References
Amaan, T., Hansen A. H., Kol, S., Hansen, H. G., Arnsdorf, J., Nallapareddy, S., et al. Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metabolic Engineering , 52 , 143-152. doi: 10.1016/j.ymben.2018.11.014
Baek, E., Kim, C. L., Kim, M. G., Lee, J. S., & Lee, G. M. (2016). Chemical inhibition of
autophagy: examining its potential to increase the specific productivity of recombinant CHO cell lines. Biotechnology and Bioengineering113(9), 1953-1961. doi: 10.1002/bit.25962
Baek, E., Lee, J.S. & Lee, G.M. (2018). Untangling the mechanism of 3‐methyladenine in enhancing the specific productivity: transcriptome analysis of recombinant Chinese Hamster Ovary cells treated with 3‐methyladenine. Biotechnology and Bioengineering ,115 ,2243–2254. doi: 10.1002/bit.26777
Bulté, D. B., Palomares, L. A., Gómez Para, C., Martínez, J. A., Contreras, M. A, Noriega, L. G., & Ramirez, O. T. (2020). Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells.Biotechnology and Bioengineering ,
Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., & Yarranton, G. T. (1992).
High-Level Expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Nature Biotechnology10(2), 169-175. doi: 10.1038/nbt0292-169
Butler, M., & Meneses-Acosta, A. (2012). Recent advances in technology supporting
biopharmaceutical production from mammalian cells. Applied Microbiology and Biotechnology96(4), 885-894. doi: 10.1007/s00253-012-4451-z
Doherty, J., & Baehrecke, E. H. (2018). Life, death and autophagy. Nature Cell Biology , 20 (10),
1110-1117. doi: 10.1038/s41556-018-0201-5
Ecker, D. M., Jones, S. D., & Levine, H. L. (2014). The therapeutic monoclonal antibody
market. mAbs7 (1), 9-14. doi: 10.4161/19420862.2015.989042
Figueroa Jr., B., Ailor, E., Osborne, D., Hardwick, J. M., Reff, M., & Betenbaugh, M. J. (2007).
Enhanced cell culture performance using inducible anti-apoptotic genesE1B-19K and Aven in the production of a monoclonal antibody with Chinese Hamster Ovary cells. Biotechnology and Bioengineering. 97, 877-892. doi: 10.1002/bit.21222
Franek, F., & Fussenegger, M. (2008). Survival factor-like activity of small peptides in
hybridoma and CHO cells cultures. Biotechnology Progress21(1), 96-98. doi: 10.1021/bp0400184
Franek, F., Eckschlager, T., & Katinger, H. (2003). Enhancement of monoclonal antibody
production by lysine-containing peptides. Biotechnology Progress19(1), 169-174. doi: 10.1021/bp020077m
Ghaffari N., Jardon M.A., Krahn N., Butler M., Kennard M., Turner R.F.B., Gopaluni B., Piret
J.M. (2020). Effects of cysteine, asparagine or glutamine limitations in CHO cell batch and fed-batch cultures. Biotechnology Progress, 36(2), e2946. doi: 10.1002/btpr.2946
Hamaker, N. K., & Lee, K. H. (2018). Site-specific integration ushers in a new era of precise
CHO cell line engineering. Current Opinion in Chemical Engineering, 22, 152-150. doi: 10.1015/j.coche.2018.09.011
Herce, H. D., & Garcia, A. E. (2007). Molecular dynamics simulations suggest a mechanism for
translocation of the HIV-1 TAT peptide across lipid membranes. Proceedings of the National Academy of Sciences104(52), 20805-20810. doi: 10.1073/pnas.0706574105
Hong, J. K., Lakshmanan, M., Goudar, C., & Lee, D.-Y. (2018). Towards next generation CHO
cell line development and engineering by systems approaches.Current Opinion in Chemical Engineering, 22, 1-10. doi: 10.1016/j.coche.2018.08.002
Hwang, S. O., & Lee, G. M. (2008). Nutrient deprivation induces autophagy as well as apoptosis
in Chinese hamster ovary cell culture. Biotechnology and Bioengineering99(3), 678-685. doi: 10.1002/bit.21589
Jardon, M. A., Sattha, B., Braasch, K., Leung, A. O., Côté, H. C. F., Butler, M., Gorski, S.M., & Piret, J. (2012). Inhibition of glutamine-dependent autophagy increases t-PA production in CHO cell fed-batch processes. Biotechnology and Bioengineering109 (5), 1228-1238. doi: 10.1002/bit.24393
Kelly, P. S., Miguez, A. A., Alves, C., & Barron, Niall. (2018). From media to mitochondria-
rewiring cellular energy metabolism of Chinese Hamster Ovary cells for the enhanced production of biopharmaceuticals. Current Opinion in Chemical Engineering, 22, 71-80. doi: 10.1016/j.cohce.2018.08.009
Kennard, M. L., Goosney, D. L., Monteith, D., Zhang, L., Moffat, M., Fischer, D., & Mott, J.
(2009). The generation of stable, high mAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnology and Bioengineering104(3), 540-553. doi: 10.1002/bit.22406
Kim, N. S., & Lee, G. M. (2002). Response of recombinant Chinese Hamster Ovary cells to
hyperosmotic pressure: effect of Bcl-2 overexpression. Journal of Biotechnology95(3), 237-248. doi: 10.1016/s0168-1656(02)00011-1
Kim, J. Y., Kim, Y.-G., & Lee, G. M. (2012). CHO cells in biotechnology for production of
recombinant proteins: current state and further potential. Applied Microbiology and Biotechnology, 93, 917-930. doi: 10.1007/s00253-011-3758-5
Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H., Acevedo Arozena,
A. et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy12(1), 1-222. doi: 10.1080/15548627.2015.1100356
Lalonde, M.-E., & Durocher, Y. (2017). Therapeutic glycoprotein production in mammalian
cells. Journal of Biotechnology , 251, 128-140. doi: 10.1016/j.jbiotec.2017.04.028
Liu, Y., Shoji-Kawata, S., Sumpter, R. M., Wei, Y., Ginet, V., Zhang, L. et al. (2013). Autosis
is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proceedings of the National Academy of Sciences110(51), 20364-20371. doi: 10.1073/pnas.1319661110
Lucas, B. K., Giere, L. M., DeMarco, R. A., Shen, A., Chisholm, V., & Crowley, C. W. (1996).
High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Research24(9), 1774-1779. doi: 10.1093/nar/24.9.1774
Mastrangelo, A. J., Hardwick, J. M., Zou, S., & Betenbaugh, M. J. (2000). Part II.
Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnology and Bioengineering67(5), 555-564. doi: 10.1002/(sici)1097-0290(20000305)67:5<555::aid-bit6>3.0.co;2-t
Mimura, Y., Lund, J., Church, S., Dong, S., Li, J., Goodall, M., & Jefferis, R. (2001). Butyrate
increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. Journal of Immunological Methods247(1-2), 205-216. doi: 10.1016/s0022-1759(00)00308-2
Mizushima, N., & Klionsky, D. J. (2007). Protein turnover via autophagy: implications for
metabolism. Annual Review of Nutrition27(1), 19-40. doi: 10.1146/annurev.nutr.27.061406.093749
Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease
through cellular self-digestion. Nature451 (7182), 1069-1075. doi: 10.1038/nature06639
Renard, J. M., Spagnoli, R., Mazier, C., Salles, M. F., & Mandine, E. (1988). Evidence that
monoclonal antibody production kinetics is related to the integral of the viable cells curve in batch systems. Biotechnology Letters10(2), 91-96. doi: 10.1007/bf01024632
Shoji-Kawata, S., Sumpter, R., Leveno, M., Campbell, G. R., Zou, Z., Kinch, L. et al. (2013).
Identification of a candidate therapeutic autophagy-inducing peptide. Nature494(7436), 201-206. doi: 10.1038/nature11866
Spearman, M., Lodewyks, C., Richmond, M., & Butler, M. (2014). The bioactivity and
fractionation of peptide hydrolysates in cultures of CHO cells. Biotechnology Progress30(3), 584-593. doi: 10.1002/btpr.1930
Tey, B. T., Singh, R. P., Piredda, L., Piacentini, M., & Al-Rubeai, M. (2000). Influence of Bcl-2
on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnology and Bioengineering68(1), 31-43. doi: 10.1002/(sici)1097-0290(20000405)68:1<31::aid-bit4>3.0.co;2-l
van den Berg, A., & Dowdy, S. F. (2011). Protein transduction domain delivery of therapeutic
macromolecules. Current Opinion in Biotechnology22(6), 888-893. doi: 10.1016/j.copbio.2011.03.008
Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W.,
& Etzler, M. W. (2009). Essentials of Glycobiology (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Walsh, G. (2003). Biopharmaceutical benchmarks - 2003. Nature Biotechnology , 21 (8), 865-870. doi: 10.1038/nbt0803-865
Wu, Y., Tan, H., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R. et al. (2010). Dual role of 3-
methyladenine in modulation of autophagy via different temporal patterns of inhibition on Class I and III Phosphoinositide 3-Kinase. Journal of Biological Chemistry285(14), 10850-10861. doi: 10.1074/jbc.m109.080796
Yin, B., Wang, Q., Chung, C.-Y., Ren, X., Bhattacharya, R., Yarema, K. J., & Betenbaugh, M. J.
(2018). Butyrated ManNAc analog improves protein expression in Chinese Hamster Ovary cells. Biotechnology and Bioengineering, 115, 1531-1541. doi: 10.1002/bit.26560
Zustiak, M. P., Pollack, J. K., Marten M. R., & Betenbaugh, M. J. (2008). Feast or famine:
autophagy control and engineering in eukaryotic cell culture. Current Opinion in Biotechnology, 19, 518-526. doi: 10.1016/j.copbio.2008.07.007