References
Amaan, T., Hansen A. H., Kol, S., Hansen, H. G., Arnsdorf, J.,
Nallapareddy, S., et al. Glyco-engineered CHO cell lines producing
alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized
N-glycosylation profiles. Metabolic Engineering , 52 ,
143-152. doi: 10.1016/j.ymben.2018.11.014
Baek, E., Kim, C. L., Kim, M. G., Lee, J. S., & Lee, G. M. (2016).
Chemical inhibition of
autophagy: examining its potential to increase the specific productivity
of recombinant CHO cell lines. Biotechnology and
Bioengineering, 113(9), 1953-1961. doi: 10.1002/bit.25962
Baek, E., Lee, J.S. & Lee, G.M. (2018). Untangling the mechanism of
3‐methyladenine in enhancing the specific productivity: transcriptome
analysis of recombinant Chinese Hamster Ovary cells treated with
3‐methyladenine. Biotechnology and Bioengineering ,115 ,2243–2254. doi: 10.1002/bit.26777
Bulté, D. B., Palomares, L. A., Gómez Para, C., Martínez, J. A.,
Contreras, M. A, Noriega, L. G., & Ramirez, O. T. (2020).
Overexpression of the mitochondrial pyruvate carrier reduces lactate
production and increases recombinant protein productivity in CHO cells.Biotechnology and Bioengineering ,
Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., &
Yarranton, G. T. (1992).
High-Level Expression of a recombinant antibody from myeloma cells using
a glutamine synthetase gene as an amplifiable selectable
marker. Nature Biotechnology, 10(2), 169-175. doi:
10.1038/nbt0292-169
Butler, M., & Meneses-Acosta, A. (2012). Recent advances in technology
supporting
biopharmaceutical production from mammalian cells. Applied
Microbiology and Biotechnology, 96(4), 885-894. doi:
10.1007/s00253-012-4451-z
Doherty, J., & Baehrecke, E. H. (2018). Life, death and
autophagy. Nature Cell Biology , 20 (10),
1110-1117. doi: 10.1038/s41556-018-0201-5
Ecker, D. M., Jones, S. D., & Levine, H. L. (2014). The therapeutic
monoclonal antibody
market. mAbs , 7 (1), 9-14. doi:
10.4161/19420862.2015.989042
Figueroa Jr., B., Ailor, E., Osborne, D., Hardwick, J. M., Reff, M., &
Betenbaugh, M. J. (2007).
Enhanced cell culture performance using inducible anti-apoptotic genesE1B-19K and Aven in the production of a monoclonal
antibody with Chinese Hamster Ovary cells. Biotechnology and
Bioengineering. 97, 877-892. doi: 10.1002/bit.21222
Franek, F., & Fussenegger, M. (2008). Survival factor-like activity of
small peptides in
hybridoma and CHO cells cultures. Biotechnology
Progress, 21(1), 96-98. doi: 10.1021/bp0400184
Franek, F., Eckschlager, T., & Katinger, H. (2003). Enhancement of
monoclonal antibody
production by lysine-containing peptides. Biotechnology
Progress, 19(1), 169-174. doi: 10.1021/bp020077m
Ghaffari N., Jardon M.A., Krahn N., Butler M., Kennard M., Turner
R.F.B., Gopaluni B., Piret
J.M. (2020). Effects of cysteine, asparagine or glutamine limitations in
CHO cell batch and fed-batch cultures. Biotechnology Progress,
36(2), e2946. doi: 10.1002/btpr.2946
Hamaker, N. K., & Lee, K. H. (2018). Site-specific integration ushers
in a new era of precise
CHO cell line engineering. Current Opinion in Chemical
Engineering, 22, 152-150. doi: 10.1015/j.coche.2018.09.011
Herce, H. D., & Garcia, A. E. (2007). Molecular dynamics simulations
suggest a mechanism for
translocation of the HIV-1 TAT peptide across lipid
membranes. Proceedings of the National Academy of
Sciences, 104(52), 20805-20810. doi: 10.1073/pnas.0706574105
Hong, J. K., Lakshmanan, M., Goudar, C., & Lee, D.-Y. (2018). Towards
next generation CHO
cell line development and engineering by systems approaches.Current Opinion in Chemical Engineering, 22, 1-10. doi:
10.1016/j.coche.2018.08.002
Hwang, S. O., & Lee, G. M. (2008). Nutrient deprivation induces
autophagy as well as apoptosis
in Chinese hamster ovary cell culture. Biotechnology and
Bioengineering, 99(3), 678-685. doi: 10.1002/bit.21589
Jardon, M. A., Sattha, B., Braasch, K., Leung, A. O., Côté, H. C. F.,
Butler, M., Gorski, S.M., & Piret, J. (2012). Inhibition of
glutamine-dependent autophagy increases t-PA production in CHO cell
fed-batch processes. Biotechnology and
Bioengineering , 109 (5), 1228-1238. doi: 10.1002/bit.24393
Kelly, P. S., Miguez, A. A., Alves, C., & Barron, Niall. (2018). From
media to mitochondria-
rewiring cellular energy metabolism of Chinese Hamster Ovary cells for
the enhanced production of biopharmaceuticals. Current Opinion in
Chemical Engineering, 22, 71-80. doi: 10.1016/j.cohce.2018.08.009
Kennard, M. L., Goosney, D. L., Monteith, D., Zhang, L., Moffat, M.,
Fischer, D., & Mott, J.
(2009). The generation of stable, high mAb expressing CHO cell lines
based on the artificial chromosome expression (ACE)
technology. Biotechnology and Bioengineering, 104(3),
540-553. doi: 10.1002/bit.22406
Kim, N. S., & Lee, G. M. (2002). Response of recombinant Chinese
Hamster Ovary cells to
hyperosmotic pressure: effect of Bcl-2 overexpression. Journal of
Biotechnology, 95(3), 237-248. doi:
10.1016/s0168-1656(02)00011-1
Kim, J. Y., Kim, Y.-G., & Lee, G. M. (2012). CHO cells in biotechnology
for production of
recombinant proteins: current state and further potential. Applied
Microbiology and Biotechnology, 93, 917-930. doi:
10.1007/s00253-011-3758-5
Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich,
H., Acevedo Arozena,
A. et al. (2016). Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy, 12(1),
1-222. doi: 10.1080/15548627.2015.1100356
Lalonde, M.-E., & Durocher, Y. (2017). Therapeutic glycoprotein
production in mammalian
cells. Journal of Biotechnology , 251, 128-140. doi:
10.1016/j.jbiotec.2017.04.028
Liu, Y., Shoji-Kawata, S., Sumpter, R. M., Wei, Y., Ginet, V., Zhang, L.
et al. (2013). Autosis
is a Na+,K+-ATPase-regulated form of cell death triggered by
autophagy-inducing peptides, starvation, and
hypoxia-ischemia. Proceedings of the National Academy of
Sciences, 110(51), 20364-20371. doi: 10.1073/pnas.1319661110
Lucas, B. K., Giere, L. M., DeMarco, R. A., Shen, A., Chisholm, V., &
Crowley, C. W. (1996).
High-level production of recombinant proteins in CHO cells using a
dicistronic DHFR intron expression vector. Nucleic Acids
Research, 24(9), 1774-1779. doi: 10.1093/nar/24.9.1774
Mastrangelo, A. J., Hardwick, J. M., Zou, S., & Betenbaugh, M. J.
(2000). Part II.
Overexpression of bcl-2 family members enhances survival of mammalian
cells in response to various culture insults. Biotechnology and
Bioengineering, 67(5), 555-564. doi:
10.1002/(sici)1097-0290(20000305)67:5<555::aid-bit6>3.0.co;2-t
Mimura, Y., Lund, J., Church, S., Dong, S., Li, J., Goodall, M., &
Jefferis, R. (2001). Butyrate
increases production of human chimeric IgG in CHO-K1 cells whilst
maintaining function and glycoform profile. Journal of
Immunological Methods, 247(1-2), 205-216. doi:
10.1016/s0022-1759(00)00308-2
Mizushima, N., & Klionsky, D. J. (2007). Protein turnover via
autophagy: implications for
metabolism. Annual Review of Nutrition, 27(1), 19-40. doi:
10.1146/annurev.nutr.27.061406.093749
Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008).
Autophagy fights disease
through cellular self-digestion. Nature , 451 (7182),
1069-1075. doi: 10.1038/nature06639
Renard, J. M., Spagnoli, R., Mazier, C., Salles, M. F., & Mandine, E.
(1988). Evidence that
monoclonal antibody production kinetics is related to the integral of
the viable cells curve in batch systems. Biotechnology
Letters, 10(2), 91-96. doi: 10.1007/bf01024632
Shoji-Kawata, S., Sumpter, R., Leveno, M., Campbell, G. R., Zou, Z.,
Kinch, L. et al. (2013).
Identification of a candidate therapeutic autophagy-inducing
peptide. Nature, 494(7436), 201-206. doi:
10.1038/nature11866
Spearman, M., Lodewyks, C., Richmond, M., & Butler, M. (2014). The
bioactivity and
fractionation of peptide hydrolysates in cultures of CHO
cells. Biotechnology Progress, 30(3), 584-593. doi:
10.1002/btpr.1930
Tey, B. T., Singh, R. P., Piredda, L., Piacentini, M., & Al-Rubeai, M.
(2000). Influence of Bcl-2
on cell death during the cultivation of a Chinese hamster ovary cell
line expressing a chimeric antibody. Biotechnology and
Bioengineering, 68(1), 31-43. doi:
10.1002/(sici)1097-0290(20000405)68:1<31::aid-bit4>3.0.co;2-l
van den Berg, A., & Dowdy, S. F. (2011). Protein transduction domain
delivery of therapeutic
macromolecules. Current Opinion in Biotechnology, 22(6),
888-893. doi: 10.1016/j.copbio.2011.03.008
Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P.,
Bertozzi, C. R., Hart, G. W.,
& Etzler, M. W. (2009). Essentials of Glycobiology (2nd ed.).
Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Walsh, G. (2003). Biopharmaceutical benchmarks - 2003. Nature
Biotechnology , 21 (8), 865-870. doi: 10.1038/nbt0803-865
Wu, Y., Tan, H., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R. et al.
(2010). Dual role of 3-
methyladenine in modulation of autophagy via different temporal patterns
of inhibition on Class I and III Phosphoinositide
3-Kinase. Journal of Biological Chemistry, 285(14),
10850-10861. doi: 10.1074/jbc.m109.080796
Yin, B., Wang, Q., Chung, C.-Y., Ren, X., Bhattacharya, R., Yarema, K.
J., & Betenbaugh, M. J.
(2018). Butyrated ManNAc analog improves protein expression in Chinese
Hamster Ovary cells. Biotechnology and Bioengineering, 115,
1531-1541. doi: 10.1002/bit.26560
Zustiak, M. P., Pollack, J. K., Marten M. R., & Betenbaugh, M. J.
(2008). Feast or famine:
autophagy control and engineering in eukaryotic cell culture. Current
Opinion in Biotechnology, 19, 518-526. doi: 10.1016/j.copbio.2008.07.007