References:
1. Asia Cn. Novel Coronavirus Map 2020 [updated 12/08/2020. Available
from: https://infographics.channelnewsasia.com/covid-19/map.html.
2. WHO. WHO Coronavirus Disease (COVID-19) Dashboard 2020 [Available
from: https://covid19.who.int/.
3. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic
characterisation and epidemiology of 2019 novel coronavirus:
implications for virus origins and receptor binding. Lancet.
2020;395(10224):565-74.
4. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS:
recent insights into emerging coronaviruses. Nat Rev Microbiol.
2016;14(8):523-34.
5. Fauci AS, Lane HC, Redfield RR. Covid-19 - Navigating the Uncharted.
N Engl J Med. 2020;382(13):1268-9.
6. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al.
Immunology of COVID-19: Current State of the Science. Immunity.
2020;52(6):910-41.
7. Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov
AG, et al. Towards effective COVID19 vaccines: Updates, perspectives and
challenges (Review). Int J Mol Med. 2020;46(1):3-16.
8. Michele Catanzaro FF, Marco Racchi, Emanuela Corsini, Stefano Govoni
& Cristina Lanni. Immune response in COVID-19: addressing a
pharmacological challenge by targeting pathways triggered by SARS-CoV-2.
Signal Transduction and Targeted Therapy. 2020;5(84):1-10.
9. Li H, Wang YM, Xu JY, Cao B. [Potential antiviral therapeutics for
2019 Novel Coronavirus]. Zhonghua Jie He He Hu Xi Za Zhi.
2020;43(3):170-2.
10. Cyranoski D. This scientist hopes to test coronavirus drugs on
animals in locked-down Wuhan. Nature. 2020;577(7792):607.
11. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. Author
Correction: A new coronavirus associated with human respiratory disease
in China. Nature. 2020;580(7803):E7.
12. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia
outbreak associated with a new coronavirus of probable bat origin.
Nature. 2020;579(7798):270-3.
13. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva
AA, et al. Severe acute respiratory syndrome-related coronavirus: the
species and its viruses–a statement of the coronavirus study group.
BioRxiv. 2020.
14. WHO. Naming the Coronavirus Disease (COVID-19 and the Virus That
Causes it 2020 [Available from: https://www.
who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/
naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causesit.
15. Corman VM, Lienau J, Witzenrath M. [Coronaviruses as the cause of
respiratory infections]. Internist (Berl). 2019;60(11):1136-45.
16. Garcia LF. Immune Response, Inflammation, and the Clinical Spectrum
of COVID-19. Front Immunol. 2020;11:1441.
17. Mackenzie JS, Smith DW. COVID-19: a novel zoonotic disease caused by
a coronavirus from China: what we know and what we don’t. Microbiol
Aust. 2020:MA20013.
18. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East
respiratory syndrome coronavirus: another zoonotic betacoronavirus
causing SARS-like disease. Clin Microbiol Rev. 2015;28(2):465-522.
19. Zhou L, Liu, K. & Liu, H. G. Cause analysis and treatment
strategies of recurrence’ with novel coronavirus pneumonia (covid-19)
patients after discharge from hospital. Zhou, L, Liu, K & Liu, H G
Cause analysis and treatment strategies of recurrence’ with novel
coronavirus pneumonia Chin J Tuberc Respir Dis. 2020;43(4):281-4.
20. Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu
Rev Microbiol. 2019;73:529-57.
21. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data
analysis on the receptor ACE2 expression reveals the potential risk of
different human organs vulnerable to 2019-nCoV infection. Front Med.
2020;14(2):185-92.
22. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by
the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long
Structural Studies of SARS Coronavirus. J Virol. 2020;94(7).
23. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T,
Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and
Is Blocked by a Clinically Proven Protease Inhibitor. Cell.
2020;181(2):271-80 e8.
24. Letko M, Marzi A, Munster V. Functional assessment of cell entry and
receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat
Microbiol. 2020;5(4):562-9.
25. Abul K. Abbas AHL, Shiv Pillai. Cellular and Molecular Immunology:
Elsevier saunders; 2015.
26. Control ECfDPa. Immune responses and immunity to SARS-CoV-2 2020
[Available from:
https://www.ecdc.europa.eu/en/covid-19/latest-evidence/immune-responses
27. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ,
et al. COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet. 2020;395(10229):1033-4.
28. Chuan Qin LZ, Ziwei Hu, Shuoqi Zhang, Sheng Yang, Yu Tao, MD,
Cuihong Xie, Ke Ma, Ke Shang, Wei Wang et al. Dysregulation of Immune
Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China.
Clin Infect Dis. 2020:1-7.
29. Dongze Li YC, Hong Liu , Yu Jia , Fanghui Li , Wei Wang , Jiang Wu ,
Zhi Wan , Yu Cao , Rui Zeng. Immune dysfunction leads to mortality and
organ injury in patients with COVID-19 in China: insights from
ERS-COVID-19 study. Signal Transduct Target Ther. 2020;5(62).
30. Omran A, Maaroof A, Saleh MH, Abdelwahab A. Salivary C-reactive
protein, mean platelet volume and neutrophil lymphocyte ratio as
diagnostic markers for neonatal sepsis. J Pediatr (Rio J).
2018;94(1):82-7.
31. Omran A, Ali M, Saleh MH, Zekry O. Salivary C-reactive protein and
mean platelet volume in diagnosis of late-onset neonatal pneumonia. Clin
Respir J. 2018;12(4):1644-50.
32. Hur S. Double-Stranded RNA Sensors and Modulators in Innate
Immunity. Annu Rev Immunol. 2019;37:349-75.
33. Perlman SD, A. A. Immunopathogenesis of coronavirus infections:. Nat
Rev Immunol. 2005;5:917-27.
34. Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, et al. Comparative
replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in
human lungs: an ex vivo study with implications for the pathogenesis of
COVID-19. Clin Infect Dis. 2020.
35. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller
R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of
COVID-19. Cell. 2020;181(5):1036-45 e9.
36. Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, et
al. Endothelial cells are central orchestrators of cytokine
amplification during influenza virus infection. Cell.
2011;146(6):980-91.
37. de Marcken M, Dhaliwal K, Danielsen AC, Gautron AS, Dominguez-Villar
M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA
virus infection. Sci Signal. 2019;12(605).
38. Olejnik J, Hume AJ, Muhlberger E. Toll-like receptor 4 in acute
viral infection: Too much of a good thing. PLoS Pathog.
2018;14(12):e1007390.
39. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev
Immunol. 2002;2(10):725-34.
40. Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response.
Oncogene. 2006;25(51):6758-80.
41. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM,
Fernandez-Delgado R, Fett C, et al. Inhibition of NF-kappaB-mediated
inflammation in severe acute respiratory syndrome coronavirus-infected
mice increases survival. J Virol. 2014;88(2):913-24.
42. Wang W, Ye L, Ye L, Li B, Gao B, Zeng Y, et al. Up-regulation of
IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine
macrophages via NF-kappaB pathway. Virus Res. 2007;128(1-2):1-8.
43. Smits SL, de Lang A, van den Brand JM, Leijten LM, van IWF,
Eijkemans MJ, et al. Exacerbated innate host response to SARS-CoV in
aged non-human primates. PLoS Pathog. 2010;6(2):e1000756.
44. Hiscott J, Nguyen TL, Arguello M, Nakhaei P, Paz S. Manipulation of
the nuclear factor-kappaB pathway and the innate immune response by
viruses. Oncogene. 2006;25(51):6844-67.
45. Silva LC, Ortigosa LC, Benard G. Anti-TNF-alpha agents in the
treatment of immune-mediated inflammatory diseases: mechanisms of action
and pitfalls. Immunotherapy. 2010;2(6):817-33.
46. Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid
arthritis: what have we learned? Annu Rev Immunol. 2001;19:163-96.
47. Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T,
et al. Modulation of TNF-alpha-converting enzyme by the spike protein of
SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral
entry. Proc Natl Acad Sci U S A. 2008;105(22):7809-14.
48. Puja Mehta DFM, Michael Brown , Emilie Sanchez , Rachel S Tattersall
, Jessica J Manson. COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet. 2020;395(10229):1033-4.
49. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in
severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be
the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954.
50. Lee C, Lim HK, Sakong J, Lee YS, Kim JR, Baek SH. Janus
kinase-signal transducer and activator of transcription mediates
phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production.
Mol Pharmacol. 2006;69(3):1041-7.
51. Biswas P, Delfanti F, Bernasconi S, Mengozzi M, Cota M, Polentarutti
N, et al. Interleukin-6 induces monocyte chemotactic protein-1 in
peripheral blood mononuclear cells and in the U937 cell line. Blood.
1998;91(1):258-65.
52. McLoughlin RM, Hurst SM, Nowell MA, Harris DA, Horiuchi S, Morgan
LW, et al. Differential regulation of neutrophil-activating chemokines
by IL-6 and its soluble receptor isoforms. J Immunol.
2004;172(9):5676-83.
53. Xiang S, Dong NG, Liu JP, Wang Y, Shi JW, Wei ZJ, et al. Inhibitory
effects of suppressor of cytokine signaling 3 on inflammatory cytokine
expression and migration and proliferation of IL-6/IFN-gamma-induced
vascular smooth muscle cells. J Huazhong Univ Sci Technolog Med Sci.
2013;33(5):615-22.
54. Qu D, Liu J, Lau CW, Huang Y. IL-6 in diabetes and cardiovascular
complications. Br J Pharmacol. 2014;171(15):3595-603.
55. Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D,
Drexler H. Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT
signaling and cytokine induction. Circ Res. 2000;87(12):1195-201.
56. Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench MO,
et al. Differential downregulation of ACE2 by the spike proteins of
severe acute respiratory syndrome coronavirus and human coronavirus
NL63. J Virol. 2010;84(2):1198-205.
57. Eguchi S, Kawai T, Scalia R, Rizzo V. Understanding Angiotensin II
Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension.
2018;71(5):804-10.
58. Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity:
Insights from the Interleukin 6 Family of Cytokines. Immunity.
2019;50(4):812-31.
59. Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor
and Cytokine Release Syndrome. Immunity. 2020;52(5):731-3.
60. Spiegel S, Milstien S. The outs and the ins of
sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11(6):403-15.
61. Bryan AM, Del Poeta M. Sphingosine-1-phosphate receptors and innate
immunity. Cell Microbiol. 2018;20(5):e12836.
62. Teijaro JR, Walsh KB, Rice S, Rosen H, Oldstone MB. Mapping the
innate signaling cascade essential for cytokine storm during influenza
virus infection. Proc Natl Acad Sci U S A. 2014;111(10):3799-804.
63. Zhe Xu LS, Yijin Wang , Jiyuan Zhang , Lei Huang , Chao Zhang ,
Shuhong Liu , Peng Zhao , Hongxia Liu , Li Zhu , Yanhong Tai , Changqing
Bai , Tingting Gao , Jinwen Song , Peng Xia , Jinghui Dong , Jingmin
Zhao , Fu-Sheng Wang. Pathological findings of COVID-19 associated with
acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2.
64. Chaolin Huang YW, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li
Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, Zhenshun Cheng, Ting Yu,
Jiaan Xia,Yuan Wei and Wenjuan Wu. Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. The Lancet.
2020;395(10223):497-506.
65. Yingxia Liu CZ, Fengming Huang, Yang Yang, Fuxiang Wang, Jing Yuan,
Zheng Zhang, Yuhao Qin, Xiaoyun Li, Dandan Zhao. Elevated plasma levels
of selective cytokines in COVID-19 patients reflect viral load and lung
injury. National Science Review. 2020;7(6):1003–11.
66. Wanglong Gou YF, Liang Yue, Geng-dong Chen, Xue Cai, Menglei Shuai,
Fengzhe Xu, Xiao Yi, Hao Chen, Yi Judy Zhu, Mian-li Xiao, Zengliang
Jiang, Zelei Miao, Congmei Xiao, Bo Shen, Xiaomai Wu. Gut microbiota may
underlie the predisposition of healthy individuals to COVID-19. MedRxiv.
2020.
67. Yaling Shi MT, Xing Chen, Yanxia Liu, Jide Huang, Jingyi Ou, Xilong
Deng. Immunopathological characteristics of coronavirus disease 2019
cases in Guangzhou, China. medRxiv. 2020.
68. Li Tan QW, Duanyang Zhang , Jinya Ding , Qianchuan Huang , Yi-Quan
Tang , Qiongshu Wang , Hongming Miao. Lymphopenia predicts disease
severity of COVID-19: a descriptive and predictive study. Signal
Transduct Target Ther. 2020;5(1):33.
69. Wen Wen WS, Hao Tang, Wenqing Le, Xiaopeng Zhang, Yingfeng Zheng,
XiuXing Liu, Lihui Xie, Jianmin Li, Jinguo Ye, Xiuliang Cui, Yushan
Miao, Depeng Wang, Jiantao Dong, Chuan-Le Xiao, Wei Chen, Hongyang Wang.
Immune Cell Profiling of COVID-19 Patients in the Recovery Stage by
Single-Cell Sequencing. medRxiv. 2020.
70. Quan-Xin Long B-ZL, Hai-Jun Deng, Gui-Cheng Wu, Kun Deng, Yao-Kai
Chen, Pu Liao, Jing-Fu Qiu, Yong Lin, Xue-Fei Cai, De-Qiang Wang, Yuan
Hu, Ji-Hua Ren, Ni Tang, Yin-Yin Xu, Li-Hua Yu, Zhan Mo, Fang Gong,
Xiao-Li Zhang, Wen-Guang Tian, Li Hu, Xi. Antibody responses to
SARS-CoV-2 in patients with COVID-19. Nature Medicine. 2020;26:845–8.
71. Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies
for controlling emerging coronaviruses. Nat Rev Microbiol.
2013;11(12):836-48.
72. Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and
development of inhibitors targeting coronaviruses. Drug Discov Today.
2020;25(4):668-88.
73. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, et al.
A DNA vaccine induces SARS coronavirus neutralization and protective
immunity in mice. Nature. 2004;428(6982):561-4.
74. Jiang S, He Y, Liu S. SARS vaccine development. Emerg Infect Dis.
2005;11(7):1016-20.
75. Widjaja I, Wang C, van Haperen R, Gutierrez-Alvarez J, van Dieren B,
Okba NMA, et al. Towards a solution to MERS: protective human monoclonal
antibodies targeting different domains and functions of the
MERS-coronavirus spike glycoprotein. Emerg Microbes Infect.
2019;8(1):516-30.
76. Chen R, Fu J, Hu J, Li C, Zhao Y, Qu H, et al. Identification of the
immunodominant neutralizing regions in the spike glycoprotein of porcine
deltacoronavirus. Virus Res. 2020;276:197834.
77. Kim MH, Kim HJ, Chang J. Superior immune responses induced by
intranasal immunization with recombinant adenovirus-based vaccine
expressing full-length Spike protein of Middle East respiratory syndrome
coronavirus. PLoS One. 2019;14(7):e0220196.
78. Li E, Yan F, Huang P, Chi H, Xu S, Li G, et al. Characterization of
the Immune Response of MERS-CoV Vaccine Candidates Derived from Two
Different Vectors in Mice. Viruses. 2020;12(1).
79. Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. T-cell immunity
of SARS-CoV: Implications for vaccine development against MERS-CoV.
Antiviral Res. 2017;137:82-92.
80. Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia
outbreak in Wuhan, China: calling for developing therapeutic and
prophylactic strategies. Emerg Microbes Infect. 2020;9(1):275-7.
81. Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and
treating infections by a novel coronavirus responsible for a pneumonia
outbreak originating in Wuhan, China. Microbes Infect. 2020;22(2):74-9.
82. Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible
Urgent Prevention and Treatment Options for Severe Acute Respiratory
Infections Caused by 2019-nCoV. Chembiochem. 2020;21(5):730-8.
83. Xie Q, He X, Yang F, Liu X, Li Y, Liu Y, et al. Analysis of the
Genome Sequence and Prediction of B-Cell Epitopes of the Envelope
Protein of Middle East Respiratory Syndrome-Coronavirus. IEEE/ACM Trans
Comput Biol Bioinform. 2018;15(4):1344-50.
84. Bijlenga G. Proposal for vaccination against SARS coronavirus using
avian infectious bronchitis virus strain H from The Netherlands. J
Infect. 2005;51(3):263-5.
85. Zhang L, Liu Y. Potential interventions for novel coronavirus in
China: A systematic review. J Med Virol. 2020;92(5):479-90.
86. NIAID Developing therapeutics and vaccines for coronaviruses
https://www.niaid.nih.gov/diseases-conditions/coronaviruses-therapeutics-vaccines2020
[Available from:
https://www.niaid.nih.gov/diseases-conditions/coronaviruses-therapeutics-vaccines.
87. CEPI CEPI to fund three programmes to develop vaccines against the
novel coronavirus, nCoV-2019 2020 [Available from:
https://cepi.net/news_cepi/cepi-to-fund-three-programmes-to-develop-vaccines-against-the-novel-coronavirus-ncov-2019/.
88. Goo J, Jeong Y, Park YS, Yang E, Jung DI, Rho S, et al.
Characterization of novel monoclonal antibodies against MERS-coronavirus
spike protein. Virus Res. 2020;278:197863.
89. Zeng LP, Ge XY, Peng C, Tai W, Jiang S, Du L, et al.
Cross-neutralization of SARS coronavirus-specific antibodies against bat
SARS-like coronaviruses. Sci China Life Sci. 2017;60(12):1399-402.
90. Cohen J. New coronavirus threat galvanizes scientists. Science.
2020;367(6477):492-3.
91. Seesuay W, Jittavisutthikul S, Sae-Lim N, Sookrung N, Sakolvaree Y,
Chaicumpa W. Human transbodies that interfere with the functions of
Ebola virus VP35 protein in genome replication and transcription and
innate immune antagonism. Emerg Microbes Infect. 2018;7(1):41.
92. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al.
COVID-19, an emerging coronavirus infection: advances and prospects in
designing and developing vaccines, immunotherapeutics, and therapeutics.
Hum Vaccin Immunother. 2020;16(6):1232-8.
93. Gretebeck LM, Subbarao K. Animal models for SARS and MERS
coronaviruses. Curr Opin Virol. 2015;13:123-9.
94. Yang XH, Deng W, Tong Z, Liu YX, Zhang LF, Zhu H, et al. Mice
transgenic for human angiotensin-converting enzyme 2 provide a model for
SARS coronavirus infection. Comp Med. 2007;57(5):450-9.
95. Munster VJ, de Wit E, Feldmann H. Pneumonia from human coronavirus
in a macaque model. N Engl J Med. 2013;368(16):1560-2.
96. Falzarano D, de Wit E, Feldmann F, Rasmussen AL, Okumura A, Peng X,
et al. Infection with MERS-CoV causes lethal pneumonia in the common
marmoset. PLoS Pathog. 2014;10(8):e1004250.
97. Roberts A, Lamirande EW, Vogel L, Jackson JP, Paddock CD, Guarner J,
et al. Animal models and vaccines for SARS-CoV infection. Virus Res.
2008;133(1):20-32.
98. Zhou Y, Jiang S, Du L. Prospects for a MERS-CoV spike vaccine.
Expert Rev Vaccines. 2018;17(8):677-86.
99. Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. Recent Advances in the
Vaccine Development Against Middle East Respiratory
Syndrome-Coronavirus. Front Microbiol. 2019;10:1781.
100. (WHO) WHO. DRAFT landscape of COVID-19 candidate vaccines. WHO;
Geneva: 2020 2020 [Available from:
https://www.who.int/blueprint/priority-diseases/key-action/Novel_Coronavirus_Landscape_nCoV_11April2020.PDF?ua=1urisimplehttps://www.who.int/blueprint/priority-diseases/key-action/Novel_Coronavirus_Landscape_nCoV_11April2020.PDF?ua=1.
101. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine
immunogenicity. Expert Rev Vaccines. 2016;15(3):313-29.
102. Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB.
Clinical applications of DNA vaccines: current progress. Clin Infect
Dis. 2011;53(3):296-302.
103. Arena CT. University of Oxford starts enrolment for Covid-19
vaccine trial 2020 [Available from:
https://www.clinicaltrialsarena.com/news/oxford-university-covid-19-vaccine-trial/urisimplehttps://www.clinicaltrialsarena.com/news/oxford-university-covid-19-vaccine-trial/
104. Arena CT. Inovio commences Phase I trial of DNA vaccine for
Covid-19 2020 [Available from:
https://www.clinicaltrialsarena.com/news/inovio-SARS-COV-2-vaccine-trial/urisimplehttps://www.clinicaltrialsarena.com/news/inovio-SARS-COV-2-vaccine-trial/.
105. Zhang N, Tang J, Lu L, Jiang S, Du L. Receptor-binding domain-based
subunit vaccines against MERS-CoV. Virus Res. 2015;202:151-9.
106. Lee NH, Lee JA, Park SY, Song CS, Choi IS, Lee JB. A review of
vaccine development and research for industry animals in Korea. Clin Exp
Vaccine Res. 2012;1(1):18-34.
107. Sarkar B IS, Zohora US and Ullah MA. Virus like particles - A
recent advancement in vaccine development. Korean J Microbiol.
2019;55:327–43.
108. Sridhar S, Brokstad KA, Cox RJ. Influenza Vaccination Strategies:
Comparing Inactivated and Live Attenuated Influenza Vaccines. Vaccines
(Basel). 2015;3(2):373-89.
109. WHO. Draft landscape of COVID-19 candidate vaccines 2020
[Available from:
https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
110. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity.
2020;52(4):583-9.
111. Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et
al. A double-inactivated severe acute respiratory syndrome coronavirus
vaccine provides incomplete protection in mice and induces increased
eosinophilic proinflammatory pulmonary response upon challenge. J Virol.
2011;85(23):12201-15.
112. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar
RL, et al. Immunization with SARS coronavirus vaccines leads to
pulmonary immunopathology on challenge with the SARS virus. PLoS One.
2012;7(4):e35421.