and if we look at the columns 2 and 3 we can see
that the method that gives a better approximation is the methodM6N3Z . The conclusion of this numerical experiment
is that it is advisable in this case to use the M6N3Z method.
TABLE 2 Results for the equation arctan(x ) = 0.

Method |x (k+1) − x (k ) | |f (x (k ) ) | Iteration ACOC Time
M6 9.63399×10−303 2.88138×10−2122 4 7 0.3594

M6N1 2.40435×10−233 6.78309×10−1810 4 7.81347 0.3203
M6K1 7.26769×10−255 5.77411×10−1977 4 7.82898 0.3422
M6N1y 1.10005×10−357 4.06924×10−3367 4 9.36642 0.2656
M6K2 1.54723×10−383 1.25996×10−3610 4 9.39834 0.3141
M6N1z 3.96266×10−481 2.54191×10−4789 4 11.1413 0.2766
M6K3 2.60934×10−544 1.81813×10−4890 4 11.1632 0.3187
M6N2 2.76956×10−308 2.72641×10−2642 4 8.5653 0.3531
M6N2Z 7.34124×10−375 8.011×10−2937 4 9.40829 0.3312
M6N3 1.13781×10−375 7.5513×10−2939 4 9.3993 0.4094
M6N3Z 2.53673×10−448 7.51537×10−4609 4 10.2653 0.3438
CC 3.0773×10−1394 7.7912×10−694 5 5.0 0.3107
GS 1.9359×10−126 4.5284×10−881 4 7.0 0.3825

In Figure 2 we draw the dynamical planes obtained for the studied nonlinear equation arctan(x ) = 0 by all the
methods we have discussed above.

To generate the dynamical planes, we choose a initial point and what we do is apply our methods taking these
point as the initial estimation. To choose the point we have generate a mesh of 400×400 points of the set [−0.5, 2.5] ×
[−1.5, 1.5], and then each point of the mesh corresponds to a complex point, z =Re(z ) + éIm(z ) , which we will take
as a starting point.

We have also defined that the maximum number of iterations that each initial estimate must do is 80, and that
we determine that the initial point converges to one of the solutions if the distance to that solution is less than 10−3.
We paint in orange the initial points that converge to the root 0 and in black the initial points that do not converge to
0 in less than 80 iterations.

In these dynamical planes, Figure 2, we can see a priori what will happen with the initial points. In this case we
can see that theGS method has a larger orange zone, so it has more points that converge to 0 in less than 80 iterations,
something that did not happen in the previous example in which it was the method that obtained more points that
did not converge than the rest. We can see that there is no great difference between the M6 family and the methods
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(a) M6,β=0.1 (b) M6N1 (c) M6N1Y

(d) M6N1Z (e) M6K (f) M6Ky

(g) M6Kz (h) M6N2 (i) M6N2Z

(j) M6N3 and M6N3Z (k) CC (l) GS

F IGURE 2 Dynamical planes generated by all the methods on equation arctan(x ) = 0

with memory obtained from it, we can see that there is no great difference, although it is true that the methods with
memory have a slightly larger orange area.
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As the last part of the numerical experiments, we compare the efficiency of the discussed iterative methods.
We do this with the efficiency index in one iteration as well as with the total efficiency index, where the number

of iterations that our method will perform is also important, given that the more iterations we evaluate, the more
evaluations, and therefore the higher the computational cost. We compare the efficiency indexes of the methods
with a real example, which is equation cos(x ) − x = 0.

Thus, in Table 3 we calculate the efficiency index for this numerical experiment by calculating p
1
d where p is the

approximate computational order of convergence, or ACOC, and where d is the number of evaluations per iteration.
We also compute the total efficiency index, which is calculated in the same way as the efficiency index but taking

into account the number of iterations required to verify the convergence criteria, i.e, p 1
d ·k , where k is the number of

iterations needed.
TABLE 3 Tabla órdenes e índices de eficiencia

Method ACOC Number evaluations Efficiency index Number iterations Total Efficiency index
M6,β=−0.1 6 4 1.5651 6 1.0775

M6N1 6.4968 5 1.4539 4 1.0981

M6K1 7.1016 6 1.3864 4 1.0851

M6N1Y 7.0064 5 1.4760 4 1.1022

M6KY 7.9888 6 1.4139 4 1.0904

M6N1Z 8.0229 5 1.5166 4 1.1097

M6KZ 9.0 6 1.4422 4 1.0959

M6N2 7.4167 6 1.3965 4 1.0871

M6N2Z 8.3741 6 1.4250 4 1.0926

M6N3 7.9697 7 1.3452 4 1.0769

M6N3Z 8.9911 7 1.3685 4 1.0816

CC 4.0 3 1.5874 5 1.0968
GS 6.0 5 1.4309 5 1.0743

In Figures 3 and 4 we show the efficiency indices appearing in Table 3.
As can be seen in Table 3, all methods with memory perform 4 iterations while the method M6 performs 6, and

the CC and GS methods perform 5 iterations. As can be seen in Figures 3 and 4, the method with the highest
efficiency index is the CC method and the M6 method, followed by the M6N1Z method, but when we calculate the
total efficiency index things change quite a lot since the method with the highest values is the M6N1Z method, and
one of the methods with the lowest value is M6, since it needs to perform two more iterations than the rest of the
methods, which means that the total efficiency index is lower.
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F IGURE 3 Efficiency index comparative

F IGURE 4 Total efficiency index comparative
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5 | CONCLUSIONS

In this manuscript, we have designed a parametric family of 3-steps derivative-free iterative methods with conver-
gence order 6.

We have introduced memory to this parametric family, through various divided difference operators and Newton
interpolating polynomials, in order to increase the order of convergence without adding new functional evaluations.
Thus, we have managed to increase the order by 3 units, in other words, from a method of order 6 we have managed
to obtain a method with memory of order 9.

Furthermore, in the numerical experiments, for different problems we compare the approximations obtained by
each method, the convergence zones to the roots and the efficiency of the methods according to the number of
evaluations they make in each iteration and the number of iterations they make to verify the convergence conditions.
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