Reference
Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D. & Pérez-Alegría, L. (2007). Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology , 35, 35-45. DOI: 10.1016/j.apsoil.2006.05.012
Allison, S.D., Czimczik, C.I. & Treseder, K.K. (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology , 14, 1156-1168. DOI: 10.1111/j.1365-2486.2008.01549.x
Bossio, D.A. & Scow, K.M. (1998). Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology , 35, 265-278. DOI: 10.1007/s002489900082
Bowles, T.M., Acosta-Martínez, V., Calderón, F. & Jackson, L.E. (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agriculture landscape. Soil Biology Biochemisty 68, 252-262. DOI: 10.1016/j.soilbio.2013.10.004
Cenini, V.L., Fornara, D.A., McMullan, G., Ternan, N., Carolan, R., Crawley, M.J., Clément J-C. & Lavorel, S. (2016). Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils. Soil Biology Biochemistry, 96, 198-206. DOI: 10.1016/j.soilbio.2016.02.015
Cheng X., Yang, Y., Li, M., Dou, X. & Zhang, Q. (2013). The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China. Plant and Soil , 366, 415-424. DOI: 10.1007/s11104-012-1446-6
Carlos, F.S., Schaffer, N., Marcolin, E., Fernandes, R.S., Mariot, R., Mazzurana, M., Roesch, L.F.W., Levandoski, B., Oliveira Camargo, F.A. (2021). Long term no tillage system can increase enzymatic activity and maintain bacterial richness in paddy field. Land Degradation & Development. DOI: 10.1002/ldr.3896
Cui, Y., Fang, L., Guo, X., Wang, X., Zhang, Y., Li, P. & Zhang, X. (2018). Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China.Soil Biology Biochemistry, 116, 11-21. DOI: 10.1016/j.soilbio.2017.09.025
DeForest, J.L. (2009). The influence of time storage temperature and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology Biochemistry, 41, 1180-1186. DOI: 10.1016/j.soilbio.2009.02.029
DeForest, J.L. & Moorhead, D.L. (2020). Effects of elevated pH and phosphorus fertilizer on soil C., N and P enzyme stoichiometry in an acidic mixed mesophytic deciduous forest. Soil Biology Biochemistry, 150. DOI: 10.1016/j.soilbio.2020.107996
Deng, Q., Cheng, X., Hui, D., Zhang, Q., Li, M. & Zhang, Q. (2016). Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.Science of the Total Environment, 541, 230-237. DOI: 10.1016/j.scitotenv.2015.09.080
Feng, J., Wu, J., Zhang, Q., Zhang, D., Li, Q., Long, C., Yang, F., Chen Q. & Cheng, X. (2018). Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China. Soil Biology Biochemistry, 123, 136-144. DOI: 10.1016/j.soilbio.2018.05.013
Guo, Z., Zhang, X., Green, S.M., Dungait, J.A.J., Wen, X., Quine, T.A. (2019). Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the Karst Critical Zone Observatory in Southwest China. Land Degradation & Development , 30, 1916-1927. DOI: 10.1002/ldr.3389
He, Q., Wu, Y., Bing, H., Zhou, J. & Wang, J. (2020). Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau.Geoderma , 374. DOI: 10.1016/j.geoderma.2020.114424
Knops, J.M.H., Bradley, K.L. & Wedin, D.A. (2002). Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters,5, 454-466. DOI: 10.1046/j.1461-0248.2002.00332.x
Luo, D., Cheng, R., Liu, S., Shi, Z. & Feng, Q. (2020). Responses of Soil Microbial Community Composition and Enzyme Activities to Land-Use Change in the Eastern Tibetan Plateau, China. Forests , 11(5). DOI: 10.3390/f11050483.
Mendham, D.S., Heagne, E.C., Corbeels, M., O’Connell, A.M., Grove, T.S. & McMurtrie, R.E. (2004). Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus.Soil Biology Biochemistry, 36, 1067-1074. DOI: 10.1016/j.soilbio.2004.02.018
Mbuthia, L.W., Acosta-Martínez, V., DeBruyn, J., Schaeffer, S., Tyler, D., Odoi, E., Mpheshea, M., Walker, F. & Eash, N. (2015). Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biology Biochemistry, 89, 24-34. DOI: 10.1016/j.soilbio.2015.06.016
Moscatelli, M., Secondi, L., Marabottini, R., Pap, R., Stazi, S., Mania, E. & Marinari, S. (2018). Assessment of soilmicrobial functional diversity: Land use and soil properties affect CLPP-MicroResp and enzymes responses. Pedobiologia, 66, 36–42. DOI:10.1016/j.pedobi.2018.01.001
Peng, X. & Wang, W. (2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology Biochemistry, 98, 74-84. DOI: 10.1016/j.soilbio.2016.04.008
Pinsonneault, A.J., Moore, T.R. & Roulet, N.T. (2016). Temperature the dominant control on the enzyme-latch across a range of temperate peatland types. Soil Biology Biochemistry, 97, 121-130. DOI: 10.1016/j.soilbio.2016.03.006
Raiesi, F. & Beheshti, A. (2014). Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Applied Soil Ecology, 75, 63-70. DOI: 10.1016/j.apsoil.2013.10.012
Rovira, P. & Vallejo, V.R. (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 107, 109-41. DOI: 10.1016/S0016-7061(01)00143-4
Schimel, J. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology Biochemistry, 35, 549-563. DOI: 10.1016/S0038-0717(03)00015-4
Schimel, J., Becerra, C.A. & Blankinship, J. (2017). Estimating decay dynamics for enzyme activities in soils from different ecosystems.Soil Biology Biochemistry, 114, 5-11. DOI: 10.1016/j.soilbio.2017.06.023
Sinsabaugh, R.L. & Follstad, Shah J.J., 2012. Ecoenzymatic Stoichiometry and Ecological Theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. DOI: 10.1146/annurev-ecolsys-071112-124414
Sinsabaugh, R.L., Hill, B.H., Follstad Shah, J.J. (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795-798. DOI: 10.1038/nature08632
Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner T B., Hobbie S E., Holland K., Keeler B L., Powers J S., Stursova M., Takacs-Vesbach, C., Waldrop, M.P., Wallenstein, M.D., Zak, D.R. & Zeglin, L.H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters , 11, 1252-1264. DOI: 10.1111/j.1461-0248.2008.01245.x
Smith, A.P., Marin-spiotta, E. & Balser, T. (2015). Successional and seasonal variations in soil and litter microbial community structure and function during tropical post agricultural forest regeneration: a multiyear study. Global Change Biology, 21, 3532–3547. DOI: 10.1111/gcb.12947
Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, P.V., Tyukavina, A., Vermote, E.F. & Townshend, J.R. (2018). Global land change from 1982 to 2016. Nature, 560, 639-643. DOI: 10.1038/s41586-018-0411-9
Wallenstein, M. D., & Weintraub, M. N. (2008). Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biology & Biochemistry, 40, 2098–2106. https://doi.org/10.1016/j.
soilbio.2008.01.024 Wang, B., Xue, S., Liu, G.B., Zhang, G.H., Li, G. & Ren, Z.P. (2012). Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area Northwest China.Catena , 92, 186-195. DOI: 10.1016/j.catena.2011.12.004
Wu, J., Zhang, Q., Yang, F., Lei., Zhang, Q. & Cheng, X. (2016). Afforestation impacts microbial biomass and its natural13C and 15N abundance in soil aggregates in central China. Science of The Total Environment,568, 52-56. DOI: 10.1016/j.scitotenv.2016.05.224
Xu, Z., Yu, G., Zhang, X., He, N., Wang, Q., Wang, S., Wang, R., Zhao, N., Jia, Y. & Wang, C. (2017). Soil enzyme activity., stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology Biochemistry, 104, 152-163. DOI: 10.1016/j.soilbio.2016.10.020
Yang, Y., Liang, C., Wang, Y., Cheng, H., An, S. & Chang, S.X. (2020). Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration. Soil Biology Biochemistry, 149. DOI: 10.1016/j.soilbio.2020.107928
Yu, P., Liu, S., Han, K., Guan, S. & Zhou, D. (2017). Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agriculture, Ecosystems & Environment, 245, 83-91. DOI: 10.1016/j.agee.2017.05.013
Yue, C., Ciais, P., Houghton, R.A. & Nassikas A.A. (2020). Contribution of land use to the interannual variability of the land carbon cycle.Nature Communication , 11, 3170. DOI: 10.1038/s41467-020-16953-8
Zhang, Q., Feng, J., Wu, J., Zhang, D., Chen, Q., Li, Q., Long, C., Feyissa, A. & Cheng, X., (2019a). Variations in carbon-decomposition enzyme activities respond differently to land use change in central China. Land Degradation and Development , 30 459-469. DOI: 10.1002/ldr.3240
Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q. & Cheng, X. (2016). Alterations in soil microbial community composition and biomass following agricultural land use change. Scientific Reports, 6, 36587. DOI: 10.1038/srep36587
Zhang, W., Xu, Y., Gao, D., Wang, X., Liu, W., Deng, J., Han, X., Yang, G., Feng, Y. & Ren, G. (2019b). Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China.Soil Biology Biochemistry, 134, 1-14. DOI: 10.1016/j.soilbio.2019.03.017
Zhao, F.Z., Ren, C.J., Han, X.H., Yang, G.H., Wang, J. & Doughty, R. (2018). Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. Forest Ecology Management, 427, 289-295. DOI: 10.1016/j.foreco.2018.06.011
Zheng, L., Chen, H., Wang, Y., Mao, Q., Zheng, M., Su, Y., Xiao, K., Wang, K. & Li, D. (2020a). Responses of soil microbial resource limitation to multiple fertilization strategies. Soil and Tillage Research, 196. DOI: 10.1016/j.still.2019.104474
Zheng, W., Gong, Q., Lv, F., Yin, Y., Li, Z. & Zhai, B. (2020b). Tree-scale spatial responses of extracellular enzyme activities and stoichiometry to different types of fertilization and cover crop in an apple orchard. European Journal of Soil Biology, 99. DOI: 10.1016/j.ejsobi.2020.103207
Zhou, L., Liu, S., Shen, H., Zhao, M., Xu, L., Xing, A., Fang, J. & Sayer, E. (2020). Soil extracellular enzyme activity and stoichiometry in China’s forests. Function Ecology, 34, 1461-1471. DOI: 10.1111/1365-2435.13555
Zhu, M.Y., Tan, S.D., Gu, S. & Zhang, Q.F. (2010). Characteristics of soilerodibility in the Danjiangkou Reservoir Region Hubei Province.Chinese Journal of Soil Science, 41, 434-436. DOI: 10.1080/00949651003724790
Table 1 Pearson correlation coefficients of soil enzyme activity on soil properties across soil depths, seasons and land use types (* p < 0.05;** p < 0.01; ***p < 0.001; NS, no significant; numbers are F-values).