References:
The data that supports the findings of this study are available in the supplemental material of this article, as well as the data obtained from public sources were cited in the references section.
Aguas, A.N. de, 2020: Monitoramento COVID Esgotos constata presença do coronavírus em primeiras coletas [Online] Available at https://www.ana.gov.br/noticias/monitoramento-covid-esgotos-constata-presenca-do-coronavirus-em-primeiras-coletas.
Ariadne, Q., 2020: Covid-19: Segunda fase dos testes em massa em BH começa na próxima semana. p. 2, O Tempo . Belo Horizonte.
Cartorio, 2020: Registro Civil [Online] Available at https://transparencia.registrocivil.org.br/especial-covid.
Catala, M., S. Alonso, E.A. Lacalle, D. Lopez, P.-J. Cardona, and C. Prats, 2020: Empiric model for short-time prediction of COVID-19 spreading. medRxive 1–23, DOI: 10.1101/2020.05.13.20101329.
Cauchemez, S., N. Hoze, A. Cousien, B. Nikolay, and Q. ten bosch, 2019: How Modelling Can Enhance the Analysis of Imperfect Epidemic Data.Trends Parasitol. 35 , 369–379, DOI: 10.1016/j.pt.2019.01.009.
DATASUS, 2020: Deaths caused by transport accidents and assaults in Minas Gerais, OBITOS. DATASUS [Internet]. 2020. [Online] Available at http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sim/cnv/obt10uf.def.
Day, M., 2020: Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ 368 , m1165, DOI: 10.1136/bmj.m1165.
Frieden, T.R., and C.T. Lee, 2020: Identifying and Interrupting Superspreading Events-Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis.26 , 1061–1066, DOI: 10.3201/eid2606.200495.
Grifoni, A., D. Weiskopf, S.I. Ramirez, J. Mateus, J.M. Dan, C.R. Moderbacher, S.A. Rawlings, A. Sutherland, L. Premkumar, R.S. Jadi, D. Marrama, A.M. de Silva, A. Frazier, A.F. Carlin, J.A. Greenbaum, B. Peters, F. Krammer, D.M. Smith, S. Crotty, and A. Sette, 2020: Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 181 , 1489-1501.e15, DOI: 10.1016/j.cell.2020.05.015.
Hallari, P., F. Hartwig, B. Horta, G.D. Victora, M. Silveria, C. Struchiner, L.P. Vidaletti, N. Neumann, L.C. Pellanda, O.A. Dellagostin, M.N. Burattini, A.M. Menezes, F.C. Barros, A.J. Barros, and C.G. Victora, 2020: Remarkable variability in SARS-CoV-2 antibodies across Brazilian regions: nationwide serological household survey in 27 states.medRxive DOI: 10.1101/2020.05.30.20117531.
Han, H., Q. Ma, C. Li, R. Liu, L. Zhao, W. Wang, P. Zhang, X. Liu, G. Gao, F. Liu, Y. Jiang, X. Cheng, C. Zhu, and Y. Xia, 2020: Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect. 9 , 1123–1130, DOI: 10.1080/22221751.2020.1770129.
IBGE, 2020: Instituto Brasileiro de Geografia e Estatistica, Social Inequalities due to Color or Race in Brazil [Online] Available at https://www.ibge.gov.br/en/statistics/social/population/26017-social-inequalities-due-to-color-or-race-in-brazil.html?=&t=sobre (accessed July 7, 2020).
Infogripe, 2020: Monitoramento de casos reportados de síndrome respiratória aguda grave (SRAG) hospitalizados [Online] Available at http://info.gripe.fiocruz.br/.
InLoco, 2020: InLoco, Mapa brasileiro da COVID-19 [Online] Available at https://mapabrasileirodacovid.inloco.com.br/pt/ (accessed July 5, 2020).
Lone, S.A., and A. Ahmad, 2020: COVID-19 pandemic - An African perspective. Emerg. Microbes Infect. 0 , 1–28, DOI: 10.1080/22221751.2020.1775132.
Marson, F.A.L., and M.M. Ortega, 2020: COVID-19 in Brazil.Pulmonology DOI: 10.1016/j.pulmoe.2020.04.008.
Monteiro, L.H.., 2020: An epidemiological model for SARS-CoV-2. .
Nishiura, H., T. Kobayashi, T. Miyama, A. Suzuki, S. mok Jung, K. Hayashi, R. Kinoshita, Y. Yang, B. Yuan, A.R. Akhmetzhanov, and N.M. Linton, 2020: Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 94 , 154–155, DOI: 10.1016/j.ijid.2020.03.020.
Nogueira, P.., J.. Falcão, M.. Contreiras, E. Paixão, J. Brandão, and I. Batista, 2005: Mortality in Portugal associated with the heat wave of August 2003: Early estimation of effect, using a rapid method.Euro Surveill 10 , 5–6, DOI: 10.2807/esm.10.07.00553-en.
Polonsky, J.A., A. Baidjoe, Z.N. Kamvar, A. Cori, K. Durski, W. John Edmunds, R.M. Eggo, S. Funk, L. Kaiser, P. Keating, O. Le Polain De Waroux, M. Marks, P. Moraga, O. Morgan, P. Nouvellet, R. Ratnayake, C.H. Roberts, J. Whitworth, and T. Jombart, 2019: Outbreak analytics: A developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. B Biol. Sci. 374 , DOI: 10.1098/rstb.2018.0276.
Prasitsirikul, W., K. Pongpirul, W.A. Pongpirul, N. Panitantum, A.C. Ratnarathon, and T. Hemachudha, 2020: Nurse Infected with Covid-19 from a Provisional Dengue Patient. Emerg. Microbes Infect. 0 , 1–5, DOI: 10.1080/22221751.2020.1775131.
Ranjan, R., 2020: Temporal Dynamics of COVID-19 Outbreak and Future Projections: A Data-Driven Approach. Trans. Indian Natl. Acad. Eng. DOI: 10.1007/s41403-020-00112-y.
Riou, J., and C.L. Althaus, 2020: Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance 25 , 1–5, DOI: 10.2807/1560-7917.ES.2020.25.4.2000058.
Rothe, C., M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, T. Zimmer, V. Thiel, C. Janke, W. Guggemos, M. Seilmaier, C. Drosten, P. Vollmar, K. Zwirglmaier, S. Zange, R. Wölfel, and M. Hoelscher, 2020: Transmission of 2019-NCOV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382 , 970–971, DOI: 10.1056/NEJMc2001468.
Science, N., C. Phenomena, S. Bekiros, and D. Kouloumpou, 2020: SBDiEM: A new mathematical model of infectious disease dynamics. Chaos, Solitons and Fractals 136 , DOI: 10.1016/j.chaos.2020.109828.
Siettos, C.I., and L. Russo, 2013: Mathematical modeling of infectious disease dynamics. Virulence 4 , 295–306, DOI: 10.4161/viru.24041.
SUS, 2020: Coronavirus Brasil [Online] Available at https://covid.saude.gov.br/.
Tjørve, K.M.C., and E. Tjørve, 2017: The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS One 12 , 1–17, DOI: 10.1371/journal.pone.0178691.
Tong, Z.D., A. Tang, K.F. Li, P. Li, H.L. Wang, J.P. Yi, Y.L. Zhang, and J.B. Yan, 2020: Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg. Infect. Dis. 26 , 1052–1054, DOI: 10.3201/eid2605.200198.
Villela, D.A.M., 2020: The value of mitigating epidemic peaks of COVID-19 for more effective public health responses. Rev. Soc. Bras. Med. Trop. 53 , 18–19, DOI: 10.1590/0037-8682-0135-2020.
Worldometer, 2020: Total Coronavirus Cases in Brazil [Online] Available at https://www.worldometers.info/coronavirus/country/brazil/.
Yang, W., D. Zang, L. Peng, C. Zhuge, and L. Hong, 2020: Rational evaluation of various epidemic models based on the COVID-19 data of China. medRxive 1–18, DOI: 10.1101/2020.03.12.20034595.
Figure 1 . Time evolution of (a) the governmental infected cases reported (open black squares), (b) deaths (open red circles) and (c) social distancing (blue solid line) related to COVID-19 in Minas Gerais, Brazil. The solid black and red lines in (a) and (b) correspond to the fit of the model to the reported data. Dash dot lines in (a) correspond to the projected daily number of infection cases (black line) and deaths (red line). The dash line in (b) corresponds to the projected case fatality rate (CFR).
Figure 2. Comparison between the weekly number of deaths from all causes during the first 29 epidemiologic weeks of 2020 (solid lines) regarding the same period in 2019 (dashed lines). The vertical dotted line marks the COVID-19 epidemic starting in Minas Gerais. The grey area represents the time delay to update the RO database.
Figure 3 . (a) Time evolution of excess of deaths (open black squares), RO COVID-19 related deaths (open blue triangles) and governmental COVID-19 deaths (open red circles). Solid lines correspond to the best fit of the model to the data sets (see text for details). (b) Calculated variation of the upper (red line) and lower (green line) bounds of the sub-notification along 2020.
Figure 4 . (a) Weekly evolution of the cumulative number of SARS cases in 2020 (open black squares) compared to 2019 (open red diamonds). Black and red lines correspond to the best fit of the model to the datasets (see text for details). (b) Calculated excess of COVID-19 cases (open green stars) and COVID-19 governmental reports (open blue triangles). Green and blue lines correspond to the best fit of the model to the datasets. (c) Calculated sub-notification of COVID-19 cases (black line) and CFR upper bound (red line).
Figure 5 . (a) Daily evolution of the cumulative number of COVID-19 cases in black (open black squares) and white patients (open blue circles). The solid lines correspond to the best fit of the model to the datasets (see text for details). The dashed line corresponds to the percentage of cases in black patients. (b) Daily evolution of the cumulative number of deaths from COVID-19 in black (open black squares) and white patients (open blue circles). The solid lines correspond to the best fit of the model to the datasets (see text for details). The dashed line corresponds to the percentage of deaths in black patients. (c) Calculated CFR values in black (black line) and white (blue line) patients, using the data presented in (a) and (b).
Figure 6. Heat map with all municipalities of Minas Gerais informing (a) cases of COVID-19, (b) deaths from COVID-19, (c) cases white patients, (d) deaths of white patients, (e) cases of black patients, (f) deaths of black patients. Maps (g) and (h) show the distribution of white and black inhabitants, respectively. All data have been normalized per 100.000 inhabitants